
DAPC 2023 Training Sessions
Session 4

Verwoerd
September 21, 2003

Session 4

• Role of the coach on big contests
• Tips, tricks and common mistakes
• Dealing with randomization
• Solutions to the Interactive Problems and Dynamic Programming Problems
• Solutions the hardest problems

This work is licensed under a Creative Commons
“Attribution-ShareAlike 4.0 International” license.

1

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Role of the coach

What is a coach?

• The coach is the contact person for the contest organization.
• Usually a faculty member, local contest organizer or student
• The coach doesn’t participate in the contest

2

Coach preparations before a contest

• Registers the teams for the contest
• Requests Extension of Eligibility if needed
• Requests funding for travel cost reimbursement
• Gives updates about important rules, systems and sometimes travel to the
teams

3

Coach during the contest

• Makes sure teams are registered
• Visits during the test session
• Give last minute tips before the contest
• During the contest attend meetings
• Is available as emergency contact
• Evaluates with team members how the contest went

4

Tips, tricks and common mistakes

General tips

• Read the output specification carefully!
• Don’t forget to remove debug prints!
• When integers get large, use 64-bit!
• Do not do string concatenation with + in a loop!
• Calling functions is more expensive than you might think!
• For Java, BufferedReader is faster than Scanner!
• Don’t forget to eat and drink. Programming contest is a sport, and you need
to be energized and focussed for 5 hours.

5

Training your self

• If you don’t make the World Finals, you can train for next year’s event
• Many online problem-solving websites:

• December: Advent of code (https://adventofcode.com/)
• September-Januari: Universal Cup (https://ucup.ac)
• Year round: Kattis Problem Archive (https://open.kattis.com/)
• Year round: Codeforces (https://codeforces.com/)

• Several books available, listed on
https://chipcie.wisv.ch/resources

6

https://adventofcode.com/
https://ucup.ac
https://open.kattis.com/
https://codeforces.com/
https://chipcie.wisv.ch/resources

Dealing with randomization

Randomization in Programming contest

• Randomized Algorithms
Monte Carlo Algorithm The result might be incorrect (with low propability),

with ranging time complexity.
Las Vegas Algorithm The answer is always correct, but the time complexity

may vary
• Usually not used, but some very rare cases:

• Prime Probability for large numbers (build in Java in
BigInteger.isProbablePrime())

• Used in algorithms like Pollard Rho for integer factorization for large numbers
over 1013

• Randomized data

7

Randomized data

• Problems with random data have been appearing in the last years in the
contest

• E.g.: all input independent uniformly random in a given range

x

y

•
• •
•

•••

Random none-uniform Distributed

x

y

•

•

•
•

•

•

•

Independent Uniformly Distributed 8

Properties of Uniform Random Points

• What is the average distance between two randomly chosen points inside a
square with side length 1?

2+
√
2+ 5 ln

(
1+

√
2
)

15 ≈ 0.5214

• This is referred to as the mean line segment length, several properties can
be derived from this.

• This can be a subject to include in your Team Reference Document, but this
might be too obscure.

9

Formulas for Uniform Random Points

Average distance between points on a line with length d = 1
3d

Mininum distance beteen n points on a line with length d = d
n2−1

Average distance between points of a quilateral triangle with side lenght a(4+3 ln 3
20

)
· a ≈ 0.3647918 · a

Average distance between points in a square with side lenght s(
2+

√
2+5 ln

(
1+

√
2
)

15

)
· s ≈ 0.5214054 · s

Average distance between points chosen on opposite sides(
2+

√
2+5 ln

(
1+

√
2
)

9

)
· s ≈ 0.869009 · s

Average chord length between two points on a circle with circumference r
4
π r ≈ 1.2732395 · r

Average distance between points in a cube with side length s ≈ 0.661707 · s
10

Lowest Latency

• Source BAPC 2022
• Time limit: 5s

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

11

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Problem: Lowest Latency(1)

It is the year 2222. The whole universe has been explored, and settlements have
been built on every single planet. You live in one of these settlements. While life
is comfortable on almost all aspects, there is one dire problem: the latency on
the internet connection with other planets is way too high.

Luckily, you have thought of a solution to solve this problem: you just need to
put Bonded, Astronomically Paired Cables between all planets, and internet will
be super fast! However, as you start developing this idea, you discover that
constructing a cable between two planets is more difficult than expected. For
this reason, you would like the first prototype of your cable to be between two
planets which are as close as possible to each other.

12

Problem: Lowest Latency(2)

From your astronomy class, you know that the universe is best modelled as a
large cube measuring 109 lightyears in each dimension. There are exactly 105

stationary planets, which are distributed completely randomly through the
universe (more precisely: all the coordinates of the planets are independent
uniformly random integers ranging from 0 to 109).

