Introduction

- Welcome to the FPC 2024 Introduction Session
- 2 parts
- First part gives introduction of programming contests
- We will discuss all last year's problems of the FPC in the second part
- Problem set is available on paper, try to read through it in the break

- Alumnus, working in the Software Industry
- Involved in organizing programming contests since 2003 as volunteer
- "Coach" for TU Delft teams since NWERC 2003
- Twice coach on the World Finals

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

Introduction to Programming Contests

What is a programming contest?

- Team of 3 people
- Single computer
- Solve as many problems from the problem set (8 to 15 problems)
- In 5 hours
- In any order

What is a programming contest?

- Team of 3 people
- Single computer
- Solve as many problems from the problem set (8 to 15 problems)
- In 5 hours
- In any order
 - Solve it efficiently
 - do it as quickly as possible (under pressure)
 - and do it correctly (without bugs)

What is a programming contest?

- Team of 3 people
- Single computer
- Solve as many problems from the problem set (8 to 15 problems)
- In 5 hours
- In any order
 - Solve it efficiently
 - do it as quickly as possible (under pressure)
 - and do it correctly (without bugs)
- With limited documentation and no internet

• Sorted by number of problems solved

- Sorted by number of problems solved
- Sorted by the total time for solved problems

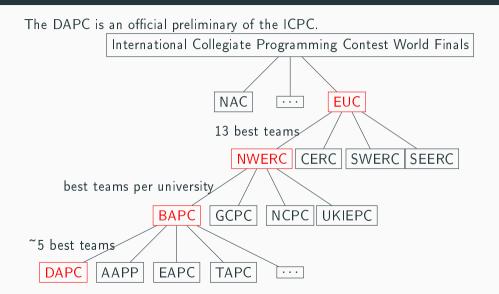
- Sorted by number of problems solved
- Sorted by the total time for solved problems
 - Time in minutes since the start of the contest
 - Penalty for each wrong attempt on a solved solution of 20 minutes

- Sorted by number of problems solved
- Sorted by the total time for solved problems
 - Time in minutes since the start of the contest
 - Penalty for each wrong attempt on a solved solution of 20 minutes
 - Penalty time is counts only if the problem is solved afterward.
 - Penalty time does not reduce your contest time.
 - Penalty time is not added for wrong attempts after the problem is solved.
 - No penalty for compile errors.

Example Scoreboard

DAPC 2022

final standings


+

RANK	K TEAM	SCORE	Α	В	С	D	E	F	G	Н		J	К	
1	Delft University of Technology Segfault go BRRRR Delft University of Technology	12 109	0 22 1 try	48 2 tries	41 1 try	94 1 try	66 1 try	7 1 try	190 3 tries	223 1 try	118 1 try	106 2 tries	85 1 try	10 1 try
2	Tu ADA Refactor Delft University of Technology	11 108	7 21 2 tries	44 2 tries	98 1 try	108 1 try	77 1 try	25 1 try	251 1 try	1 try	66 1 try	162 4 tries	129 1 try	6 1 try
3	Chindia Targoviste Delft University of Technology	11 127	3 74 3 tries	31 1 try	188 1 try	112 1 try	61 1 try	14 1 try	226 1 try	1 try	142 2 tries	149 2 tries	175 1 try	21 1 try
4	TU WA & Chill Delft University of Technology	11 142	4 9 1 try	67 1 try	111 1 try	181 1 try	131 4 tries	35 1 try	298 3 tries		154 1 try	102 3 tries	143 1 try	53 1 try
5	Tu Placeholder Delft University of Technology	11 158	9 50 3 tries	110 2 tries	76 1 try	181 1 try	224 1 try	19 1 try	289 4 tries		144 1 try	99 2 tries	160 1 try	17 5 tries
6	Tu Exponential Fenwick Delft University of Technology	10 74	9 14 1 try	62 2 tries	139 4 tries	94 1 try	61 1 try	18 1 try	2 tries	3 tries	42 2 tries	99 1 try	116 1 try	4 1 try
7	Tu Dirty Bits Done Dirt Cheap Delft University of Technology	10 119	8 11 1 try	35 2 tries	64 1 try	129 1 try	191 1 try	22 1 try	2 tries		147 1 try	264 10 tries	105 1 try	30 1 try
8	Tu Sleetje3 Delft University of Technology	10 131	1 30 1 try	94 2 tries	49 1 try	222 1 try	209 2 tries	19 1 try	7 tries	1 try	254 1 try	169 5 tries	79 1 try	66 1 try
9	Tu SMG Delft University of Technology	10 153	4 48 1 try	10 1 try	201 3 tries	169 1 try	219 3 tries	21 1 try	7 tries	1 try	267 8 tries	93 2 tries	192 4 tries	14 1 try
10	Fu Poland Mountain Delft University of Technology	10 162	6 65 3 tries	55 1 try	287 4 tries	217 1 try	119 1 try	20 1 try	1 try		253 1 try	172 2 tries	218 1 try	100 1 try
11	Tu NoDucksGiven Delft University of Technology	10 182	6 128 3 tries	147 1 try	73 1 try	257 1 try	234 6 tries	36 1 try	290 4 tries			175 2 tries	160 1 try	26 5 tries
12	fu bits by dre Delft University of Technology	9 139	6 24	55 1 try	132 1 try	246	262 1 try	52 1 try				221 3 tries	234 3 tries	90 1 try

- Contest of 3 hours
- Simpler problems
- Preparation for the Delft Algorithm Programming Contest (DAPC)

- Contest is 5 hours instead of 3 hours
- Official preliminary for International Collegiate Programming Contest (ICPC)
- Increased difficulty in every contest

Road to the world finals

Reading a problem

A typical problem has the following structure

- Problem description
- Input description
- Output description
- Example input/output
- A time limit in seconds

You are asked to write a program that solves the problem for all valid inputs within the time limit.

