
Introduction

Welcome

� Welcome to the FPC 2024 Introduction Session

� 2 parts

� First part gives introduction of programming contests

� We will discuss all last year's problems of the FPC in the second part

� Problem set is available on paper, try to read through it in the break

1

Who am I

� Alumnus, working in the Software Industry

� Involved in organizing programming contests since 2003 as volunteer

� �Coach� for TU Delft teams since NWERC 2003

� Twice coach on the World Finals

This work is licensed under a Creative Commons

�Attribution-ShareAlike 4.0 International� license.

2

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Introduction to Programming

Contests

What is a programming contest?

� Team of 3 people

� Single computer

� Solve as many problems from the problem set (8 to 15 problems)

� In 5 hours

� In any order

� Solve it e�ciently

� do it as quickly as possible (under pressure)

� and do it correctly (without bugs)

� With limited documentation and no internet

3

What is a programming contest?

� Team of 3 people

� Single computer

� Solve as many problems from the problem set (8 to 15 problems)

� In 5 hours

� In any order

� Solve it e�ciently

� do it as quickly as possible (under pressure)

� and do it correctly (without bugs)

� With limited documentation and no internet

3

What is a programming contest?

� Team of 3 people

� Single computer

� Solve as many problems from the problem set (8 to 15 problems)

� In 5 hours

� In any order

� Solve it e�ciently

� do it as quickly as possible (under pressure)

� and do it correctly (without bugs)

� With limited documentation and no internet

3

How is score calculated?

� Sorted by number of problems solved

� Sorted by the total time for solved problems

� Time in minutes since the start of the contest

� Penalty for each wrong attempt on a solved solution of 20 minutes

� Penalty time is counts only if the problem is solved afterward.

� Penalty time does not reduce your contest time.

� Penalty time is not added for wrong attempts after the problem is solved.

� No penalty for compile errors.

4

How is score calculated?

� Sorted by number of problems solved

� Sorted by the total time for solved problems

� Time in minutes since the start of the contest

� Penalty for each wrong attempt on a solved solution of 20 minutes

� Penalty time is counts only if the problem is solved afterward.

� Penalty time does not reduce your contest time.

� Penalty time is not added for wrong attempts after the problem is solved.

� No penalty for compile errors.

4

How is score calculated?

� Sorted by number of problems solved

� Sorted by the total time for solved problems

� Time in minutes since the start of the contest

� Penalty for each wrong attempt on a solved solution of 20 minutes

� Penalty time is counts only if the problem is solved afterward.

� Penalty time does not reduce your contest time.

� Penalty time is not added for wrong attempts after the problem is solved.

� No penalty for compile errors.

4

How is score calculated?

� Sorted by number of problems solved

� Sorted by the total time for solved problems

� Time in minutes since the start of the contest

� Penalty for each wrong attempt on a solved solution of 20 minutes

� Penalty time is counts only if the problem is solved afterward.

� Penalty time does not reduce your contest time.

� Penalty time is not added for wrong attempts after the problem is solved.

� No penalty for compile errors.

4

Example Scoreboard

5

Freshman Programming Contest (FPC)

� Contest of 3 hours

� Simpler problems

� Preparation for the Delft Algorithm Programming Contest (DAPC)

6

Delft Algorithm Programming Contest (DAPC)

� Contest is 5 hours instead of 3 hours

� O�cial preliminary for International Collegiate Programming Contest (ICPC)

� Increased di�culty in every contest

7

Road to the world �nals

The DAPC is an o�cial preliminary of the ICPC.

International Collegiate Programming Contest World Finals

NAC . . . EUC

NWERC

BAPC

DAPC

~5 best teams

AAPP EAPC TAPC . . .

best teams per university

GCPC NCPC UKIEPC

13 best teams

CERC SWERC SEERC

8

Reading a problem

Problem structure

A typical problem has the following structure

� Problem description

� Input description

� Output description

� Example input/output

� A time limit in seconds

You are asked to write a program that solves the problem for all valid inputs within the

time limit.

9

Example problem

Problem description
Write a program that multiplies pairs of integers.

Input description
The input consists of:

� One line with an integer t (1 ≤ t ≤ 100), the number of test cases.

� t lines, each with two integers a and b (|a|, |b| ≤ 106), the numbers to multiply.

Output description
For each test case, output the value of a× b.

10

Example problem

Sample input Sample output

4

3 4

13 0

1 8

100 100

12

0

8

10000

11

Solution in C++

1 #include <iostream>

2 using namespace std;

3

4 int main() {

5 int t;

6 cin >> t;

7 for (int i = 0; i < t; i++) {

8 int a, b;

9 cin >> a >> b;

10 cout << a * b << endl;

11 }

12 return 0;

13 }

12

Solution in Java

1 import java.io.*;

2

3 class Problem {

4 public static void main(String[] args) throws IOException {

5 var input = new BufferedReader(new InputStreamReader(System.in));

6 var cases = Integer.parseInt(input.readLine());

7 for (int i = 0; i < cases; i++) {

8 var line = input.readLine().split(" ");

9 System.out.println(

10 Integer.parseInt(line[0]) * Integer.parseInt(line[1])

11);

12 }

13 }

14 }

13

Solution in Kotlin and Python

1 fun main() {

2 val t = readln().toInt();

3 System.`in`.bufferedReader().lineSequence().take(t).forEach { line ->

4 println(line.split(" ").map { it.toInt() }.let { (a, b) -> a * b })

5 }

6 }

1 t = int(input())

2 for t in range(t):

3 numbers = list(map(int, input().split()))

4 print(numbers[0] * numbers[1])

14

Introduction to DOMjudge

Submitting the Solution

� During the contest you submit to a contest control system

� Usually DOMjudge, but sometimes Kattis or PC^2

� Submit solutions

� Ask questions about the problems or programming environment

� Read clari�cations from the jury

15

DOMjudge Interface - home

16

DOMjudge Interface - problems

17

DOMjudge Interface - submit

18

Are the solutions correct?