Given the random positions of the planets in the universe, your goal is to find
the minimal Euclidean distance between any two planets.

13

Problem: Lowest Latency: Input and Output

Input

The input consists of:

• One line with an integer n, the number of planets.
• n lines, each with three integers x, y and z (0 ≤ x, y, z < 109), the coordinates
of one of the planets.

Your submissions will be run on exactly 100 test cases, all of which will have
n = 105. The samples are smaller and for illustration only.

Each of your submissions will be run on new random test cases.

Output

Output the minimal Euclidean distance between any two of the planets.

Your answer should have an absolute or relative error of at most 10−6. 14

Problem: Lowest Latency: Samples

Sample Input 1 Sample Output 1
5 3.7416573867739413
10 5 1
8 2 0
4 7 5
1 0 9
0 10 7

Sample Input 2 Sample Output 2
3 660540781.9387681
790726336 656087587 188785845
976472310 22830435 160538063
211966015 87530388 542618498

15

Problem: Lowest Latency: Observations

• The input size is 105, so we are looking for O(n log2 n) solution

• The timelimit is high for high input IO
• Since the input is Independent Uniform Random, the average line length will
be 0.661707 · 109 ≈ 6.6 · 108 but the minimum will be lower.

• Expand the minimum distance for n points on a line to three dimensions(
d

n2 − 1

)3
=>

(
109

(105)2 − 1

)3
≈ 106

• So the average length will be less then 106.1

1Or at least, almost always ;-)

16

Problem: Lowest Latency: Observations

• The input size is 105, so we are looking for O(n log2 n) solution
• The timelimit is high for high input IO

• Since the input is Independent Uniform Random, the average line length will
be 0.661707 · 109 ≈ 6.6 · 108 but the minimum will be lower.

• Expand the minimum distance for n points on a line to three dimensions(
d

n2 − 1

)3
=>

(
109

(105)2 − 1

)3
≈ 106

• So the average length will be less then 106.1

1Or at least, almost always ;-)

16

Problem: Lowest Latency: Observations

• The input size is 105, so we are looking for O(n log2 n) solution
• The timelimit is high for high input IO
• Since the input is Independent Uniform Random, the average line length will
be 0.661707 · 109 ≈ 6.6 · 108 but the minimum will be lower.

• Expand the minimum distance for n points on a line to three dimensions(
d

n2 − 1

)3
=>

(
109

(105)2 − 1

)3
≈ 106

• So the average length will be less then 106.1

1Or at least, almost always ;-)

16

Problem: Lowest Latency: Observations

• The input size is 105, so we are looking for O(n log2 n) solution
• The timelimit is high for high input IO
• Since the input is Independent Uniform Random, the average line length will
be 0.661707 · 109 ≈ 6.6 · 108 but the minimum will be lower.

• Expand the minimum distance for n points on a line to three dimensions(
d

n2 − 1

)3
=>

(
109

(105)2 − 1

)3
≈ 106

• So the average length will be less then 106.1

1Or at least, almost always ;-)

16

Problem: Lowest Latency: Observations

• The input size is 105, so we are looking for O(n log2 n) solution
• The timelimit is high for high input IO
• Since the input is Independent Uniform Random, the average line length will
be 0.661707 · 109 ≈ 6.6 · 108 but the minimum will be lower.

• Expand the minimum distance for n points on a line to three dimensions(
d

n2 − 1

)3
=>

(
109

(105)2 − 1

)3
≈ 106

• So the average length will be less then 106.1

1Or at least, almost always ;-)

16

Problem: Fastestest Function: Observations

• The Euclidean distance is calculated by

d(a,b) =
√
(ax − bx)2 + (ay − by)2 + (az − bz)2

• There are three common solutions to solve this problem

1. Divide and conquer
2. Local brute force using the random property
3. Sorted Bruteforce

17

Problem: Fastestest Function: Observations

• The Euclidean distance is calculated by

d(a,b) =
√
(ax − bx)2 + (ay − by)2 + (az − bz)2

• There are three common solutions to solve this problem

1. Divide and conquer
2. Local brute force using the random property
3. Sorted Bruteforce

17

Problem: Fastestest Function: Observations

• The Euclidean distance is calculated by

d(a,b) =
√
(ax − bx)2 + (ay − by)2 + (az − bz)2

• There are three common solutions to solve this problem
1. Divide and conquer

2. Local brute force using the random property
3. Sorted Bruteforce

17

Problem: Fastestest Function: Observations

• The Euclidean distance is calculated by

d(a,b) =
√
(ax − bx)2 + (ay − by)2 + (az − bz)2

• There are three common solutions to solve this problem
1. Divide and conquer
2. Local brute force using the random property

