
DAPC 2023 Training Sessions
Session 3

Verwoerd
September 18, 2023

Session 3

• Team Reference Document
• Solutions to Sorting and Search Problems
• Solving interactive problems
• Solving Dynamic Programming Problems

Slides are available on https://chipcie.wisv.ch/ in the training news post.

This work is licensed under a Creative Commons
“Attribution-ShareAlike 4.0 International” license.

1

https://chipcie.wisv.ch/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Team Reference Document

Team Reference Document

• During the DAPC you may bring any analogue reference material you want
• Starting from the BAPC, you may only bring limited reference material (=
same rules as World Finals)

• This reference is called the Team Reference Document (TRD)
• Sometimes the old term Team Contest Reference (TCR) is used

2

Team Reference Document: Rules

Each contestant may bring an (identical) copy of a Team Reference Doc-
ument. This document may contain up to 25 pages of reference mate-
rials, single-sided, letter or A4 size, with pages numbered in the upper
right-hand corner and your university name printed in the upper left-
hand corner. Text and illustrations must be readable by a person with
correctable eyesight without magnification from a distance of ½ meter.
It may include handwritten comments and corrections on the fronts of
pages only. The document should be in some type of notebook or folder
with the name of your institution on the front.

3

TRD: Example

4

TRD: Example

5

TRD: Example

6

TRD: Example

7

Potential subjects in a TRD

1. Mathematics
• Formulas and Theories
• Trigonometry

2. Data Structures
• Segement Tree, Treap, RMQ
• HashMap, PriorityQueue

3. Numerical Methods
• Simplex, Integration
• Linear Problem-solving

4. Number Theory
• Primality, Divisability

5. Combinatorial
• Permutations, Partitions

6. Graph
• Search algorithms
• Flow algorithms
• Spanning Tree, Connected
Components

7. Geometry
• Line intersection, length
• Triangles and Circles
• Polygons

8. Strings
9. Templates
10. Tests and reminders

8

Tips on TRD

• Only put stuff in that you know how/when to use
• Ensure that the code is correct and complete
• Add short description, complexity, and hash
• Evaluate document after each contest for improvements
• Several templates available at https://chipcie.wisv.ch/resources

9

Solutions to the sorting and search
problems

Abbreviated Aliases

• Source BAPC Preliminaries 2022
• Time limit: 2s
• For every username calculate the size of the shortest unique prefix.

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

10

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Abbreviated Aliases

• Observation: n · l ≤ 107, so we are aiming for O(n log n)

• Comparing every username with all other usernames is O(n2), which is too
slow

• We only need to compare the two usernames where the prefix is most
similar
james is closest to jacob and janos, there is no other username that will
increase the prefix

• If we sort the list, we only have to compare with the username before and
after

• Alternatively, build a compressed Trie, and for each leaf, count the distance
to the root

11

Abbreviated Aliases

• Observation: n · l ≤ 107, so we are aiming for O(n log n)
• Comparing every username with all other usernames is O(n2), which is too
slow

• We only need to compare the two usernames where the prefix is most
similar
james is closest to jacob and janos, there is no other username that will
increase the prefix

• If we sort the list, we only have to compare with the username before and
after

• Alternatively, build a compressed Trie, and for each leaf, count the distance
to the root

11

Abbreviated Aliases

• Observation: n · l ≤ 107, so we are aiming for O(n log n)
• Comparing every username with all other usernames is O(n2), which is too
slow

• We only need to compare the two usernames where the prefix is most
similar
james is closest to jacob and janos, there is no other username that will
increase the prefix

• If we sort the list, we only have to compare with the username before and
after

• Alternatively, build a compressed Trie, and for each leaf, count the distance
to the root

11

Abbreviated Aliases

• Observation: n · l ≤ 107, so we are aiming for O(n log n)
• Comparing every username with all other usernames is O(n2), which is too
slow

• We only need to compare the two usernames where the prefix is most
similar
james is closest to jacob and janos, there is no other username that will
increase the prefix

• If we sort the list, we only have to compare with the username before and
after

• Alternatively, build a compressed Trie, and for each leaf, count the distance
to the root