19

We made a whoopsie?

20

Or not

21

Let's ask the jury

22

Let's hope they respond fast

23

We have a response

24

The jury is not helping us

25

Why did the 3 solutions fail?

� Let's check the input again: |a|, |b| ≤ 106

� Worst case scenario: a = 106 and b = 106 giving a× b = 1012

� Does 1012 �t in a 32-bit int?

� log2 10
12 ≈ 40, so NO, 40 bits don't �t in an int

� Use long (long) when possible, except in Python

26

Why did the 3 solutions fail?

� Let's check the input again: |a|, |b| ≤ 106

� Worst case scenario: a = 106 and b = 106 giving a× b = 1012

� Does 1012 �t in a 32-bit int?

� log2 10
12 ≈ 40, so NO, 40 bits don't �t in an int

� Use long (long) when possible, except in Python

26

Why did the 3 solutions fail?

� Let's check the input again: |a|, |b| ≤ 106

� Worst case scenario: a = 106 and b = 106 giving a× b = 1012

� Does 1012 �t in a 32-bit int?

� log2 10
12 ≈ 40, so NO, 40 bits don't �t in an int

� Use long (long) when possible, except in Python

26

Why did the 3 solutions fail?

� Let's check the input again: |a|, |b| ≤ 106

� Worst case scenario: a = 106 and b = 106 giving a× b = 1012

� Does 1012 �t in a 32-bit int?

� log2 10
12 ≈ 40, so NO, 40 bits don't �t in an int

� Use long (long) when possible, except in Python

26

Why did the 3 solutions fail?

� Let's check the input again: |a|, |b| ≤ 106

� Worst case scenario: a = 106 and b = 106 giving a× b = 1012

� Does 1012 �t in a 32-bit int?

� log2 10
12 ≈ 40, so NO, 40 bits don't �t in an int

� Use long (long) when possible, except in Python

26

Solution in C++

1 #include <iostream>

2 using namespace std;

3

4 int main() {

5 int t;

6 cin >> t;

7 for (int i = 0; i < t; i++) {

8 long long a, b;

9 cin >> a >> b;

10 cout << a * b << endl;

11 }

12 return 0;

13 }

27

Solution in Java

1 import java.io.*;

2

3 class ProblemCorrect {

4 public static void main(String[] args) throws IOException {

5 var input = new BufferedReader(new InputStreamReader(System.in));

6 var cases = Integer.parseInt(input.readLine());

7 for (int i = 0; i < cases; i++) {

8 var line = input.readLine().split(" ");

9 System.out.println(

10 Long.parseLong(line[0]) * Long.parseLong(line[1])

11);

12 }

13 }

14 }

28

Solution in Kotlin

1 fun main() {

2 val t = readln().toInt();

3 System.`in`.bufferedReader().lineSequence().take(t).forEach { line ->

4 println(line.split(" ").map { it.toLong() }.let { (a, b) -> a * b })

5 }

6 }

29

All solutions correct

30

Estimating problem complexity

About time limit

� The time limit speci�es the time you program may run

� This includes JVM-startup and I/O

� High time limit signify

� lots of I/O

� Slower algorithms can be accepted

� Low limit signi�es fast algorithms, usually the use of formulas

� You can use the time limit to check your code on your local machine

$ time myjava ProblemA < worst-case.in

31

About input size1

Based on the input size you can an idea of the time complexity.

O(n!) n ≤ 10 O(n log 2n) n ≤ 105

O(2n) n ≤ 20 O(n log n) n ≤ 106

O(n3) n ≤ 500 O(n) n ≤ 108

O(n2 log n) n ≤ 1000 O(
√
n) n ≤ 1015

O(n2) n ≤ 5000 O(log n) n ≤ 1018

O(n
√
n) n ≤ 105

Warning: This is not guaranteed to be always the case!

1https://gcpc.nwerc.eu/primer.pdf

32

Tips, tricks and common mistakes

General tips

� Read the output speci�cation carefully!

� Don't forget to remove debug prints!

� When integers get large, use 64-bit!

� Do not do string concatenation with + in a loop!

� Calling functions is more expensive than you might think!

� For Java, BufferedReader is faster than Scanner!

� Don't forget to eat and drink. Programming contest is a sport, and you need to be

energized and focussed for the whole contest.

33

General Tactics

� Know each other's strengths and weaknesses like:

� types of problems (math, geometry, search, strings, graphs, etc.)

� debugging skills

� coding speed and accuracy

� Parallelize

� Work on paper (e.g. pseudocode or �ow diagrams)