3. Sorted Bruteforce

17

Problem: Fastestest Function: Observations

• The Euclidean distance is calculated by

d(a,b) =
√
(ax − bx)2 + (ay − by)2 + (az − bz)2

• There are three common solutions to solve this problem
1. Divide and conquer
2. Local brute force using the random property
3. Sorted Bruteforce

17

Problem: Lowest Latency: Solution 1

• Sort the points by the x-value, use y and z for tiebreakers.
• Split the points in half and solve the halfs recursively
• Once only two points are in a group, calculate and return the distance
• Once both groups have their distances calculated, select the lowest distance
• Check with the points in the other groups within this distance if they create
a shorter distance in the overlap and return the distance.

• The complexity of the O(n log n)

18

Problem: Lowest Latency: Solution 2

• Divide the space in 100× 100× 100 spaces of size 107 × 107 × 107

• Iterate over the pairs in each box
• The minimum distance can cross the space, so also include all pairs from
adjacent boxes

• Time complexity is O
(
n2
k + k

)
, where k is the number of boxes

19

Problem: Lowest Latency: Solution 3

• Sort the points by the x-value, use y and z for tiebreakers
• The average x-distance is 109

105 = 104

• Points over 100 poistions apart are expected to have a distance over 106

• Consider all pairs (i, j) with |i− j| ≤ 100
• This has a time complexity of O(100n+ n log n)

20

Lowest Latency

1 from math import sqrt
2

3 n = int(input())
4 ps = []
5 for _ in range(n):
6 ps.append(list(map(int, input().split())))
7 ps.sort()
8 W = 100
9 ans = 3 * 10**9

10 for (i, (x1, y1, z1)) in enumerate(ps):
11 for j in range(max(0, i - W), i):
12 (x2, y2, z2) = ps[j]
13 d = sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2 + (z1 - z2) ** 2)
14 ans = min(ans, d)
15 print(ans)

21

Solutions to the Interactive
Problems and Dynamic Programming
Problems

Guessing Primes

• Source BAPC Preliminaries 2022
• Interactive Problem
• Time limit: 10s
• Guess the hidden 5-digit prime in at most 6 guesses, i.e., play Primel.

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

22

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Guessing Primes

• There are 8363 primes between 10000 and 99999, can be generated within
the time limit of 10s

• Primality can be checked an odd number n cannot be divided by (3..b
√
nc)

• Selecting a random prime, and using the rules to generate the next guess
will take on average seven guesses.

• The reason is when only one digit is known, to many guesses needed for the
other 4

• So your first 2 guesses should all contain different digits, like 24683 and
10597

• Use the digits to generate the next guesses
• This is guaranteed you can do this in 6 guesses

23

Guessing Primes

• There are 8363 primes between 10000 and 99999, can be generated within
the time limit of 10s

• Primality can be checked an odd number n cannot be divided by (3..b
√
nc)

• Selecting a random prime, and using the rules to generate the next guess
will take on average seven guesses.

• The reason is when only one digit is known, to many guesses needed for the
other 4

• So your first 2 guesses should all contain different digits, like 24683 and
10597

• Use the digits to generate the next guesses
• This is guaranteed you can do this in 6 guesses

23

Guessing Primes

• There are 8363 primes between 10000 and 99999, can be generated within
the time limit of 10s

• Primality can be checked an odd number n cannot be divided by (3..b
√
nc)

• Selecting a random prime, and using the rules to generate the next guess
will take on average seven guesses.

• The reason is when only one digit is known, to many guesses needed for the
other 4

• So your first 2 guesses should all contain different digits, like 24683 and
10597

• Use the digits to generate the next guesses
• This is guaranteed you can do this in 6 guesses

23

Guessing Primes

• There are 8363 primes between 10000 and 99999, can be generated within
the time limit of 10s

• Primality can be checked an odd number n cannot be divided by (3..b
√
nc)

• Selecting a random prime, and using the rules to generate the next guess
will take on average seven guesses.

• The reason is when only one digit is known, to many guesses needed for the
other 4

• So your first 2 guesses should all contain different digits, like 24683 and
10597

• Use the digits to generate the next guesses
• This is guaranteed you can do this in 6 guesses

23

Guessing Primes

• There are 8363 primes between 10000 and 99999, can be generated within
the time limit of 10s

• Primality can be checked an odd number n cannot be divided by (3..b
√
nc)

• Selecting a random prime, and using the rules to generate the next guess
will take on average seven guesses.