11

Abbreviated Aliases

• Observation: n · l ≤ 107, so we are aiming for O(n log n)
• Comparing every username with all other usernames is O(n2), which is too
slow

• We only need to compare the two usernames where the prefix is most
similar
james is closest to jacob and janos, there is no other username that will
increase the prefix

• If we sort the list, we only have to compare with the username before and
after

• Alternatively, build a compressed Trie, and for each leaf, count the distance
to the root

11

Abbreviated Aliases

1 n,l = [int(i) for i in input().split()]
2 a = sorted([input() for i in range(n)])
3 t = 1
4 p = 0
5 for i in range(1,n):
6 for j in range(l):
7 if a[i-1][j] != a[i][j]:
8 t += j+1 + max(j-p,0)
9 p = j

10 break
11 print(t)

12

Dimensional Debugging

• Source BAPC Preliminaries 2022
• Time limit: 2s
• Given n algorithms that only work when their input ϕ is small enough
(ϕ ≤ H), can you verify the correctness on sufficient large inputs (ϕ ≥ L).

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

13

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Dimensional Debugging

• Observation: n ≤ 103, so we are aiming for an O(n2) algorithm.

• We can verify all algorithms with L = ϕ0

• Add those algorithms to verified algorithms, then find any unverified where
Hj ≤ Li

• In this way you can create a graph between the different algorithms.
• Use a flood fill by BFS/DFS to count the number of algorithms you can reach.
• This results in an O(n2) algorithm.

14

Dimensional Debugging

• Observation: n ≤ 103, so we are aiming for an O(n2) algorithm.
• We can verify all algorithms with L = ϕ0

• Add those algorithms to verified algorithms, then find any unverified where
Hj ≤ Li

• In this way you can create a graph between the different algorithms.
• Use a flood fill by BFS/DFS to count the number of algorithms you can reach.
• This results in an O(n2) algorithm.

14

Dimensional Debugging

• Observation: n ≤ 103, so we are aiming for an O(n2) algorithm.
• We can verify all algorithms with L = ϕ0

• Add those algorithms to verified algorithms, then find any unverified where
Hj ≤ Li

• In this way you can create a graph between the different algorithms.
• Use a flood fill by BFS/DFS to count the number of algorithms you can reach.
• This results in an O(n2) algorithm.

14

Dimensional Debugging

• Observation: n ≤ 103, so we are aiming for an O(n2) algorithm.
• We can verify all algorithms with L = ϕ0

• Add those algorithms to verified algorithms, then find any unverified where
Hj ≤ Li

• In this way you can create a graph between the different algorithms.

• Use a flood fill by BFS/DFS to count the number of algorithms you can reach.
• This results in an O(n2) algorithm.

14

Dimensional Debugging

• Observation: n ≤ 103, so we are aiming for an O(n2) algorithm.
• We can verify all algorithms with L = ϕ0

• Add those algorithms to verified algorithms, then find any unverified where
Hj ≤ Li

• In this way you can create a graph between the different algorithms.
• Use a flood fill by BFS/DFS to count the number of algorithms you can reach.

• This results in an O(n2) algorithm.

14

Dimensional Debugging

• Observation: n ≤ 103, so we are aiming for an O(n2) algorithm.
• We can verify all algorithms with L = ϕ0

• Add those algorithms to verified algorithms, then find any unverified where
Hj ≤ Li

• In this way you can create a graph between the different algorithms.
• Use a flood fill by BFS/DFS to count the number of algorithms you can reach.
• This results in an O(n2) algorithm.

14

Dimensional Debugging

1 n, k = map(int, input().split())
2 algs = {tuple(zip(*(map(int, input().split()) for _ in ".."))) for _ in range(n)}
3 stack = [[(0, 0) for _ in range(k)]]
4 while stack:
5 base = stack.pop()
6 add = {alg for alg in algs if all(l <= b for (a, b), (l, h) in zip(base, alg))}
7 stack.extend(add)
8 algs = algs.difference(add)
9 print(n - len(algs))

15

Extended Braille

• Source BAPC Preliminaries 2022
• Time limit: 8s
• Given n braille characters by their points, determine how many of them are
distinct up to translation.