Problem description Write a program that multiplies pairs of integers.

Input description The input consists of:

- One line with an integer t $(1 \le t \le 100)$, the number of test cases.
- t lines, each with two integers a and b $(|a|, |b| \le 10^6)$, the numbers to multiply.

Output description For each test case, output the value of $a \times b$.

Sample input	Sample output
4 3 4 13 0 1 8 100 100	12 0 8 10000

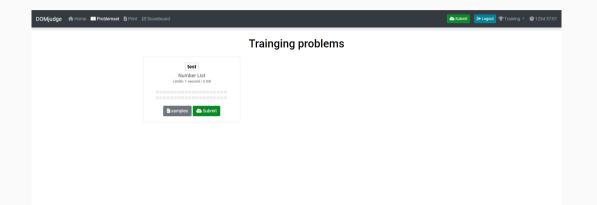
```
#include <iostream>
1
    using namespace std;
\mathbf{2}
3
    int main() {
 4
5
         int t;
         cin >> t;
6
         for (int i = 0; i < t; i++) {
7
8
             int a, b;
             cin >> a >> b;
9
             cout << a * b << endl;</pre>
10
         }
11
         return 0;
12
    }
13
```

```
import java.io.*;
\mathbf{2}
    class Problem {
3
      public static void main(String[] args) throws IOException {
        var input = new BufferedReader(new InputStreamReader(System.in));
5
        var cases = Integer.parseInt(input.readLine());
6
        for (int i = 0; i < cases; i++) {
7
          var line = input.readLine().split(" ");
8
          System.out.println(
9
             Integer.parseInt(line[0]) * Integer.parseInt(line[1])
10
          );
11
        }
12
      }
13
14
```

Solution in Kotlin and Python

```
1 fun main() {
2 val t = readln().toInt();
3 System.`in`.bufferedReader().lineSequence().take(t).forEach { line ->
4 println(line.split(" ").map { it.toInt() }.let { (a, b) -> a * b })
5 }
6 }
```

```
1 t = int(input())
2 for t in range(t):
3 numbers = list(map(int, input().split()))
4 print(numbers[0] * numbers[1])
```


Introduction to DOMjudge

- During the contest you submit to a contest control system
 - Usually DOMjudge, but sometimes Kattis or PC^2
- Submit solutions
- Ask questions about the problems or programming environment
- Read clarifications from the jury

DOMjudge Interface - home

DOMjudge ♠Home IIII Problemset Print 1Ξ Scoreboard	Submit (→ Logout ♥ Training - ● 123d 54:13
	 SCORE TEST
Submissions	Clarifications
No submissions	No clarifications.
	Clarification Requests
	No clarification request.
	request clarification

DOMjudge Interface - problems

DOMjudge Interface - submit

DOMjudge Arme III Problemset BPrint 1⊟ Scoreboard	Submit	×	▲ Submit
	Source files example.kt B	rowse	
Submissions	Problem test - Number List	٠	Clarifications
No submissions	Language Kotlin	٥	Jarification Requests
	Main class ExampleKt		
	The entry point for your code.	Submit	

Are the solutions correct?

DOMjudge f	Home 💷 Problemset 🛅 Print	} ≣ Scoreboard		▲ Submit (←Logat) ♥ Training * ⊗1	23d 30:3
				RANK TEAM SCORE TEST 1 Cosch 0 0 2.0 Mink	
Submission dor	ne! Watch for the verdict in the list	below.			×
		Submissions		Clarifications	
time	problem	lang	result	No clarifications.	
15:43	TEST	рүЗ	PENDING	Clarification Requests	
15:42	TEST	AVAL	PENDING	No clarification request.	
15:42	TEST	CPP	PENDING	request clarification	
15:42	TEST	кт	PENDING		

We made a whoopsie?

DOMjudge	A Home 🛄 Problemset	Print 1 Scoreboard		▲ Submit. [+Logad. 型 Training * © 12:	23d 28:13
				RANK TEAM SCORE TEST 1 Cosch 0 0 3 Statument 3	
Submission de	one! Watch for the verdict i	n the list below.			×
		Submissi	ons	Clarifications	
time	problem	lang	result	No clarifications.	
15:43	TEST	PY3	PENDING	Clarification Requests	
15:42	TEST	JAVA	WRONG-ANSWER	No clarification request.	
15:42	TEST	CPP	WRONG-ANSWER	request clarification	
15:42	TEST	кт	WRONG-ANSWER		

Or not

DOMjudge 1	🕆 Home 💵 Problemset 🖺	Print ≟⊟ Scoreboard		×	🛆 Submit 🚺 🚺 Logout 🖤 Training 🔹 🚳 123d 27:01
				RANN TEAM SCORE TEST 1 Couch 1 89 23 1 Couch 1 89 23	
Submission do	one! Watch for the verdict in th	ne list below.			×
		Submiss	ions		Clarifications
time	problem	lang	result	No clarifications.	
15:43	TEST	рү3	CORRECT		Clarification Requests
15:42	TEST	JAVA	WRONG-ANSWER	No clarification request.	
15:42	TEST	CPP	WRONG-ANSWER	request clarification	
15:42	TEST	кт	WRONG-ANSWER		