• The reason is when only one digit is known, to many guesses needed for the
other 4

• So your first 2 guesses should all contain different digits, like 24683 and
10597

• Use the digits to generate the next guesses
• This is guaranteed you can do this in 6 guesses

23

Guessing Primes

• There are 8363 primes between 10000 and 99999, can be generated within
the time limit of 10s

• Primality can be checked an odd number n cannot be divided by (3..b
√
nc)

• Selecting a random prime, and using the rules to generate the next guess
will take on average seven guesses.

• The reason is when only one digit is known, to many guesses needed for the
other 4

• So your first 2 guesses should all contain different digits, like 24683 and
10597

• Use the digits to generate the next guesses

• This is guaranteed you can do this in 6 guesses

23

Guessing Primes

• There are 8363 primes between 10000 and 99999, can be generated within
the time limit of 10s

• Primality can be checked an odd number n cannot be divided by (3..b
√
nc)

• Selecting a random prime, and using the rules to generate the next guess
will take on average seven guesses.

• The reason is when only one digit is known, to many guesses needed for the
other 4

• So your first 2 guesses should all contain different digits, like 24683 and
10597

• Use the digits to generate the next guesses
• This is guaranteed you can do this in 6 guesses

23

Guessing Primes(1)

1 import random
2 from math import *
3
4 def is_prime(i):
5 if i < 0: return False
6 if i not in primes.keys(): primes[i] = not any(i % x == 0 for x in range(2, int(floor(sqrt(i))) + 1))
7 return primes[i]
8
9 def is_valid(p, guess, res):

10 gud = [c for c, r in zip(guess, res) if r != "w"]
11 for i, (c, r) in enumerate(zip(guess, res)):
12 if r == "w" and (c == p[i] if c in gud else c in p): return False
13 if r == "y" and (c == p[i] or c not in p): return False
14 if r == "g" and c != p[i]: return False
15 return True

24

Guessing Primes(2)

1 def perform_guess(guess_int):
2 global left
3 _, res = print(guess := str(guess_int)), input().strip()
4 if res == "ggggg": return True
5 left = [p for p in left if p != guess and is_valid(p, guess, res)]
6
7 n, primes = int(input()), {0: False, 1: False, 2: True, 3: True}
8 primes_list = [str(i) for i in range(100_000) if is_prime(i) and i > 10_000]
9 start_a, start_b = next((a, b) for a in primes_list for b in primes_list if sorted(f"{a}{b}") == list("0123456789"))

10
11 for _ in range(n):
12 left = list(primes_list)
13 if perform_guess(start_a) or perform_guess(start_b): continue
14 while not perform_guess(random.choice(left)): pass

25

Dividing DNA

• Source BAPC 2022
• Interactive Problem
• Time limit: 2s
• Given a set of forbidden (present) intervals, partition [0,n) into as many
disjoint (absent) intervals as possible with at most 2n queries.

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

26

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Dividing DNA

• If an interval is forbidden, then all shorter intervals are forbidden too.

• An absent interval is just one longer then a forbidden interval.
• A greedy solution works here
• Start with [0, 1) and keep growing until an absent interval is found
• Then start at the last exclusive boundary a new boundary and continue until
the end is reached.

•
• The result is the number of intervals with n queries

27

Dividing DNA

• If an interval is forbidden, then all shorter intervals are forbidden too.
• An absent interval is just one longer then a forbidden interval.

• A greedy solution works here
• Start with [0, 1) and keep growing until an absent interval is found
• Then start at the last exclusive boundary a new boundary and continue until
the end is reached.

•
• The result is the number of intervals with n queries

27

Dividing DNA

• If an interval is forbidden, then all shorter intervals are forbidden too.
• An absent interval is just one longer then a forbidden interval.
• A greedy solution works here

• Start with [0, 1) and keep growing until an absent interval is found
• Then start at the last exclusive boundary a new boundary and continue until
the end is reached.

•
• The result is the number of intervals with n queries

27

Dividing DNA

• If an interval is forbidden, then all shorter intervals are forbidden too.
• An absent interval is just one longer then a forbidden interval.
• A greedy solution works here
• Start with [0, 1) and keep growing until an absent interval is found

• Then start at the last exclusive boundary a new boundary and continue until
the end is reached.

•
• The result is the number of intervals with n queries

27

Dividing DNA

• If an interval is forbidden, then all shorter intervals are forbidden too.
• An absent interval is just one longer then a forbidden interval.
• A greedy solution works here
• Start with [0, 1) and keep growing until an absent interval is found
• Then start at the last exclusive boundary a new boundary and continue until
the end is reached.