� Debug on paper

� Use rubber duck debugging when stuck

34

Team Tactics

� Plot of the contest: 3 contestants, 1 computer

� Several tactics how to divide the computer e�ciently

� Shu�e Tactic

� Rotate around who sits behind the pc

� After submitting a problem, switch around if someone has a solution

� Useful when programming in di�erent languages

� Designated Tactic

� Dedicated person behind computer

� Other team members work on paper or read along on screen

� Useful for teams with di�erent disciplines

� No best solution: Pick and mix what works best for your team

35

Team Tactics

� Plot of the contest: 3 contestants, 1 computer

� Several tactics how to divide the computer e�ciently

� Shu�e Tactic

� Rotate around who sits behind the pc

� After submitting a problem, switch around if someone has a solution

� Useful when programming in di�erent languages

� Designated Tactic

� Dedicated person behind computer

� Other team members work on paper or read along on screen

� Useful for teams with di�erent disciplines

� No best solution: Pick and mix what works best for your team

35

Team Tactics

� Plot of the contest: 3 contestants, 1 computer

� Several tactics how to divide the computer e�ciently

� Shu�e Tactic

� Rotate around who sits behind the pc

� After submitting a problem, switch around if someone has a solution

� Useful when programming in di�erent languages

� Designated Tactic

� Dedicated person behind computer

� Other team members work on paper or read along on screen

� Useful for teams with di�erent disciplines

� No best solution: Pick and mix what works best for your team

35

Team Tactics

� Plot of the contest: 3 contestants, 1 computer

� Several tactics how to divide the computer e�ciently

� Shu�e Tactic

� Rotate around who sits behind the pc

� After submitting a problem, switch around if someone has a solution

� Useful when programming in di�erent languages

� Designated Tactic

� Dedicated person behind computer

� Other team members work on paper or read along on screen

� Useful for teams with di�erent disciplines

� No best solution: Pick and mix what works best for your team

35

Team Tactics

� Plot of the contest: 3 contestants, 1 computer

� Several tactics how to divide the computer e�ciently

� Shu�e Tactic

� Rotate around who sits behind the pc

� After submitting a problem, switch around if someone has a solution

� Useful when programming in di�erent languages

� Designated Tactic

� Dedicated person behind computer

� Other team members work on paper or read along on screen

� Useful for teams with di�erent disciplines

� No best solution: Pick and mix what works best for your team

35

Selecting the �rst problem

� Decide on a reading tactic

� Do we all start reading the �rst problem?

� Or does one person start at the end?

� There are usually several �simple� problems in a set

� Be careful: the easiest problems usually contain some pitfall corner cases!

36

Finding the easiest problems by results

� After a few minutes of contest, the �rst balloons will be handed out

� Check the scoreboard or balloon colours to see which problem is solved most

� Or the problems page in DOMjudge (only newer versions)

� Warning: The �rst problem solved is not guaranteed the easiest!

37

My problem is wrong, what now

Print out the problem and let other people work on the computer, work out cases that

might go wrong.

� When the result is Run Time Error (RTE):

� Check for possible null pointers, array over�ows, or integer over�ow

� Check the input speci�cation, don't forget 0 can do unexpected things

� When the result is Time Limit Exceeded (TLE):

� Check stop conditions, maybe an in�nite loop?

� Code is too slow, try optimizing or thinking of a faster solution

� When then result is Wrong Answer (WA):

� Check for corner cases, don't forget zero

� Check correctness of algorithm

� Warning: A problem can be RTE and TLE and WA at the same time, but only

one is reported back!

38

Common Battle Plan

Start of contest Prepare computer, �nd and solve easiest problems, all problems

should be read by at least a single team member.

First hours Prioritize solving the easiest problems, every team member works on their

own problems

Mid contest Work on solving harder problems with 2 people, while the last person

works alone on the last easy or specialized hard problems

End of the contest Work together with the whole team on a single problem, free

submit mode

39

Common Errors

� Focusing on the �rst problem you think you can solve

� Not reading all problems in the set

� Debugging on the computer while another solution can be implemented

� Fighting who can solve which problem

� Not rewriting code when it gets to messy

40

Training your self

� If you want to try to make it to the World Finals, you can train for next year's

DAPC

� Many online problem-solving websites:

� December: Advent of Code (https://adventofcode.com/)

� September�January: Universal Cup (https://ucup.ac)

� Year round: Kattis Problem Archive (https://open.kattis.com/)

� Year round: Codeforces (https://codeforces.com/)

� Several books available, listed on https://chipcie.wisv.ch/resources

41

https://adventofcode.com/
https://ucup.ac
https://open.kattis.com/
https://codeforces.com/
https://chipcie.wisv.ch/resources

FPC 2023 problems

FPC 2023 problems

� We go through the problems in alphabetical order

� Implementations are left to the reader

� Reference solutions can be found in the CHipCie problem archive at

https://chipcie.wisv.ch/archive

42

https://chipcie.wisv.ch/archive

Admiring Droplets

� FPC 2023

� Time limit: 3s

� Di�culty: Very Easy

� Given n droplets on the same vertical line with size s (µL) on a window with

distance y (mm) from the top. The velocity is is given by v = 6
√
V (v in m/s and

V in m3) and when two droplets meet they coalesce together

(V = scurrent + snext). Calculate the time takes for the coalesced droplet to reach

the bottom of the window.

Original problem written by the FPC 2023 Jury and licensed under Creative Commons

Attribution-ShareAlike 4.0 International.

43

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Admiring Droplets

� Observation: n ≤ 105, so we are looking for a O(n) solution

� Simulate the droplets from highest to lowest

� For the current droplet, calculate the time to reach the closest droplet

� Merge the droplets together and calculate the new size

� Repeat until a single droplet is left and print the sum of the time

� Pitfall:

� Be careful with unit conversion: 1m = 1000mm, 1m3 = 109mm3

� O� by one errors

44

Admiring Droplets

� Observation: n ≤ 105, so we are looking for a O(n) solution

� Simulate the droplets from highest to lowest

� For the current droplet, calculate the time to reach the closest droplet

� Merge the droplets together and calculate the new size

� Repeat until a single droplet is left and print the sum of the time

� Pitfall:

� Be careful with unit conversion: 1m = 1000mm, 1m3 = 109mm3

� O� by one errors

44

Admiring Droplets

� Observation: n ≤ 105, so we are looking for a O(n) solution

� Simulate the droplets from highest to lowest

� For the current droplet, calculate the time to reach the closest droplet

� Merge the droplets together and calculate the new size

� Repeat until a single droplet is left and print the sum of the time

� Pitfall:

� Be careful with unit conversion: 1m = 1000mm, 1m3 = 109mm3

� O� by one errors

44

Admiring Droplets

� Observation: n ≤ 105, so we are looking for a O(n) solution

� Simulate the droplets from highest to lowest

� For the current droplet, calculate the time to reach the closest droplet

� Merge the droplets together and calculate the new size

� Repeat until a single droplet is left and print the sum of the time

� Pitfall:

� Be careful with unit conversion: 1m = 1000mm, 1m3 = 109mm3

� O� by one errors

44

Beaking Spackwards

� FPC 2023

� Time limit: 1s

� Di�culty: Easy

� Given a number s, print a string containing exactly s palindromes

Original problem written by the FPC 2023 Jury and licensed under Creative Commons

Attribution-ShareAlike 4.0 International.