Let's ask the jury

DOMjudge	A Home 📲 Problemset	🖺 Print 🗄 Scoreboard	Send clarification request	×	🛆 Submit 🛛 🔂 Logout 🦞 Training 👻 🚳 123d 23:18
			Recipient Jury		
		Submissions	Subject test: Number List	•	Clarifications
time	problem	lang	Message		
15:43	TEST	PY3	Why did the first 3 submissions fail? They do the same as the accepted one.		Clarification Requests
15:42	TEST	JAVA			
15:42	TEST	СРР			
15:42	TEST	кт			
			Cancel	Send	

Let's hope they respond fast

DOMjudge	🔒 Home 🛯 🕅 Problemset 🚦	BPrint 1≣Scoreboard							🛆 Submit 🛛 🔂 Hogout 🖤 Training 👻 🚳 1	23d 21:51
				Team	1 89	29 4 tries				
Clarification s	ent to the jury									×
		Submiss	ons						Clarifications	
time	problem	lang	result		No clari	fications.				
15:43	TEST	РУЗ	CORRECT						Clarification Requests	
15:42	TEST	JAVA	WRONG-ANSWER		time	from	to	subject	text	
15:42	TEST	CPP	WRONG-ANSWER		15:52	Coach	Jury	problem test	Why did the first 3 submissions fail? They do the same as the accepted or	10.
15:42	TEST	кт	WRONG-ANSWER		reques	t clarificatio	n			

We have a response

DOMjudge A Home III Problemset B Print 1 Scoreboard

Submit 🕞 Logout 🖤 Training 👻 🚳 123d 20:20

	Submissions				Clarifications							
time	problem	lang	result	tir	ime		from	to	subject	text		
15:43	TEST	рүЗ	CORRECT	1	15:53		Jury	Coach	problem test	No comment.		
15:42	TEST	JAVA	WRONG-ANSWER						Clarification Requests			
15:42	TEST	CPP	WRONG-ANSWER	tir	ime	from	to	subject	text			
15:42	TEST	кт	WRONG-ANSWER	1	15:52	Coach	Jury	problem test	Why did the first 3 submissions fail?	They do the same as the accepted one.		

request clarification

The jury is not helping us

DOMjudge	A Home 🕅 Problemset 🚦	B Print 1∃⊟ Scoreboard	с	larification Request	×		×		💩 Submit	🔂 Logout 🖤 Training 🕈	 ③ 123d 19:03
				Subject: Problem test: Number List		15:52					
				From: Coach (t3)	To: Jury						
		Submissions		Why did the first 3 submissions fail? The	y do the same as the accepted one.			Clarifications			
time	problem	lang						subject		text	
15:43	TEST	рүЗ		Subject: Problem test: Number List		15:53		problem test		No comment.	
15:42	TEST	JAVA						larification Requ	ests		
15:42	TEST	СРР		From: Jury	To: Coach (t3)						
15:42	TEST	кт		> Why did the first 3 submissions fail? T	hey do the same as the accepted one.			d the first 3 submiss	ions fail? The	y do the same as the acce	pted one.
				No comment.							
			-								
					reply to this clarification	Clo	se				

• Let's check the input again: $|a|, |b| \leq 10^6$

- Let's check the input again: $|a|, |b| \leq 10^6$
- Worst case scenario: $a=10^6$ and $b=10^6$ giving $a imes b=10^{12}$

- Let's check the input again: $|a|, |b| \leq 10^6$
- Worst case scenario: $a=10^6$ and $b=10^6$ giving $a imes b=10^{12}$
- Does 10¹² fit in a 32-bit int?

- Let's check the input again: $|a|, |b| \leq 10^6$
- Worst case scenario: $a=10^6$ and $b=10^6$ giving $a imes b=10^{12}$
- Does 10¹² fit in a 32-bit int?
- $\log_2 10^{12} \approx$ 40, so NO, 40 bits don't fit in an int

- Let's check the input again: $|a|, |b| \leq 10^6$
- Worst case scenario: $a=10^6$ and $b=10^6$ giving $a imes b=10^{12}$
- Does 10¹² fit in a 32-bit int?
- $\log_2 10^{12} \approx$ 40, so NO, 40 bits don't fit in an int
- Use long (long) when possible, except in Python

```
#include <iostream>
1
    using namespace std;
\mathbf{2}
3
    int main() {
 4
5
         int t;
         cin >> t;
6
         for (int i = 0; i < t; i++) {
7
8
             long long a, b;
             cin >> a >> b;
9
             cout << a * b << endl;</pre>
10
         }
11
         return 0;
12
    }
13
```

```
import java.io.*;
\mathbf{2}
    class ProblemCorrect {
3
      public static void main(String[] args) throws IOException {
        var input = new BufferedReader(new InputStreamReader(System.in));
5
        var cases = Integer.parseInt(input.readLine());
6
        for (int i = 0; i < cases; i++) {
7
          var line = input.readLine().split(" ");
8
          System.out.println(
9
            Long.parseLong(line[0]) * Long.parseLong(line[1])
10
          );
11
        }
12
      }
13
14
```

```
1 fun main() {
2 val t = readln().toInt();
3 System.`in`.bufferedReader().lineSequence().take(t).forEach { line ->
4 println(line.split(" ").map { it.toLong() }.let { (a, b) -> a * b })
5 }
6 }
```