•
• The result is the number of intervals with n queries

27

Dividing DNA

• If an interval is forbidden, then all shorter intervals are forbidden too.
• An absent interval is just one longer then a forbidden interval.
• A greedy solution works here
• Start with [0, 1) and keep growing until an absent interval is found
• Then start at the last exclusive boundary a new boundary and continue until
the end is reached.

•

• The result is the number of intervals with n queries

27

Dividing DNA

• If an interval is forbidden, then all shorter intervals are forbidden too.
• An absent interval is just one longer then a forbidden interval.
• A greedy solution works here
• Start with [0, 1) and keep growing until an absent interval is found
• Then start at the last exclusive boundary a new boundary and continue until
the end is reached.

•
• The result is the number of intervals with n queries

27

Dividing DNA

1 ans, i = 0, 0
2 for j in range(1, int(input()) + 1):
3 print("?", i, j)
4 if input() == "absent":
5 ans += 1
6 i = j
7 print("!", ans)

28

Jaged skylines

• Source BAPC 2022
• Interactive Problem
• Time limit: 4s
• Given w ≤ 10000 integers 0 ≤ hi ≤ 1018 , find the maximum in at most 12000
queries: “Is integer hi less than y?”

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

29

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Jaged skylines

• For every column we can binary search the highest tile

• This is 5000 queries, so too much
• Rather than start in the middle, we can check if it is higher than the best
found

• and then binary search only found
• Worst case: the maximum increases with every column
• Randomize the order, the change that an item is higher is ln(w)
• Resulting in number of queries of w + ln(w) · log(h)
• Note that this a Monte Carlo estimate, which was manually monitored by the
jury

30

Jaged skylines

• For every column we can binary search the highest tile
• This is 5000 queries, so too much

• Rather than start in the middle, we can check if it is higher than the best
found

• and then binary search only found
• Worst case: the maximum increases with every column
• Randomize the order, the change that an item is higher is ln(w)
• Resulting in number of queries of w + ln(w) · log(h)
• Note that this a Monte Carlo estimate, which was manually monitored by the
jury

30

Jaged skylines

• For every column we can binary search the highest tile
• This is 5000 queries, so too much
• Rather than start in the middle, we can check if it is higher than the best
found

• and then binary search only found
• Worst case: the maximum increases with every column
• Randomize the order, the change that an item is higher is ln(w)
• Resulting in number of queries of w + ln(w) · log(h)
• Note that this a Monte Carlo estimate, which was manually monitored by the
jury

30

Jaged skylines

• For every column we can binary search the highest tile
• This is 5000 queries, so too much
• Rather than start in the middle, we can check if it is higher than the best
found

• and then binary search only found

• Worst case: the maximum increases with every column
• Randomize the order, the change that an item is higher is ln(w)
• Resulting in number of queries of w + ln(w) · log(h)
• Note that this a Monte Carlo estimate, which was manually monitored by the
jury

30

Jaged skylines

• For every column we can binary search the highest tile
• This is 5000 queries, so too much
• Rather than start in the middle, we can check if it is higher than the best
found

• and then binary search only found
• Worst case: the maximum increases with every column

• Randomize the order, the change that an item is higher is ln(w)
• Resulting in number of queries of w + ln(w) · log(h)
• Note that this a Monte Carlo estimate, which was manually monitored by the
jury

30

Jaged skylines

• For every column we can binary search the highest tile
• This is 5000 queries, so too much
• Rather than start in the middle, we can check if it is higher than the best
found

• and then binary search only found
• Worst case: the maximum increases with every column
• Randomize the order, the change that an item is higher is ln(w)

• Resulting in number of queries of w + ln(w) · log(h)
• Note that this a Monte Carlo estimate, which was manually monitored by the
jury

30

Jaged skylines

• For every column we can binary search the highest tile
• This is 5000 queries, so too much
• Rather than start in the middle, we can check if it is higher than the best
found

• and then binary search only found
• Worst case: the maximum increases with every column
• Randomize the order, the change that an item is higher is ln(w)
• Resulting in number of queries of w + ln(w) · log(h)

• Note that this a Monte Carlo estimate, which was manually monitored by the
jury

30

Jaged skylines

• For every column we can binary search the highest tile
• This is 5000 queries, so too much
• Rather than start in the middle, we can check if it is higher than the best
found

• and then binary search only found
• Worst case: the maximum increases with every column
• Randomize the order, the change that an item is higher is ln(w)
• Resulting in number of queries of w + ln(w) · log(h)
• Note that this a Monte Carlo estimate, which was manually monitored by the
jury