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

16

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Extended Braille

• Observation 1: time limit of 8s is due to high input size

• Observation 2: at most 106 dots, so we are looking for O(n log n)
• Per Braille character, sort the dots on x then y
• Move the first ordered dot to (0,0) by subtracting the first point coordinate
from all the dots

∀mi=1(x
′
i , y

′
i) = (xi − x1, yi − y1)

• Add the transposed characters to a HashMap or Set and count the unique
keys

• Resulting a O(n log n) or amortized O(n)

17

Extended Braille

• Observation 1: time limit of 8s is due to high input size
• Observation 2: at most 106 dots, so we are looking for O(n log n)

• Per Braille character, sort the dots on x then y
• Move the first ordered dot to (0,0) by subtracting the first point coordinate
from all the dots

∀mi=1(x
′
i , y

′
i) = (xi − x1, yi − y1)

• Add the transposed characters to a HashMap or Set and count the unique
keys

• Resulting a O(n log n) or amortized O(n)

17

Extended Braille

• Observation 1: time limit of 8s is due to high input size
• Observation 2: at most 106 dots, so we are looking for O(n log n)
• Per Braille character, sort the dots on x then y

• Move the first ordered dot to (0,0) by subtracting the first point coordinate
from all the dots

∀mi=1(x
′
i , y

′
i) = (xi − x1, yi − y1)

• Add the transposed characters to a HashMap or Set and count the unique
keys

• Resulting a O(n log n) or amortized O(n)

17

Extended Braille

• Observation 1: time limit of 8s is due to high input size
• Observation 2: at most 106 dots, so we are looking for O(n log n)
• Per Braille character, sort the dots on x then y
• Move the first ordered dot to (0,0) by subtracting the first point coordinate
from all the dots
∀mi=1(x

′
i , y

′
i) = (xi − x1, yi − y1)

• Add the transposed characters to a HashMap or Set and count the unique
keys

• Resulting a O(n log n) or amortized O(n)

17

Extended Braille

• Observation 1: time limit of 8s is due to high input size
• Observation 2: at most 106 dots, so we are looking for O(n log n)
• Per Braille character, sort the dots on x then y
• Move the first ordered dot to (0,0) by subtracting the first point coordinate
from all the dots
∀mi=1(x

′
i , y

′
i) = (xi − x1, yi − y1)

• Add the transposed characters to a HashMap or Set and count the unique
keys

• Resulting a O(n log n) or amortized O(n)

17

Extended Braille

• Observation 1: time limit of 8s is due to high input size
• Observation 2: at most 106 dots, so we are looking for O(n log n)
• Per Braille character, sort the dots on x then y
• Move the first ordered dot to (0,0) by subtracting the first point coordinate
from all the dots
∀mi=1(x

′
i , y

′
i) = (xi − x1, yi − y1)

• Add the transposed characters to a HashMap or Set and count the unique
keys

• Resulting a O(n log n) or amortized O(n)

17

Extended Braille

1 n, chars = int(input()), set()
2 for _ in range(n):
3 cc = [list(map(int, input().split())) for _ in range(int(input()))]
4 min_x, min_y = (min(xs) for xs in zip(*cc))
5 chars.add(tuple(sorted([(x - min_x, y - min_y) for x, y in cc])))
6 print(len(chars))

18

Knitting Pattern

• Source BAPC Preliminaries 2022
• Time limit: 3s
• Given a knitting pattern and amount of wool it costs for letting the wool
strand unused, using the wool in a stitch, and for starting or ending the use
of wool. Compute the minimal amount of wool required for every colour of
wool.