All solutions correct

DOMjudge A Home III Problemset Print E Scoreboard

🛆 Submit 🛛 🔂 Logout 🖤 Training 👻 🚳 122d 23:57:57

Submissions									
time	problem	lang	result						
16:15	TEST	кт	CORRECT						
16:15	TEST	JAVA	CORRECT						
16:14	TEST	CPP	CORRECT						
15:43	TEST	РУЗ	CORRECT						
15:42	TEST	JAVA	WRONG-ANSWER						
15:42	TEST	CPP	WRONG-ANSWER						
15:42	TEST	кт	WRONG-ANSWER						

Clarifications								
time	from	to	subject	text				
15:53	Jury	Coach	problem test	No comment.				
Clarification Requests								

time	from	to	subject	text
15:52	Coach	Jury	problem test	Why did the first 3 submissions fail? They do the same as the accepted one.

quest clarificatio

Estimating problem complexity

- The time limit specifies the time you program may run
- This includes JVM-startup and I/O
- High time limit signify
 - lots of I/O
 - Slower algorithms can be accepted
- Low limit signifies fast algorithms, usually the use of formulas
- You can use the time limit to check your code on your local machine
 \$ time myjava ProblemA < worst-case.in

Based on the input size you can an idea of the time complexity.

$\mathcal{O}(n!)$	$n \le 10$	$\mathcal{O}(n\log^2 n)$	$n \le 10^5$
$\mathcal{O}(2^n)$	$n \le 20$	$\mathcal{O}(n \log n)$	$n \leq 10^6$
$\mathcal{O}(n^3)$	$n \le 500$	$\mathcal{O}(n)$	$n \leq 10^8$
$\mathcal{O}(n^2 \log n)$	$n \leq 1000$	$\mathcal{O}(\sqrt{n})$	$n \leq 10^{15}$
$\mathcal{O}(n^2)$	$n \leq 5000$	$\mathcal{O}(\log n)$	$n \leq 10^{18}$
$\mathcal{O}(n\sqrt{n})$	$n \leq 10^5$		

Warning: This is not guaranteed to be always the case!

¹https://gcpc.nwerc.eu/primer.pdf

Tips, tricks and common mistakes

- Read the output specification carefully!
- Don't forget to remove debug prints!
- When integers get large, use 64-bit!
- Do not do string concatenation with + in a loop!
- Calling functions is more expensive than you might think!
- For Java, BufferedReader is faster than Scanner!
- Don't forget to eat and drink. Programming contest is a sport, and you need to be energized and focussed for the whole contest.

- Know each other's strengths and weaknesses like:
 - types of problems (math, geometry, search, strings, graphs, etc.)
 - debugging skills
 - coding speed and accuracy
- Parallelize
- Work on paper (e.g. pseudocode or flow diagrams)
- Debug on paper
- Use rubber duck debugging when stuck

• Plot of the contest: 3 contestants, 1 computer

- Plot of the contest: 3 contestants, 1 computer
- Several tactics how to divide the computer efficiently

Team Tactics

- Plot of the contest: 3 contestants, 1 computer
- Several tactics how to divide the computer efficiently
- Shuffle Tactic

• Designated Tactic

• No best solution: Pick and mix what works best for your team

Team Tactics

- Plot of the contest: 3 contestants, 1 computer
- Several tactics how to divide the computer efficiently
- Shuffle Tactic
 - Rotate around who sits behind the pc
 - After submitting a problem, switch around if someone has a solution
 - Useful when programming in different languages
- Designated Tactic

• No best solution: Pick and mix what works best for your team

- Plot of the contest: 3 contestants, 1 computer
- Several tactics how to divide the computer efficiently
- Shuffle Tactic
 - Rotate around who sits behind the pc
 - After submitting a problem, switch around if someone has a solution
 - Useful when programming in different languages
- Designated Tactic
 - Dedicated person behind computer
 - Other team members work on paper or read along on screen
 - Useful for teams with different disciplines
- No best solution: Pick and mix what works best for your team

- Decide on a reading tactic
 - Do we all start reading the first problem?
 - Or does one person start at the end?
- There are usually several "simple" problems in a set
- Be careful: the easiest problems usually contain some pitfall corner cases!

Finding the easiest problems by results

- After a few minutes of contest, the first balloons will be handed out
- Check the scoreboard or balloon colours to see which problem is solved most

RANK TE		т	TEAM	sco	RE	A 🔴	в 😑	c 🔾	D 😑	EO	F 😐	G 🔾	н	1 😐	J 🔵	ĸO
	55		Delft University of Technology	•	200	4 tries	4 tries		1 try		1 try		2 tries			
	36		LuckOverflow Delft University of Technology	0	0											
			Splirk Siayidhah Delft University of Technology	0	0											
			Vulturii Tâmpei Delft University of Technology	0	0											
	Summary					i 18 ♥ 44 ⑦ 0 0 27min	1 28	,	⊯ 35 ₩ 2 Ø 0 © 6min	ı∳ 0 I¶ 17 Ø 0 O n/a	i∳ 33 ♥ 32 Ø 0 ♥ 14min	17 ♥ 68 Ø 0 Ø 80min	,∲ 30 ♥ 35 ⑦ 0 ♥ 28min	• 87 🕜 0	• • 21 ⑦ 0	i

- Or the problems page in DOMjudge (only newer versions)
- Warning: The first problem solved is not guaranteed the easiest!

Print out the problem and let other people work on the computer, work out cases that might go wrong.

- When the result is Run Time Error (RTE):
 - Check for possible null pointers, array overflows, or integer overflow
 - Check the input specification, don't forget 0 can do unexpected things
- When the result is Time Limit Exceeded (TLE):
 - Check stop conditions, maybe an infinite loop?
 - Code is too slow, try optimizing or thinking of a faster solution
- When then result is Wrong Answer (WA):
 - Check for corner cases, don't forget zero
 - Check correctness of algorithm
- Warning: A problem can be RTE and TLE and WA at the same time, but only *one* is reported back!