30

Dividing DNA

1 import random
2

3 w, h = map(int, input().split())
4 xs, highest_x, highest_y = list(range(1, w + 1)), 1, 1
5 random.shuffle(xs)
6 for x in xs:
7 print(f"? {x} {min(highest_y, h)}")
8 if input() == "building":
9 low, high = highest_y + 1, h + 1

10 while low < high:
11 mid = (low + high) // 2
12 print(f"? {x} {mid}")
13 if input() == "building": low = mid + 1
14 else: high = mid
15 highest_x, highest_y = x, high
16 print(f"! {highest_x} {highest_y - 1}") 31

Solving the Hardest Problems

Heavy Hauling

• Source BAPC Preliminaries 2022
• Time limit: 3s
• Given n boxes at given positions. Moving a box d positions costs d2. What is
the minimal cost to make all box positions distinct?

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

32

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Heavy Hauling (1)

• We have n ≤ 106 so we are looking for a O(n log n) algorithm.
• The boxes will remain in their original order (they will never overtake each
other).

• Groups of consecutive boxes map to an interval.
• The cost of moving a box from p to x can be modelled as Cp(x) = (x − p)2.
For example, moving box 3 to position x gives C3(x) = (x − 3)2 = x2 − 6x + 9

• When two boxes overlap from the left group to the right group. For example,
with 2 boxes, the left most box is at x:
C3,3 = C3(x) + C3(x + 1) = (x − 3)2 + (x − 2)2 = 2x2 − 10x + 13.

33

Heavy Hauling (2)

• When merging groups, they can touch or overlap with existing group, so
merge them recursivly

• Now every group has a cost function C(x) = ax2 + bx + c
• The minimal cost is C

(
b−b2a + 1

2c
)

• The total runtime is O(n) for the n− 1 merges

34

Heavy Hauling

1 class S:
2 def __init__(self, a, b, c): self.a, self.b, self.c = a, b, c
3
4 def getStart(self): return (self.a - self.b) // (2 * self.a)
5
6 def getScore(self):
7 x = self.getStart()
8 return self.a * x * x + self.b * x + self.c
9

10 def intersect(self, s): return self.getStart() + self.a >= s.getStart()
11
12 def merge(self, s):
13 return S(self.a + s.a, self.b + 2 * self.a * s.a + s.b, self.c + self.a * self.a * s.a + self.a * s.b + s.c)
14
15 n, A, B = int(input()), [S(1, -2 * a, a * a) for a in map(int, input().split())], []
16 for a in A:
17 while B and B[-1].intersect(a): a = B.pop().merge(a)
18 B.append(a)
19 print(sum(s.getScore() for s in B))

35

Inked Inscriptions

• Source BAPC Preliminaries 2022
• Time limit: 4s
• Copy n psalms in at most 2n

√
n pageflips

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

36

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Inked Inscriptions (1)

• The order of the target algorith is given as O
(
n
√
n
)

• Each psalm can be represented in a plot as current page and the target page
• Create a path with the manhattan distance of max length 2n

√
n

37

Inked Inscriptions (1)

• The order of the target algorith is given as O
(
n
√
n
)

• Each psalm can be represented in a plot as current page and the target page

• Create a path with the manhattan distance of max length 2n
√
n

37

Inked Inscriptions (1)

• The order of the target algorith is given as O
(
n
√
n
)

• Each psalm can be represented in a plot as current page and the target page
• Create a path with the manhattan distance of max length 2n

√
n

37

Inked Inscriptions (1)

• Divide the graph in
√
n bands of height

√
n

• Move each band alternating from left to right and then right to left.
• This results in 1.5n

√
n+ 2n page flips

• Alternative: Go greedy to the nearest unvisited point
• Alternative: Visit the points in a spiral

38

Inked Inscriptions (1)

• Divide the graph in
√
n bands of height

√
n

• Move each band alternating from left to right and then right to left.

• This results in 1.5n
√
n+ 2n page flips

• Alternative: Go greedy to the nearest unvisited point
• Alternative: Visit the points in a spiral

38

Inked Inscriptions (1)

• Divide the graph in
√
n bands of height

√
n

• Move each band alternating from left to right and then right to left.