45

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Beaking Spackwards

� Observation: n ≤ 109, so we are looking for a solution faster O(n)

� Observation: a string "aaa...aaa" of size l has l(l+1)
2

palindromes

� The length of the word should be ⌈
√
n⌉

� Find the largest l where l ≤ n by search or using the formula l = ⌊
√
8n+1−1

2
⌋

l(l + 1)

2
≤ n ≡ l2 + l ≤ 2n ≡ l2 + l − 2n ≤ 0 ≡ l ≤ −1+

√
1+ 4 · 2n
2

� Generate a string of length l with the same letter that is unused

� or append a non palindrome letter to increase the number of palindromes is the

desired size

� Update n with the remaining length and repeat until n = 0 and print the string

� Pitfall: Be careful with slow string concatenations

46

Beaking Spackwards

� Observation: n ≤ 109, so we are looking for a solution faster O(n)

� Observation: a string "aaa...aaa" of size l has l(l+1)
2

palindromes

� The length of the word should be ⌈
√
n⌉

� Find the largest l where l ≤ n by search or using the formula l = ⌊
√
8n+1−1

2
⌋

l(l + 1)

2
≤ n ≡ l2 + l ≤ 2n ≡ l2 + l − 2n ≤ 0 ≡ l ≤ −1+

√
1+ 4 · 2n
2

� Generate a string of length l with the same letter that is unused

� or append a non palindrome letter to increase the number of palindromes is the

desired size

� Update n with the remaining length and repeat until n = 0 and print the string

� Pitfall: Be careful with slow string concatenations

46

Beaking Spackwards

� Observation: n ≤ 109, so we are looking for a solution faster O(n)

� Observation: a string "aaa...aaa" of size l has l(l+1)
2

palindromes

� The length of the word should be ⌈
√
n⌉

� Find the largest l where l ≤ n by search or using the formula l = ⌊
√
8n+1−1

2
⌋

l(l + 1)

2
≤ n ≡ l2 + l ≤ 2n ≡ l2 + l − 2n ≤ 0 ≡ l ≤ −1+

√
1+ 4 · 2n
2

� Generate a string of length l with the same letter that is unused

� or append a non palindrome letter to increase the number of palindromes is the

desired size

� Update n with the remaining length and repeat until n = 0 and print the string

� Pitfall: Be careful with slow string concatenations

46

Beaking Spackwards

� Observation: n ≤ 109, so we are looking for a solution faster O(n)

� Observation: a string "aaa...aaa" of size l has l(l+1)
2

palindromes

� The length of the word should be ⌈
√
n⌉

� Find the largest l where l ≤ n by search or using the formula l = ⌊
√
8n+1−1

2
⌋

l(l + 1)

2
≤ n ≡ l2 + l ≤ 2n ≡ l2 + l − 2n ≤ 0 ≡ l ≤ −1+

√
1+ 4 · 2n
2

� Generate a string of length l with the same letter that is unused

� or append a non palindrome letter to increase the number of palindromes is the

desired size

� Update n with the remaining length and repeat until n = 0 and print the string

� Pitfall: Be careful with slow string concatenations

46

Beaking Spackwards

� Observation: n ≤ 109, so we are looking for a solution faster O(n)

� Observation: a string "aaa...aaa" of size l has l(l+1)
2

palindromes

� The length of the word should be ⌈
√
n⌉

� Find the largest l where l ≤ n by search or using the formula l = ⌊
√
8n+1−1

2
⌋

l(l + 1)

2
≤ n ≡ l2 + l ≤ 2n ≡ l2 + l − 2n ≤ 0 ≡ l ≤ −1+

√
1+ 4 · 2n
2

� Generate a string of length l with the same letter that is unused

� or append a non palindrome letter to increase the number of palindromes is the

desired size

� Update n with the remaining length and repeat until n = 0 and print the string

� Pitfall: Be careful with slow string concatenations

46

Beaking Spackwards

� Observation: n ≤ 109, so we are looking for a solution faster O(n)

� Observation: a string "aaa...aaa" of size l has l(l+1)
2

palindromes

� The length of the word should be ⌈
√
n⌉

� Find the largest l where l ≤ n by search or using the formula l = ⌊
√
8n+1−1

2
⌋

l(l + 1)

2
≤ n ≡ l2 + l ≤ 2n ≡ l2 + l − 2n ≤ 0 ≡ l ≤ −1+

√
1+ 4 · 2n
2

� Generate a string of length l with the same letter that is unused

� or append a non palindrome letter to increase the number of palindromes is the

desired size

� Update n with the remaining length and repeat until n = 0 and print the string

� Pitfall: Be careful with slow string concatenations

46

Catchy Tunes

� FPC 2023

� Time limit: 3s

� Di�culty: Medium

� Given a list on n songs with their artist, generate an ordering where every song is

followed with a song from a di�erent artist.

Original problem written by the FPC 2023 Jury and licensed under Creative Commons

Attribution-ShareAlike 4.0 International.