Start of contest Prepare computer, find and solve easiest problems, all problems should be read by at least a single team member.

First hours Prioritize solving the easiest problems, every team member works on their own problems

Mid contest Work on solving harder problems with 2 people, while the last person works alone on the last easy or specialized hard problems

End of the contest Work together with the whole team on a single problem, free submit mode

- Focusing on the first problem you think you can solve
- Not reading all problems in the set
- Debugging on the computer while another solution can be implemented
- Fighting who can solve which problem
- Not rewriting code when it gets to messy

- If you want to try to make it to the World Finals, you can train for next year's DAPC
- Many online problem-solving websites:
 - December: Advent of Code (https://adventofcode.com/)
 - September-January: Universal Cup (https://ucup.ac)
 - Year round: Kattis Problem Archive (https://open.kattis.com/)
 - Year round: Codeforces (https://codeforces.com/)
- Several books available, listed on https://chipcie.wisv.ch/resources

FPC 2023 problems

- We go through the problems in alphabetical order
- Implementations are left to the reader
- Reference solutions can be found in the CHipCie problem archive at https://chipcie.wisv.ch/archive

Admiring Droplets

- FPC 2023
- Time limit: 3s
- Difficulty: Very Easy
- Given *n* droplets on the same vertical line with size $s (\mu L)$ on a window with distance y (mm) from the top. The velocity is given by $v = \sqrt[6]{V}$ (v in m/s and V in m^3) and when two droplets meet they coalesce together $(V = s_{current} + s_{next})$. Calculate the time takes for the coalesced droplet to reach the bottom of the window

Original problem written by the FPC 2023 Jury and licensed under Creative Commons Attribution-ShareAlike 4.0 International.

• Observation: $n \leq 10^5$, so we are looking for a $\mathcal{O}(n)$ solution

- Observation: $n \leq 10^5$, so we are looking for a $\mathcal{O}(n)$ solution
- Simulate the droplets from highest to lowest

- Observation: $n \leq 10^5$, so we are looking for a $\mathcal{O}(n)$ solution
- Simulate the droplets from highest to lowest
- For the current droplet, calculate the time to reach the closest droplet

- Observation: $n \leq 10^5$, so we are looking for a $\mathcal{O}(n)$ solution
- Simulate the droplets from highest to lowest
- For the current droplet, calculate the time to reach the closest droplet
- Merge the droplets together and calculate the new size
- Repeat until a single droplet is left and print the sum of the time
- Pitfall:
 - Be careful with unit conversion: 1 m = 1000 mm, $1 m^3 = 10^9 mm^3$
 - Off by one errors

- FPC 2023
- Time limit: 1s
- Difficulty: Easy
- Given a number s, print a string containing exactly s palindromes

Original problem written by the FPC 2023 Jury and licensed under Creative Commons Attribution-ShareAlike 4.0 International.

• Observation: $n \leq 10^9$, so we are looking for a solution faster $\mathcal{O}(n)$

- Observation: $n \leq 10^9$, so we are looking for a solution faster $\mathcal{O}(n)$
- Observation: a string "aaa...aaa" of size *I* has $\frac{I(I+1)}{2}$ palindromes

- Observation: $n \leq 10^9$, so we are looking for a solution faster $\mathcal{O}(n)$
- Observation: a string "aaa...aaa" of size *I* has $\frac{I(I+1)}{2}$ palindromes
- The length of the word should be $\lceil \sqrt{n} \rceil$

- Observation: $n \leq 10^9$, so we are looking for a solution faster $\mathcal{O}(n)$
- Observation: a string "aaa...aaa" of size *I* has $\frac{I(I+1)}{2}$ palindromes
- The length of the word should be $\lceil \sqrt{n} \rceil$
- Find the largest I where $l \le n$ by search or using the formula $l = \lfloor \frac{\sqrt{8n+1}-1}{2} \rfloor$

$$\frac{l(l+1)}{2} \le n \equiv l^2 + l \le 2n \equiv l^2 + l - 2n \le 0 \equiv l \le \frac{-1 + \sqrt{1 + 4 \cdot 2n}}{2}$$

Beaking Spackwards

- Observation: $n \leq 10^9$, so we are looking for a solution faster $\mathcal{O}(n)$
- Observation: a string "aaa...aaa" of size *I* has $\frac{I(I+1)}{2}$ palindromes
- The length of the word should be $\lceil \sqrt{n} \rceil$
- Find the largest I where $l \le n$ by search or using the formula $l = \lfloor \frac{\sqrt{8n+1}-1}{2} \rfloor$

$$\frac{l(l+1)}{2} \le n \equiv l^2 + l \le 2n \equiv l^2 + l - 2n \le 0 \equiv l \le \frac{-1 + \sqrt{1 + 4 \cdot 2n}}{2}$$

- Generate a string of length I with the same letter that is unused
- or append a non palindrome letter to increase the number of palindromes is the desired size
- Update n with the remaining length and repeat until n = 0 and print the string

Beaking Spackwards

- Observation: $n \leq 10^9$, so we are looking for a solution faster $\mathcal{O}(n)$
- Observation: a string "aaa...aaa" of size *I* has $\frac{I(I+1)}{2}$ palindromes
- The length of the word should be $\lceil \sqrt{n} \rceil$
- Find the largest I where $l \le n$ by search or using the formula $l = \lfloor \frac{\sqrt{8n+1}-1}{2} \rfloor$

$$\frac{l(l+1)}{2} \le n \equiv l^2 + l \le 2n \equiv l^2 + l - 2n \le 0 \equiv l \le \frac{-1 + \sqrt{1 + 4 \cdot 2n}}{2}$$

- Generate a string of length I with the same letter that is unused
- or append a non palindrome letter to increase the number of palindromes is the desired size
- Update n with the remaining length and repeat until n = 0 and print the string
- **Pitfall:** Be careful with slow string concatenations

Catchy Tunes

- FPC 2023
- Time limit: 3s
- Difficulty: Medium
- Given a list on *n* songs with their artist, generate an ordering where every song is followed with a song from a different artist.