• This results in 1.5n
√
n+ 2n page flips

• Alternative: Go greedy to the nearest unvisited point
• Alternative: Visit the points in a spiral

38

Inked Inscriptions (1)

• Divide the graph in
√
n bands of height

√
n

• Move each band alternating from left to right and then right to left.
• This results in 1.5n

√
n+ 2n page flips

• Alternative: Go greedy to the nearest unvisited point
• Alternative: Visit the points in a spiral

38

Inked Inscriptions (1)

• Divide the graph in
√
n bands of height

√
n

• Move each band alternating from left to right and then right to left.
• This results in 1.5n

√
n+ 2n page flips

• Alternative: Go greedy to the nearest unvisited point
• Alternative: Visit the points in a spiral

38

Inked Inscriptions

1 n = int(input())
2 points = [(int(c),i+1) for i,c in enumerate(input().split())]
3
4 x, y = 1,1
5 result = []
6
7 sqrtn = round(n**.5)
8 for i in range(sqrtn):
9 row = points[(i*n)//sqrtn:((i+1)*n)//sqrtn]

10 row.sort(reverse = i % 2)
11 for j,i in row:
12 result.append("%i %i" % (i,j))
13 x,y = i,j
14
15 print(*result, sep='\n')

39

Adjusted Average

• Source BAPC 2022
• Time limit: 8s
• Given n ≤ 1500 integers ai, remove at most k ≤ 4 of them to get an average
as close as possible to the target x.

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

40

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Adjusted Average

• Observation: The high time limit is for the IO
• Observation: The input n ≤ 1500, so we are looking for a O(n2 log2 n)
• Calculate for each set of k-elements the average that is as close as possible
to Sk

∑
i ai − k · x

• For cases where you remove 1 or 2 elements is doable to brute force in
O
(
nk
k!

)
• For cases where you remove 3 or 4 element this is too slow, so we use
meet-in-the-middle approach

41

Adjusted Average: k = 3 and k = 4

• For the case k = 3:
• For each u ∈ [1,n] calculate the possible values Pu = ai + aj where i < j < u
• For each value take the closest value from Pu closest to Sk − au
• By using an ordered set for Pu values, the time complexity is O(n2 log n)

• For the case k = 4:
• Reuse the values Pu, but now also consider v where v ∈ (u,n]
• For each u, loop over v and pick Pu closes to Sk − au − av
• This is still O(n2 log n)

Pu = {ai + aj | i < j < u}

u

au

. . . v . . .

. . .av . . .

42

Adjusted Average

1 from bisect import bisect
2
3 n, K, X = map(int, input().split())
4
5 xs = sorted(list(map(int, input().split())))
6 S = sum(xs)
7
8 pairs = []
9 for i in range(n):

10 for j in range(i):
11 pairs.append((xs[i] + xs[j], [i, j]))
12 pairs.sort()
13
14 # k = 0
15 best = abs(S / n - X)
16 if K >= 1:
17 for s in xs:
18 best = min(best, abs((S - s) / (n - 1) - X))
19 if K >= 2:
20 for (s, ij) in pairs:
21 best = min(best, abs((S - s) / (n - 2) - X))
22

43

Adjusted Average

1 if K >= 3:
2 i = 0
3 j = len(pairs) - 1
4 while True:
5 s1 = xs[i]
6 (s2, [k, l]) = pairs[j]
7 if k != i and l != i:
8 best = min(best, abs((S - s1 - s2) / (n - 3) - X))
9 if i == len(xs) - 1 and j == 0:

10 break
11 if j == 0 or (i < len(xs) - 1 and S - s1 - s2 > X * (n - 3)):
12 i = i + 1
13 else:
14 j = j - 1

44

Adjusted Average

1 if K >= 4:
2 for (s1, [i, j]) in pairs:
3 s2 = S - s1 - (n - 4) * X
4 idx = bisect(pairs, (s2, []))
5 # Find first position to the left and right disjoint with ij
6 for idx2 in range(idx - 1, -1, -1):
7 s2, kl = pairs[idx2]
8 if i not in kl and j not in kl:
9 best = min(best, abs((S - s1 - s2) / (n - 4) - X))

10 break
11 for idx2 in range(idx, len(pairs)):
12 s2, kl = pairs[idx2]
13 if i not in kl and j not in kl:
14 best = min(best, abs((S - s1 - s2) / (n - 4) - X))
15 break
16
17 print(best)

45

Grinding Gravel

• Source BAPC 2022
• Time limit: 4s
• Given n ≤ 100 integers, split them into groups of size k ≤ 8 making as few
cuts as possible.