47

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Catchy Tunes

� Observation: n ≤ 105, so we are looking for a O(n) solution

� At least half of the songs in the playlist are from a unique artist

� Group the songs in two lists during input if the artist is unique or not

� Alternate printing a song title from either list and remove it

� If one list is empty, keep printing from the other list

48

Catchy Tunes

� Observation: n ≤ 105, so we are looking for a O(n) solution

� At least half of the songs in the playlist are from a unique artist

� Group the songs in two lists during input if the artist is unique or not

� Alternate printing a song title from either list and remove it

� If one list is empty, keep printing from the other list

48

Catchy Tunes

� Observation: n ≤ 105, so we are looking for a O(n) solution

� At least half of the songs in the playlist are from a unique artist

� Group the songs in two lists during input if the artist is unique or not

� Alternate printing a song title from either list and remove it

� If one list is empty, keep printing from the other list

48

Dungeon of Darkness

� FPC 2023

� Time limit: 1s

� Di�culty: Hard

� Interactive Problem

� Using interactions, navigate a maze and �nd the exit.

Original problem written by the FPC 2023 Jury and licensed under Creative Commons

Attribution-ShareAlike 4.0 International.

49

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

What are Interactive Problems?

� Traditional problems give all the input at once, you solve and print all the output

at once

� Interactive problems give input, you do work, print output, and you receive new

input

� This process continues until you �nd the �nal answer

� The problem de�nes an interaction protocol

� The problem may have an interaction limit

� If an interactive problem may be in the set, an simple interactive problem will be

included in the test session

50

Type of problems for Interactive Problems

� Search in a �nite space

� Explore a maze

� Matching games

� Decision problems

51

Common pitfalls for Interactive problems

� Flush the output after every write

� Only the output, not the input

� Not �ushing the output results in Time Limit Exceeded

� Verdict of a solution is not deterministic, but the following is guaranteed:

� Wrong Answer means you printed something wrong

� Runtime Error means you returned a non-zero exit code

� If both occur, you will get either

� ICPC style contests don't have �Idleness Limit Exceeded�, but a total runtime limit.

52

Flushing the output

C++: end your output with std::endl or std::flush

Python: use the �ush parameter, like print("abc", flush=True)

Java/Kotlin: use a java.io.BufferedWriter and after each write use the .flush()

method.

53

Interactive problems testing tool

� Most contests provide a testing tool to test the interaction with a testing tool

� This is usually called testing_tool.py in our region

� The header �le tells you how to run run the testing tool, for example

$ python3 testing_tool.py -f 1.in python3 ./solution.py

� Pitfall for Java/Kotlin: You should run the testing tool in the directory which

contains the compiled class �le

� Wrong:

~/$ python3 testing_tool.py -f 1.in java ./code/ProblemA

� Right:

~/code/$ python3 testing_tool.py -f 1.in java ProblemA

54

Dungeon of Darkness

� Get to the �nal room in a dungeon, where you only see the symbols of the doors

leading from the current room

� Use a Depth First Search (DFS) to delve deeper in the maze

� If the exit is in the room, go through to the exit

� If in a room, the exit is not there, move through a door you haven't visited yet

� If all doors are visited, move back to the door you entered the room through

55

Dungeon of Darkness

� Get to the �nal room in a dungeon, where you only see the symbols of the doors

leading from the current room

� Use a Depth First Search (DFS) to delve deeper in the maze

� If the exit is in the room, go through to the exit

� If in a room, the exit is not there, move through a door you haven't visited yet

� If all doors are visited, move back to the door you entered the room through

55

Dungeon of Darkness

� Get to the �nal room in a dungeon, where you only see the symbols of the doors

leading from the current room

� Use a Depth First Search (DFS) to delve deeper in the maze

� If the exit is in the room, go through to the exit

� If in a room, the exit is not there, move through a door you haven't visited yet

� If all doors are visited, move back to the door you entered the room through

55

Expected Eyes

� FPC 2023

� Time limit: 4s

� Di�culty: Very Easy

� Given n dices with x faces, calculate the expected value of throwing all dice at

once.

Original problem written by the FPC 2023 Jury and licensed under Creative Commons

Attribution-ShareAlike 4.0 International.

56

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Expected Eyes

� Observation: n · x ≤ 64, so we are looking for a solution faster than O(2n)

� Observation: High time limit signals brute force might be possible

� Calculate all possible throws for the combined dice and sum them up

� Divide them by the number of possible outcomes

� Complexity O(xnmax) gets accepted due to high time limit

� The expected value of two independent variables is E [X + Y] = E [X] + E [Y]

� The expected value of a dice dk with k faces is

E [dk] =
1

k
·
x=1∑
k

x =
1

k
· k(k + 1)

2
=

k + 1

2

� Sum the expected value of each dice gives a complexity of O(n)

57

Expected Eyes

� Observation: n · x ≤ 64, so we are looking for a solution faster than O(2n)

� Observation: High time limit signals brute force might be possible

� Calculate all possible throws for the combined dice and sum them up

� Divide them by the number of possible outcomes

� Complexity O(xnmax) gets accepted due to high time limit

� The expected value of two independent variables is E [X + Y] = E [X] + E [Y]

� The expected value of a dice dk with k faces is

E [dk] =
1

k
·
x=1∑
k

x =
1

k
· k(k + 1)

2
=

k + 1

2

� Sum the expected value of each dice gives a complexity of O(n)

57

Expected Eyes

� Observation: n · x ≤ 64, so we are looking for a solution faster than O(2n)

� Observation: High time limit signals brute force might be possible

� Calculate all possible throws for the combined dice and sum them up

� Divide them by the number of possible outcomes

� Complexity O(xnmax) gets accepted due to high time limit

� The expected value of two independent variables is E [X + Y] = E [X] + E [Y]