- Observation: $n \leq 10^5$, so we are looking for a $\mathcal{O}(n)$ solution
- At least half of the songs in the playlist are from a unique artist

- Observation: $n \leq 10^5$, so we are looking for a $\mathcal{O}(n)$ solution
- At least half of the songs in the playlist are from a unique artist
- Group the songs in two lists during input if the artist is unique or not

- Observation: $n \leq 10^5$, so we are looking for a $\mathcal{O}(n)$ solution
- At least half of the songs in the playlist are from a unique artist
- Group the songs in two lists during input if the artist is unique or not
- Alternate printing a song title from either list and remove it
- If one list is empty, keep printing from the other list

Dungeon of Darkness

- FPC 2023
- Time limit: 1s
- Difficulty: Hard
- Interactive Problem
- Using interactions, navigate a maze and find the exit.

What are Interactive Problems?

- Traditional problems give all the input at once, you solve and print all the output at once
- Interactive problems give input, you do work, print output, and you receive new input
- This process continues until you find the final answer
- The problem defines an interaction protocol
- The problem may have an interaction limit
- If an interactive problem may be in the set, an simple interactive problem will be included in the test session

- Search in a finite space
- Explore a maze
- Matching games
- Decision problems

- Flush the output after every write
 - Only the output, not the input
 - Not flushing the output results in Time Limit Exceeded
- Verdict of a solution is not deterministic, but the following is guaranteed:
 - Wrong Answer means you printed something wrong
 - Runtime Error means you returned a non-zero exit code
 - If both occur, you will get either
- ICPC style contests don't have "Idleness Limit Exceeded", but a total runtime limit.

C++: end your output with std::endl or std::flush
Python: use the flush parameter, like print("abc", flush=True)
Java/Kotlin: use a java.io.BufferedWriter and after each write use the .flush()
method.

Interactive problems testing tool

- Most contests provide a testing tool to test the interaction with a testing tool
- This is usually called testing_tool.py in our region
- The header file tells you how to run run the testing tool, for example \$ python3 testing_tool.py -f 1.in python3 ./solution.py
- Pitfall for Java/Kotlin: You should run the testing tool in the directory which contains the compiled class file
- Wrong:
 - ~/\$ python3 testing_tool.py -f 1.in java ./code/ProblemA
- Right:

~/code/\$ python3 testing_tool.py -f 1.in java ProblemA

• Get to the final room in a dungeon, where you only see the symbols of the doors leading from the current room

- Get to the final room in a dungeon, where you only see the symbols of the doors leading from the current room
- Use a Depth First Search (DFS) to delve deeper in the maze

- Get to the final room in a dungeon, where you only see the symbols of the doors leading from the current room
- Use a Depth First Search (DFS) to delve deeper in the maze
- If the exit is in the room, go through to the exit
- If in a room, the exit is not there, move through a door you haven't visited yet
- If all doors are visited, move back to the door you entered the room through

- FPC 2023
- Time limit: 4s
- Difficulty: Very Easy
- Given *n* dices with *x* faces, calculate the expected value of throwing all dice at once.

- **Observation:** $n \cdot x \leq 64$, so we are looking for a solution faster than $\mathcal{O}(2^n)$
- Observation: High time limit signals brute force might be possible

- Observation: $n \cdot x \leq 64$, so we are looking for a solution faster than $\mathcal{O}(2^n)$
- Observation: High time limit signals brute force might be possible
- Calculate all possible throws for the combined dice and sum them up
- Divide them by the number of possible outcomes
- Complexity $\mathcal{O}(x_{max}^n)$ gets accepted due to high time limit

- Observation: $n \cdot x \leq 64$, so we are looking for a solution faster than $\mathcal{O}(2^n)$
- Observation: High time limit signals brute force might be possible
- Calculate all possible throws for the combined dice and sum them up
- Divide them by the number of possible outcomes
- Complexity $\mathcal{O}(x_{max}^n)$ gets accepted due to high time limit
- The expected value of two independent variables is E[X + Y] = E[X] + E[Y]

- Observation: $n \cdot x \leq 64$, so we are looking for a solution faster than $\mathcal{O}(2^n)$
- Observation: High time limit signals brute force might be possible
- Calculate all possible throws for the combined dice and sum them up
- Divide them by the number of possible outcomes
- Complexity $\mathcal{O}(x_{max}^n)$ gets accepted due to high time limit
- The expected value of two independent variables is E[X + Y] = E[X] + E[Y]
- The expected value of a dice d_k with k faces is

$$E[d_k] = \frac{1}{k} \cdot \sum_{k=1}^{k} x = \frac{1}{k} \cdot \frac{k(k+1)}{2} = \frac{k+1}{2}$$

- Observation: $n \cdot x \leq 64$, so we are looking for a solution faster than $\mathcal{O}(2^n)$
- Observation: High time limit signals brute force might be possible
- Calculate all possible throws for the combined dice and sum them up
- Divide them by the number of possible outcomes
- Complexity $\mathcal{O}(x_{max}^n)$ gets accepted due to high time limit
- The expected value of two independent variables is E[X + Y] = E[X] + E[Y]
- The expected value of a dice d_k with k faces is

$$E[d_k] = \frac{1}{k} \cdot \sum_{k=1}^{k-1} x = \frac{1}{k} \cdot \frac{k(k+1)}{2} = \frac{k+1}{2}$$

• Sum the expected value of each dice gives a complexity of $\mathcal{O}(n)$

- FPC 2023
- Time limit: 2s
- Difficulty: Hard
- Given *n* cats and there preferred team partner, create teams of *k* and calculate the minimal number of cats you have to convince to not be in the team with their favourite player.