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

19

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Knitting Pattern

• Observation: |p| ≤ 106, so we are aiming for a O(|p| log |p|)

• For gap between colours you have 2 options

1. let the strand continue
2. stop the strand and start again

• For every colour, we have to calculate for every gap:

min(cstop + cstart,gapsize · cunused)

• Calculate the total cost for each colour and sum it together
• The complexity is O(|w| · |p|), or in a single pass over p with creative
bookkeeping

20

Knitting Pattern

• Observation: |p| ≤ 106, so we are aiming for a O(|p| log |p|)
• For gap between colours you have 2 options

1. let the strand continue
2. stop the strand and start again

• For every colour, we have to calculate for every gap:

min(cstop + cstart,gapsize · cunused)

• Calculate the total cost for each colour and sum it together
• The complexity is O(|w| · |p|), or in a single pass over p with creative
bookkeeping

20

Knitting Pattern

• Observation: |p| ≤ 106, so we are aiming for a O(|p| log |p|)
• For gap between colours you have 2 options

1. let the strand continue

2. stop the strand and start again

• For every colour, we have to calculate for every gap:

min(cstop + cstart,gapsize · cunused)

• Calculate the total cost for each colour and sum it together
• The complexity is O(|w| · |p|), or in a single pass over p with creative
bookkeeping

20

Knitting Pattern

• Observation: |p| ≤ 106, so we are aiming for a O(|p| log |p|)
• For gap between colours you have 2 options

1. let the strand continue
2. stop the strand and start again

• For every colour, we have to calculate for every gap:

min(cstop + cstart,gapsize · cunused)

• Calculate the total cost for each colour and sum it together
• The complexity is O(|w| · |p|), or in a single pass over p with creative
bookkeeping

20

Knitting Pattern

• Observation: |p| ≤ 106, so we are aiming for a O(|p| log |p|)
• For gap between colours you have 2 options

1. let the strand continue
2. stop the strand and start again

• For every colour, we have to calculate for every gap:

min(cstop + cstart,gapsize · cunused)

• Calculate the total cost for each colour and sum it together
• The complexity is O(|w| · |p|), or in a single pass over p with creative
bookkeeping

20

Knitting Pattern

• Observation: |p| ≤ 106, so we are aiming for a O(|p| log |p|)
• For gap between colours you have 2 options

1. let the strand continue
2. stop the strand and start again

• For every colour, we have to calculate for every gap:

min(cstop + cstart,gapsize · cunused)

• Calculate the total cost for each colour and sum it together

• The complexity is O(|w| · |p|), or in a single pass over p with creative
bookkeeping

20

Knitting Pattern

• Observation: |p| ≤ 106, so we are aiming for a O(|p| log |p|)
• For gap between colours you have 2 options

1. let the strand continue
2. stop the strand and start again

• For every colour, we have to calculate for every gap:

min(cstop + cstart,gapsize · cunused)

• Calculate the total cost for each colour and sum it together
• The complexity is O(|w| · |p|), or in a single pass over p with creative
bookkeeping

20

Knitting Pattern

1 a, b, c = map(int, input().split())
2 w = input()
3 s = input()
4 for x in w:
5 off = 0
6 on = 10**9
7 for y in s:
8 if x == y:
9 on = min(on, off + c) + b

10 off = on + c
11 else:
12 on = on + a
13 print(off)

21

Kiosk Construction

• Source BAPC 2022
• Time limit: 8s
• Find the optimal kiosk position for a given camping layout.

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

22

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Kiosk Construction

• The shortest path for every kiosk position to every other plot can be found
by using DFS/BFS

• Then find the kiosk(s) that can reach all plot and minimize the maximum
distance

• Doing n2 DFS/BFS for every kiosk results in a O(n3) solution and receives a
TLE

• You an optimize do to some preprocessing, calculate the distance from
every plot to every kiosk position, storing intermediate results

• This optimization results in a O(n2) solution

23

Kiosk Construction

• The shortest path for every kiosk position to every other plot can be found
by using DFS/BFS

• Then find the kiosk(s) that can reach all plot and minimize the maximum
distance

• Doing n2 DFS/BFS for every kiosk results in a O(n3) solution and receives a
TLE

• You an optimize do to some preprocessing, calculate the distance from
every plot to every kiosk position, storing intermediate results

• This optimization results in a O(n2) solution

23

Kiosk Construction

• The shortest path for every kiosk position to every other plot can be found
by using DFS/BFS

• Then find the kiosk(s) that can reach all plot and minimize the maximum
distance

• Doing n2 DFS/BFS for every kiosk results in a O(n3) solution and receives a
TLE