� The expected value of a dice dk with k faces is

E [dk] =
1

k
·
x=1∑
k

x =
1

k
· k(k + 1)

2
=

k + 1

2

� Sum the expected value of each dice gives a complexity of O(n)

57

Expected Eyes

� Observation: n · x ≤ 64, so we are looking for a solution faster than O(2n)

� Observation: High time limit signals brute force might be possible

� Calculate all possible throws for the combined dice and sum them up

� Divide them by the number of possible outcomes

� Complexity O(xnmax) gets accepted due to high time limit

� The expected value of two independent variables is E [X + Y] = E [X] + E [Y]

� The expected value of a dice dk with k faces is

E [dk] =
1

k
·
x=1∑
k

x =
1

k
· k(k + 1)

2
=

k + 1

2

� Sum the expected value of each dice gives a complexity of O(n)

57

Expected Eyes

� Observation: n · x ≤ 64, so we are looking for a solution faster than O(2n)

� Observation: High time limit signals brute force might be possible

� Calculate all possible throws for the combined dice and sum them up

� Divide them by the number of possible outcomes

� Complexity O(xnmax) gets accepted due to high time limit

� The expected value of two independent variables is E [X + Y] = E [X] + E [Y]

� The expected value of a dice dk with k faces is

E [dk] =
1

k
·
x=1∑
k

x =
1

k
· k(k + 1)

2
=

k + 1

2

� Sum the expected value of each dice gives a complexity of O(n)

57

Feline Friendship

� FPC 2023

� Time limit: 2s

� Di�culty: Hard

� Given n cats and there preferred team partner, create teams of k and calculate the

minimal number of cats you have to convince to not be in the team with their

favourite player.

Original problem written by the FPC 2023 Jury and licensed under Creative Commons

Attribution-ShareAlike 4.0 International.

58

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Feline Friendship

� Observation: n ≤ 2 · 105, so we are looking for a O(n log n) solution

� Only a single team needs to be created (Example 1)

� Since cats have unique preferences, there already teams created following the cycle

or preferences

� if the cycle for a team is l then:

l = k No operations are needed for that team

l > k A single operation su�ce, convincing the kth cat

l < k For 2 teams of size a and b can be merged in size ∈ [a+ 1, a+ b] in

a single operation. start with the greatest cycle and merge the next

longest cycle, repeat until the size is ≥ k and count the merges

� Complexity is O(n) for �nding disjoint cycles

� Complexity is O(n log n) for sorting the cycles by length

59

Feline Friendship

� Observation: n ≤ 2 · 105, so we are looking for a O(n log n) solution

� Only a single team needs to be created (Example 1)

� Since cats have unique preferences, there already teams created following the cycle

or preferences

� if the cycle for a team is l then:

l = k No operations are needed for that team

l > k A single operation su�ce, convincing the kth cat

l < k For 2 teams of size a and b can be merged in size ∈ [a+ 1, a+ b] in

a single operation. start with the greatest cycle and merge the next

longest cycle, repeat until the size is ≥ k and count the merges

� Complexity is O(n) for �nding disjoint cycles

� Complexity is O(n log n) for sorting the cycles by length

59

Feline Friendship

� Observation: n ≤ 2 · 105, so we are looking for a O(n log n) solution

� Only a single team needs to be created (Example 1)

� Since cats have unique preferences, there already teams created following the cycle

or preferences

� if the cycle for a team is l then:

l = k No operations are needed for that team

l > k A single operation su�ce, convincing the kth cat

l < k For 2 teams of size a and b can be merged in size ∈ [a+ 1, a+ b] in

a single operation. start with the greatest cycle and merge the next

longest cycle, repeat until the size is ≥ k and count the merges

� Complexity is O(n) for �nding disjoint cycles

� Complexity is O(n log n) for sorting the cycles by length

59

Feline Friendship

� Observation: n ≤ 2 · 105, so we are looking for a O(n log n) solution

� Only a single team needs to be created (Example 1)

� Since cats have unique preferences, there already teams created following the cycle

or preferences

� if the cycle for a team is l then:

l = k No operations are needed for that team

l > k A single operation su�ce, convincing the kth cat

l < k For 2 teams of size a and b can be merged in size ∈ [a+ 1, a+ b] in

a single operation. start with the greatest cycle and merge the next

longest cycle, repeat until the size is ≥ k and count the merges

� Complexity is O(n) for �nding disjoint cycles

� Complexity is O(n log n) for sorting the cycles by length

59

Grid Lock

� FPC 2023

� Time limit: 6s

� Di�culty: Very Hard

� Given a grid with arrows, remove them one by one. When removing an arrow, it

must not point to another arrow in the grid

Original problem written by the FPC 2023 Jury and licensed under Creative Commons

Attribution-ShareAlike 4.0 International.

60

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Gridlock

� Observation: This problem has a large output (4000 lines), so not much can be

said about the complexity

� Every tile has a dependency on all its preceding tiles in the direction on the tile.

� Topological Sort the dependencies is too slow O(h · w(h + w))

� For every tile, keep track of its neighbours

� Start by removing a tile with no dependencies

� Update the dependencies of the neighbours by removing the tile and linking to new

blocking tiles

� For every neighbouring tile try to remove tile

� Repeat until no more tiles can be removed or the board is empty

� This approach is O(h · w)

61

Gridlock

� Observation: This problem has a large output (4000 lines), so not much can be

said about the complexity

� Every tile has a dependency on all its preceding tiles in the direction on the tile.