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

46

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Grinding Gravel

• First for every number x ≥ k is replaced by xmodk.
• Now all integers are in [0, k)
• For every x < k

2 , we can pair up x and k− x, where x = 0 is its own group
• This leaves 4 different values left: 1 or 7, 2 or 6, 3 or 5 and at most one 4
• Now do a DP on state [c1, . . . , ck−1], the counts for each remainder

• For each subset with sum 0 mod k and recurse
• merge the least-occuring element with one of the others

47

Grinding Gravel

1 n, k = map(int, input().split())
2 w = list(map(int, input().split()))
3 ans = 0
4 cnt = [0] * k
5 # modulo
6 for x in w:
7 if x % k == 0:
8 ans += 1
9 else:

10 cnt[x % k] += 1
11 # pairs
12 for i in range(1, k // 2):
13 x = min(cnt[i], cnt[k - i])
14 cnt[i] -= x
15 cnt[k - i] -= x
16 ans += x
17 if k % 2 == 0:
18 x = cnt[k // 2] // 2
19 cnt[k // 2] -= 2 * x
20 ans += x
21 # Left with at most 3 non-empty values, and possibly k/2.
22 ans = {tuple([0] * k): ans}
23 print(sum(w) // k - calc(cnt))

48

Grinding Gravel

1 def calc(cnts):
2 if tuple(cnts) in ans:
3 return ans[tuple(cnts)]
4 best = (100, -1)
5 for m in range(1, k):
6 if cnts[m] > 0:
7 best = min(best, (cnts[m], m))
8 m = best[1]
9 new_cnts = cnts[:]

10 new_cnts[m] -= 1
11 best = 0
12 for i in range(1, k):
13 if new_cnts[i] > 0:
14 new_cnts[i] -= 1
15 v = 0
16 if m + i != k:
17 new_cnts[(m + i) % k] += 1
18 else:
19 v += 1
20 v += calc(new_cnts)
21 if m + i != k:
22 new_cnts[(m + i) % k] -= 1
23 best = max(best, v)
24 new_cnts[i] += 1
25 ans[tuple(cnts)] = best
26 return best

49

House Numbering

• Source BAPC 2022
• Time limit: 4s
• Given a graph with n nodes and edges, and h house numbers for an edge,
determine whether house numbers can be assigned such that there is no
intersection where two edges start with the same house number.

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

50

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

House Numbering

• Every node in the grap can at most have one
edge with house number 1

• The number of nodes is equal to the number of
edges, the grapsh contains exactly 1 cycle.

• The cycle the numbering of 1 has to be clockwise
or counter clock wise

• The nodes in the cycle have threes attached in
which the number 1 has to face outward

51

House Numbering

• Find the cycle in the graph
• Assign house numbers clockwise and check if it
is valid, if so report it

• Assign house numbers counter-clockwise and
check if it valid, if so report it

• print impossible

52

Grinding Gravel

1 from collections import defaultdict, Counter as C
2
3 n, edges, stack, seen, todo = int(input()), defaultdict(dict), [], set(), [[1]]
4 for i in range(n):
5 u, v, h = map(int, input().split())
6 edges[u][v] = (h, i)
7 edges[v][u] = (h, i)
8
9 if any(any(c > 2 for c in C(h for h, _ in edges[u].values()).values()) for u in edges): print("impossible"), exit()

10
11 while True:
12 if (curr := todo[-1].pop()) in seen: break
13 stack.append(curr), seen.add(curr)
14 todo.append([x for x in edges[curr].keys() if len(stack) == 1 or stack[-2] != x])
15 while todo and not todo[-1]:
16 if not stack: print("impossible"), exit()
17 todo.pop(), seen.remove(stack.pop())
18
19 cycle = [curr]
20 while stack:
21 u = stack.pop()
22 if u == curr: break
23 cycle.append(u)
24 while stack: seen.remove(stack.pop())

53

Grinding Gravel

1 def find_numbering(st):
2 new_seen = set(seen)
3 ans = []
4 for u, v in zip(st, [*st[1:], st[0]]):
5 h, i = edges[u][v]
6 ans.append((i, u))
7 todo = [(v, h)]
8 while todo:
9 curr, h2 = todo.pop()

10 new_seen.add(curr), (ns := [(neigh, t) for neigh, t in edges[curr].items() if neigh not in new_seen])
11 if any(c > 1 for c in C([*((h3 for _, (h3, _) in ns)), *([h] if curr == v else [])]).values()): return False
12 for neigh, (h3, i3) in ns: ans.append((i3, neigh)), todo.append((neigh, h3))
13 return " ".join(str(u) for i, u in sorted(ans))
14
15
16 print(find_numbering(cycle) or find_numbering(cycle[::-1]) or "impossible")

54

Conclussion

Thanks for comming

Contest on Saturday, Good luck all!

Any Questions?

55

	Role of the coach
	Tips, tricks and common mistakes
	Dealing with randomization
	Solutions to the Interactive Problems and Dynamic Programming Problems
	Solving the Hardest Problems
	Conclussion