• You an optimize do to some preprocessing, calculate the distance from
every plot to every kiosk position, storing intermediate results

• This optimization results in a O(n2) solution

23

Kiosk Construction

• The shortest path for every kiosk position to every other plot can be found
by using DFS/BFS

• Then find the kiosk(s) that can reach all plot and minimize the maximum
distance

• Doing n2 DFS/BFS for every kiosk results in a O(n3) solution and receives a
TLE

• You an optimize do to some preprocessing, calculate the distance from
every plot to every kiosk position, storing intermediate results

• This optimization results in a O(n2) solution

23

Kiosk Construction

• The shortest path for every kiosk position to every other plot can be found
by using DFS/BFS

• Then find the kiosk(s) that can reach all plot and minimize the maximum
distance

• Doing n2 DFS/BFS for every kiosk results in a O(n3) solution and receives a
TLE

• You an optimize do to some preprocessing, calculate the distance from
every plot to every kiosk position, storing intermediate results

• This optimization results in a O(n2) solution

23

Kiosk Construction

1 from collections import deque
2
3 h, w = map(int, input().split())
4 plots = [list(map(int, input().split())) for _ in range(h)]
5 neighs = [[[min((abs(neigh - dest), abs(neigh - plots[y][x]), xx, yy) for xx, yy, neigh in
6 ((xx, yy, plots[yy][xx]) for xx, yy in ((x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1))
7 if 0 <= xx < w and 0 <= yy < h))[2:]
8 for x in range(w)] for y in range(h)] for dest in range(1, w * h + 1)]
9

10
11 def find_paths(dest_x, dest_y, dest):
12 seen, queue = [[0] * w for _ in range(h)], deque([(dest_x, dest_y, 0)])
13 while queue:
14 x, y, dist = queue.popleft()
15 for xx, yy in ((x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)):
16 if 0 <= xx < w and 0 <= yy < h and neighs[dest - 1][yy][xx] == (x, y) and not seen[yy][xx]:
17 queue.append((xx, yy, dist + 1))
18 seen[yy][xx] = dist + 1
19 return seen
20
21
22 paths = [[find_paths(x, y, plots[y][x]) for x in range(w)] for y in range(h)]
23 best = min((max(paths[dest_y][dest_x][kiosk_y][kiosk_x] or 1e9 for dest_y in range(h) for dest_x in range(w)),
24 plots[kiosk_y][kiosk_x]) for kiosk_y in range(h) for kiosk_x in range(w))
25 print("impossible") if best[0] == 1e9 else print(*best[::-1]) 24

Solving interactive problems

What are Interactive Problems?

• Traditional problems give all the input at once, you solve and print all the
output at once

• Interactive problems give input, you do work, print output, and you receive
new input

• This process continues until you find the final answer
• The problem defines an interaction protocol
• The problem may have an interaction limit
• If an interactive problem may be in the set, an simple interactive problem
will be included in the test session

25

Type of problems for Interactive Problems

• Search in a finite space
• Explore a maze
• Matching games
• Double interaction problem (very, very rare)

• Program has 2 modes
• the first mode, input transforms input to output following certain rules
• The second mode, the output of mode 1 is given and you have tranform it back
to the input of mode 1

26

Common pitfalls for Interactive problems

• Flush the output after every write
• Only the output, not the input
• Not flushing the output results in Time Limit Exceeded

• Verdict of a solution is not deterministic, but the following is guaranteed:
• Wrong Answer means you printed something wrong
• Runtime Error means you returned an 0 error code
• If both occur, you will get either

• ICPC style contests don’t have “Idleness Limit Exceeded”, but a total runtime
limit.

27

Flushing the output

C++ : end your output with std::endl or std::flush
Python : use the flush parameter, like print("abc", flush=True)

Java/Kotlin : use a java.io.BufferedWriter and after each write use the
.flush() method.

28

Interactive problems testing tool

• Most contests provide a testing tool to test the interaction with a testing tool
• This is usually called testing_tool.py in our region
• The header file tells you how to run run the testing tool, for example
$ python3 testing_tool.py -f 1.in python3 ./solution.py

• Pitfall for Java/Kotlin: You should run the testing tool in the directory which
contains the compiled class file

• Wrong:
~/$ python3 testing_tool.py -f 1.in java ./code/ProblemA

• Right:
~/code/$ python3 testing_tool.py -f 1.in java ProblemA

29

Example Interactive Problem

You are asked to guess a number between 0 and n.