� Topological Sort the dependencies is too slow O(h · w(h + w))

� For every tile, keep track of its neighbours

� Start by removing a tile with no dependencies

� Update the dependencies of the neighbours by removing the tile and linking to new

blocking tiles

� For every neighbouring tile try to remove tile

� Repeat until no more tiles can be removed or the board is empty

� This approach is O(h · w)

61

Gridlock

� Observation: This problem has a large output (4000 lines), so not much can be

said about the complexity

� Every tile has a dependency on all its preceding tiles in the direction on the tile.

� Topological Sort the dependencies is too slow O(h · w(h + w))

� For every tile, keep track of its neighbours

� Start by removing a tile with no dependencies

� Update the dependencies of the neighbours by removing the tile and linking to new

blocking tiles

� For every neighbouring tile try to remove tile

� Repeat until no more tiles can be removed or the board is empty

� This approach is O(h · w)

61

Gridlock

� Observation: This problem has a large output (4000 lines), so not much can be

said about the complexity

� Every tile has a dependency on all its preceding tiles in the direction on the tile.

� Topological Sort the dependencies is too slow O(h · w(h + w))

� For every tile, keep track of its neighbours

� Start by removing a tile with no dependencies

� Update the dependencies of the neighbours by removing the tile and linking to new

blocking tiles

� For every neighbouring tile try to remove tile

� Repeat until no more tiles can be removed or the board is empty

� This approach is O(h · w)

61

Gridlock

� Observation: This problem has a large output (4000 lines), so not much can be

said about the complexity

� Every tile has a dependency on all its preceding tiles in the direction on the tile.

� Topological Sort the dependencies is too slow O(h · w(h + w))

� For every tile, keep track of its neighbours

� Start by removing a tile with no dependencies

� Update the dependencies of the neighbours by removing the tile and linking to new

blocking tiles

� For every neighbouring tile try to remove tile

� Repeat until no more tiles can be removed or the board is empty

� This approach is O(h · w)

61

Hunting the Mavericks

� FPC 2023

� Time limit: 3s

� Di�culty: Medium

� Determine in which level to start your playthrough, so that you miss the least

armour upgrades

Original problem written by the FPC 2023 Jury and licensed under Creative Commons

Attribution-ShareAlike 4.0 International.

62

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Hunting the Mavericks

� Observation: n +m = s ≤ 2 · 105, so we are looking for a O(s log s) solution

� For each level i , precalculate

� the number of armour upgrades it contains (ci)

� the number of armour that requires a weapon of a later level (ri)

� Calculate initial number x of armour you miss if you start on level 1

� Iterate over each level and calculate the number of missed weapons on level i , and

update x = x + ri − ci

� Then output is the minimum value of x in O(n +m)

� Alternatively: Use a segment tree to store the ranges in which you miss each

armour, resulting in O(m log n) and more code

63

Hunting the Mavericks

� Observation: n +m = s ≤ 2 · 105, so we are looking for a O(s log s) solution

� For each level i , precalculate

� the number of armour upgrades it contains (ci)

� the number of armour that requires a weapon of a later level (ri)

� Calculate initial number x of armour you miss if you start on level 1

� Iterate over each level and calculate the number of missed weapons on level i , and

update x = x + ri − ci

� Then output is the minimum value of x in O(n +m)

� Alternatively: Use a segment tree to store the ranges in which you miss each

armour, resulting in O(m log n) and more code

63

Hunting the Mavericks

� Observation: n +m = s ≤ 2 · 105, so we are looking for a O(s log s) solution

� For each level i , precalculate

� the number of armour upgrades it contains (ci)

� the number of armour that requires a weapon of a later level (ri)

� Calculate initial number x of armour you miss if you start on level 1

� Iterate over each level and calculate the number of missed weapons on level i , and

update x = x + ri − ci

� Then output is the minimum value of x in O(n +m)

� Alternatively: Use a segment tree to store the ranges in which you miss each

armour, resulting in O(m log n) and more code

63

Hunting the Mavericks

� Observation: n +m = s ≤ 2 · 105, so we are looking for a O(s log s) solution

� For each level i , precalculate

� the number of armour upgrades it contains (ci)

� the number of armour that requires a weapon of a later level (ri)

� Calculate initial number x of armour you miss if you start on level 1

� Iterate over each level and calculate the number of missed weapons on level i , and

update x = x + ri − ci

� Then output is the minimum value of x in O(n +m)

� Alternatively: Use a segment tree to store the ranges in which you miss each

armour, resulting in O(m log n) and more code

63

Hunting the Mavericks

� Observation: n +m = s ≤ 2 · 105, so we are looking for a O(s log s) solution

� For each level i , precalculate

� the number of armour upgrades it contains (ci)

� the number of armour that requires a weapon of a later level (ri)

� Calculate initial number x of armour you miss if you start on level 1

� Iterate over each level and calculate the number of missed weapons on level i , and

update x = x + ri − ci

� Then output is the minimum value of x in O(n +m)

� Alternatively: Use a segment tree to store the ranges in which you miss each

armour, resulting in O(m log n) and more code

63

Industry Improvements

� FPC 2023

� Time limit: 2s

� Di�culty: Medium

� Given a list of n boxes that need to be processed by a machine line in at most k

runs, determine the minimum summed weight that the machine needs to handle in

one run.

Original problem written by the FPC 2023 Jury and licensed under Creative Commons

Attribution-ShareAlike 4.0 International.

64

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Industry Improvements

� Observation: n ≤ 105, so we are looking for a O(n log2 n) solution

� Calculating the number of restarts for a machine for a given max weight is trivial,

since you have to process the boxes in order

� If a max weight can process the boxes in less then k runs for capacity a, then it

will also work for any higher max weight

� Binary search the solution over the range [min(x),
∑

x]

� Start in the middle, go to the right half is smaller then k , else go the left half.