• **Observation:** $n \le 2 \cdot 10^5$, so we are looking for a $\mathcal{O}(n \log n)$ solution

- Observation: $n \le 2 \cdot 10^5$, so we are looking for a $\mathcal{O}(n \log n)$ solution
- Only a single team needs to be created (Example 1)
- Since cats have unique preferences, there already teams created following the cycle or preferences

- Observation: $n \le 2 \cdot 10^5$, so we are looking for a $\mathcal{O}(n \log n)$ solution
- Only a single team needs to be created (Example 1)
- Since cats have unique preferences, there already teams created following the cycle or preferences
- if the cycle for a team is / then:

l = k No operations are needed for that team

- $l>k\,$ A single operation suffice, convincing the k^{th} cat
- l < k For 2 teams of size a and b can be merged in size $\in [a + 1, a + b]$ in a single operation. start with the greatest cycle and merge the next longest cycle, repeat until the size is $\geq k$ and count the merges

- Observation: $n \le 2 \cdot 10^5$, so we are looking for a $\mathcal{O}(n \log n)$ solution
- Only a single team needs to be created (Example 1)
- Since cats have unique preferences, there already teams created following the cycle or preferences
- if the cycle for a team is I then:
 - I = k No operations are needed for that team
 - l>k~ A single operation suffice, convincing the k^{th} cat
 - l < k For 2 teams of size a and b can be merged in size $\in [a + 1, a + b]$ in a single operation. start with the greatest cycle and merge the next longest cycle, repeat until the size is $\geq k$ and count the merges
- Complexity is $\mathcal{O}(n)$ for finding disjoint cycles
- Complexity is $\mathcal{O}(n \log n)$ for sorting the cycles by length

Grid Lock

- FPC 2023
- Time limit: 6s
- Difficulty: Very Hard
- Given a grid with arrows, remove them one by one. When removing an arrow, it must not point to another arrow in the grid

• **Observation:** This problem has a large output (4000 lines), so not much can be said about the complexity

- **Observation:** This problem has a large output (4000 lines), so not much can be said about the complexity
- Every tile has a dependency on all its preceding tiles in the direction on the tile.
- Topological Sort the dependencies is too slow $\mathcal{O}(h \cdot w(h+w))$

- **Observation:** This problem has a large output (4000 lines), so not much can be said about the complexity
- Every tile has a dependency on all its preceding tiles in the direction on the tile.
- Topological Sort the dependencies is too slow $\mathcal{O}(h \cdot w(h+w))$
- For every tile, keep track of its neighbours

- **Observation:** This problem has a large output (4000 lines), so not much can be said about the complexity
- Every tile has a dependency on all its preceding tiles in the direction on the tile.
- Topological Sort the dependencies is too slow $\mathcal{O}(h \cdot w(h+w))$
- For every tile, keep track of its neighbours
 - Start by removing a tile with no dependencies
 - Update the dependencies of the neighbours by removing the tile and linking to new blocking tiles
 - For every neighbouring tile try to remove tile
 - Repeat until no more tiles can be removed or the board is empty

- **Observation:** This problem has a large output (4000 lines), so not much can be said about the complexity
- Every tile has a dependency on all its preceding tiles in the direction on the tile.
- Topological Sort the dependencies is too slow $\mathcal{O}(h \cdot w(h+w))$
- For every tile, keep track of its neighbours
 - Start by removing a tile with no dependencies
 - Update the dependencies of the neighbours by removing the tile and linking to new blocking tiles
 - For every neighbouring tile try to remove tile
 - Repeat until no more tiles can be removed or the board is empty
- This approach is $\mathcal{O}(h \cdot w)$

- FPC 2023
- Time limit: 3s
- Difficulty: Medium
- Determine in which level to start your playthrough, so that you miss the least armour upgrades

• Observation: $n + m = s \le 2 \cdot 10^5$, so we are looking for a $\mathcal{O}(s \log s)$ solution

- Observation: $n+m=s\leq 2\cdot 10^5$, so we are looking for a $\mathcal{O}(s\log s)$ solution
- For each level *i*, precalculate
 - the number of armour upgrades it contains (c_i)
 - the number of armour that requires a weapon of a later level (r_i)

- Observation: $n + m = s \le 2 \cdot 10^5$, so we are looking for a $\mathcal{O}(s \log s)$ solution
- For each level *i*, precalculate
 - the number of armour upgrades it contains (c_i)
 - the number of armour that requires a weapon of a later level (r_i)
- Calculate initial number x of armour you miss if you start on level 1

Hunting the Mavericks

- Observation: $n + m = s \le 2 \cdot 10^5$, so we are looking for a $\mathcal{O}(s \log s)$ solution
- For each level *i*, precalculate
 - the number of armour upgrades it contains (c_i)
 - the number of armour that requires a weapon of a later level (r_i)
- Calculate initial number x of armour you miss if you start on level 1
- Iterate over each level and calculate the number of missed weapons on level *i*, and update $x = x + r_i c_i$
- Then output is the minimum value of x in $\mathcal{O}(n+m)$