� This results in a complexity of O(n log
∑

x)

65

Industry Improvements

� Observation: n ≤ 105, so we are looking for a O(n log2 n) solution

� Calculating the number of restarts for a machine for a given max weight is trivial,

since you have to process the boxes in order

� If a max weight can process the boxes in less then k runs for capacity a, then it

will also work for any higher max weight

� Binary search the solution over the range [min(x),
∑

x]

� Start in the middle, go to the right half is smaller then k , else go the left half.

� This results in a complexity of O(n log
∑

x)

65

Industry Improvements

� Observation: n ≤ 105, so we are looking for a O(n log2 n) solution

� Calculating the number of restarts for a machine for a given max weight is trivial,

since you have to process the boxes in order

� If a max weight can process the boxes in less then k runs for capacity a, then it

will also work for any higher max weight

� Binary search the solution over the range [min(x),
∑

x]

� Start in the middle, go to the right half is smaller then k , else go the left half.

� This results in a complexity of O(n log
∑

x)

65

Industry Improvements

� Observation: n ≤ 105, so we are looking for a O(n log2 n) solution

� Calculating the number of restarts for a machine for a given max weight is trivial,

since you have to process the boxes in order

� If a max weight can process the boxes in less then k runs for capacity a, then it

will also work for any higher max weight

� Binary search the solution over the range [min(x),
∑

x]

� Start in the middle, go to the right half is smaller then k , else go the left half.

� This results in a complexity of O(n log
∑

x)

65

Industry Improvements

� Observation: n ≤ 105, so we are looking for a O(n log2 n) solution

� Calculating the number of restarts for a machine for a given max weight is trivial,

since you have to process the boxes in order

� If a max weight can process the boxes in less then k runs for capacity a, then it

will also work for any higher max weight

� Binary search the solution over the range [min(x),
∑

x]

� Start in the middle, go to the right half is smaller then k , else go the left half.

� This results in a complexity of O(n log
∑

x)

65

Jurassic Park

� FPC 2023

� Time limit: 3s

� Di�culty: Very hard

� Given a set of uniform random points in a square, �nd the smallest perimeter

among all triangles.

Original problem written by the FPC 2023 Jury and licensed under Creative Commons

Attribution-ShareAlike 4.0 International.

66

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Jurassic Park

� Observation: n ≤ 103, so we are looking for a O(n
√
n) solution

� The points are uniform randomly divided, so there are no nasty cases where all

points are clustered

� Divide the area in a grid of ⌊
√

n
3
⌋ × ⌊

√
n
3
⌋

� Every square of the grid will have at least 3 points in it

� But the smallest triangle might be spanning the over the grid lines

� Calculate the all possible triangles in a by taking 3× 3 grid tiles

� This will calculate the smallest possible triangle in O(n) time with high probability

67

Jurassic Park

� Observation: n ≤ 103, so we are looking for a O(n
√
n) solution

� The points are uniform randomly divided, so there are no nasty cases where all

points are clustered

� Divide the area in a grid of ⌊
√

n
3
⌋ × ⌊

√
n
3
⌋

� Every square of the grid will have at least 3 points in it

� But the smallest triangle might be spanning the over the grid lines

� Calculate the all possible triangles in a by taking 3× 3 grid tiles

� This will calculate the smallest possible triangle in O(n) time with high probability

67

Jurassic Park

� Observation: n ≤ 103, so we are looking for a O(n
√
n) solution

� The points are uniform randomly divided, so there are no nasty cases where all

points are clustered

� Divide the area in a grid of ⌊
√

n
3
⌋ × ⌊

√
n
3
⌋

� Every square of the grid will have at least 3 points in it

� But the smallest triangle might be spanning the over the grid lines

� Calculate the all possible triangles in a by taking 3× 3 grid tiles

� This will calculate the smallest possible triangle in O(n) time with high probability

67

Jurassic Park

� Observation: n ≤ 103, so we are looking for a O(n
√
n) solution

� The points are uniform randomly divided, so there are no nasty cases where all

points are clustered

� Divide the area in a grid of ⌊
√

n
3
⌋ × ⌊

√
n
3
⌋

� Every square of the grid will have at least 3 points in it

� But the smallest triangle might be spanning the over the grid lines

� Calculate the all possible triangles in a by taking 3× 3 grid tiles

� This will calculate the smallest possible triangle in O(n) time with high probability

67

Jurassic Park

� Observation: n ≤ 103, so we are looking for a O(n
√
n) solution

� The points are uniform randomly divided, so there are no nasty cases where all

points are clustered

� Divide the area in a grid of ⌊
√

n
3
⌋ × ⌊

√
n
3
⌋

� Every square of the grid will have at least 3 points in it

� But the smallest triangle might be spanning the over the grid lines

� Calculate the all possible triangles in a by taking 3× 3 grid tiles

� This will calculate the smallest possible triangle in O(n) time with high probability

67

Jurassic Park

� Observation: n ≤ 103, so we are looking for a O(n
√
n) solution

� The points are uniform randomly divided, so there are no nasty cases where all

points are clustered

� Divide the area in a grid of ⌊
√

n
3
⌋ × ⌊

√
n
3
⌋

� Every square of the grid will have at least 3 points in it

� But the smallest triangle might be spanning the over the grid lines

� Calculate the all possible triangles in a by taking 3× 3 grid tiles

� This will calculate the smallest possible triangle in O(n) time with high probability

67

Final remarks

� Resources for the contest are available on https://chipcie.wisv.ch

� Reference solutions, input and output for the problems can be found in the

problem archive

� Good luck during the contest and have fun

68

https://chipcie.wisv.ch

	Introduction
	Introduction to Programming Contests
	Reading a problem
	Introduction to DOMjudge
	Estimating problem complexity
	Tips, tricks and common mistakes
	FPC 2023 problems