Hunting the Mavericks

- Observation: $n+m=s\leq 2\cdot 10^5$, so we are looking for a $\mathcal{O}(s\log s)$ solution
- For each level *i*, precalculate
 - the number of armour upgrades it contains (c_i)
 - the number of armour that requires a weapon of a later level (r_i)
- Calculate initial number x of armour you miss if you start on level 1
- Iterate over each level and calculate the number of missed weapons on level *i*, and update $x = x + r_i c_i$
- Then output is the minimum value of x in $\mathcal{O}(n+m)$
- Alternatively: Use a segment tree to store the ranges in which you miss each armour, resulting in $\mathcal{O}(m \log n)$ and more code

- FPC 2023
- Time limit: 2s
- Difficulty: Medium
- Given a list of *n* boxes that need to be processed by a machine line in at most *k* runs, determine the minimum summed weight that the machine needs to handle in one run.

Original problem written by the FPC 2023 Jury and licensed under Creative Commons Attribution-ShareAlike 4.0 International.

• Observation: $n \leq 10^5$, so we are looking for a $\mathcal{O}(n \log^2 n)$ solution

- Observation: $n \leq 10^5$, so we are looking for a $\mathcal{O}(n \log^2 n)$ solution
- Calculating the number of restarts for a machine for a given max weight is trivial, since you have to process the boxes in order

- Observation: $n \leq 10^5$, so we are looking for a $\mathcal{O}(n \log^2 n)$ solution
- Calculating the number of restarts for a machine for a given max weight is trivial, since you have to process the boxes in order
- If a max weight can process the boxes in less then k runs for capacity a, then it will also work for any higher max weight

- Observation: $n \leq 10^5$, so we are looking for a $\mathcal{O}(n \log^2 n)$ solution
- Calculating the number of restarts for a machine for a given max weight is trivial, since you have to process the boxes in order
- If a max weight can process the boxes in less then k runs for capacity a, then it will also work for any higher max weight
- Binary search the solution over the range $[\min(x), \sum x]$
- Start in the middle, go to the right half is smaller then k, else go the left half.

- Observation: $n \leq 10^5$, so we are looking for a $\mathcal{O}(n \log^2 n)$ solution
- Calculating the number of restarts for a machine for a given max weight is trivial, since you have to process the boxes in order
- If a max weight can process the boxes in less then k runs for capacity a, then it will also work for any higher max weight
- Binary search the solution over the range $[\min(x), \sum x]$
- Start in the middle, go to the right half is smaller then k, else go the left half.
- This results in a complexity of $\mathcal{O}(n \log \sum x)$

Jurassic Park

- FPC 2023
- Time limit: 3s
- Difficulty: Very hard
- Given a set of uniform random points in a square, find the smallest perimeter among all triangles.

Original problem written by the FPC 2023 Jury and licensed under Creative Commons Attribution-ShareAlike 4.0 International.

• Observation: $n \leq 10^3$, so we are looking for a $\mathcal{O}(n\sqrt{n})$ solution

- Observation: $n \leq 10^3$, so we are looking for a $\mathcal{O}(n\sqrt{n})$ solution
- The points are **uniform randomly** divided, so there are no nasty cases where all points are clustered

- Observation: $n \leq 10^3$, so we are looking for a $\mathcal{O}(n\sqrt{n})$ solution
- The points are **uniform randomly** divided, so there are no nasty cases where all points are clustered
- Divide the area in a grid of $\lfloor \sqrt{\frac{n}{3}} \rfloor \times \lfloor \sqrt{\frac{n}{3}} \rfloor$

- Observation: $n \leq 10^3$, so we are looking for a $\mathcal{O}(n\sqrt{n})$ solution
- The points are **uniform randomly** divided, so there are no nasty cases where all points are clustered
- Divide the area in a grid of $\lfloor \sqrt{\frac{n}{3}} \rfloor \times \lfloor \sqrt{\frac{n}{3}} \rfloor$
- Every square of the grid will have at least 3 points in it
- But the smallest triangle might be spanning the over the grid lines

- Observation: $n \leq 10^3$, so we are looking for a $\mathcal{O}(n\sqrt{n})$ solution
- The points are **uniform randomly** divided, so there are no nasty cases where all points are clustered
- Divide the area in a grid of $\lfloor \sqrt{\frac{n}{3}} \rfloor \times \lfloor \sqrt{\frac{n}{3}} \rfloor$
- Every square of the grid will have at least 3 points in it
- But the smallest triangle might be spanning the over the grid lines
- Calculate the all possible triangles in a by taking 3×3 grid tiles

- Observation: $n \leq 10^3$, so we are looking for a $\mathcal{O}(n\sqrt{n})$ solution
- The points are **uniform randomly** divided, so there are no nasty cases where all points are clustered
- Divide the area in a grid of $\lfloor \sqrt{\frac{n}{3}} \rfloor \times \lfloor \sqrt{\frac{n}{3}} \rfloor$
- Every square of the grid will have at least 3 points in it
- But the smallest triangle might be spanning the over the grid lines
- Calculate the all possible triangles in a by taking 3×3 grid tiles
- This will calculate the smallest possible triangle in $\mathcal{O}(n)$ time with high probability

- Resources for the contest are available on https://chipcie.wisv.ch
- Reference solutions, input and output for the problems can be found in the problem archive
- Good luck during the contest and have fun