30

Example Interactive Problem: Interaction

This is an interactive problem. Your submission will be run against an interactor,
which reads from the standard output of your submission and writes to the
standard input of your submission. This interaction needs to follow a specific
protocol:

The interactor first sends one line with an integer n (3 ≤ n ≤ 1000), the upper
bound of the guessing game.

You can then send a guess g (0 ≤ g ≤ n).

The interactor will respond with the strings lower, higher, or correct. This
represents is if the number to guess is lower, higher, or correct, respectively.
After you have guessed the correct number, you should exit the program.

The interactor is not adaptive, i.e. the secret number is fixed during a round.
Using more than 12 guesses will result in a wrong answer. 31

Example Interactive Problem: Example interaction

Sample Input 1 Sample Output 1
1000

67
higher

967
lower

500
correct

32

Example Interactive Problem: Python Solution

1 low = 0
2 high = int(input())
3 state = "initial"
4 while state != "correct":
5 mid = (high+low)//2
6 _, state = print(mid, flush=True), input().strip()
7 if state == "higher":
8 low = mid+1
9 if state == "lower":

10 high = mid - 1

33

Example Interactive Problem: C++ Solution

1 #include <iostream>
2 #include <string>
3 using namespace std;
4
5 int main() {
6 int high,low;
7 string state;
8 low = 0;
9 cin >> high;

10 do {
11 int mid;
12 mid = (low+high) / 2;
13 cout << mid << endl << flush;
14 cin >> state;
15 if(state.compare("higher") == 0) {
16 low = mid +1;
17 } else if(state.compare("lower") ==0){
18 high = mid - 1;
19 }
20 }while (state.compare("correct") != 0);
21 return 0;
22 }

34

Example Interactive Problem: Java Solution

1 import java.io.*;
2
3 public class InteractiveExample {
4 public static void main(String... args) throws IOException {
5 var output = new BufferedWriter(new OutputStreamWriter(System.out));
6 var input = new BufferedReader(new InputStreamReader(System.in));
7 var low = 0;
8 var high = Integer.parseInt(input.readLine());
9 String state;

10 do {
11 var mid = (low + high) >> 1;
12 output.write(mid + "\n");
13 output.flush();
14 state = input.readLine();
15 if (state.equals("higher")) {
16 low = mid + 1;
17 } else if (state.equals("lower")) {
18 high = mid - 1;
19 }
20 } while (!state.equals("correct"));
21 }
22 }

35

Example Interactive Problem: Kotlin Solution

1 fun main() {
2 val output = System.out.bufferedWriter()
3 var low = 0
4 var high = readln().toInt()
5 var state: String
6 do {
7 val mid = (low + high) shr 1
8 output.write("$mid\n")
9 output.flush()

10 state = readln()
11 when (state) {
12 "higher" -> low = mid + 1
13 "lower" -> high = mid - 1
14 }
15 } while (state != "correct")
16 } 36

Solving Dynamic Programming
Problems

Dynamic Programming

• Dynamic Programming (DP) is a techinque of solving problem by solving an
problem by solving it in a recursive simpler sub-problem

• DP requires an overlap to occur, else its considered a Divide and Conquer
algorithm

37

Dynamic Programming: Fibonacci Numbers

• The formula is Fi = Fi−1 + Fi−2
• It depends clearly on previous calculations
• It can be solved by F1 and F2 which are both 1

1 def fibonacci(n):
2 if n == 1 or n == 2:
3 return 1
4 else:
5 return fibonacci(n - 1) + fibonacci(n - 2)

1 fun fibonacci(i: Long): Long = when(i) {
2 1L, 2L -> 1
3 else -> fibonacci(i - 1) + fibonacci(i - 2)
4 }

38

Dynamic Programming: Fibonacci Numbers: Caching

1 @lru_cache(None)
2 def fibonacci(n):
3 if n == 1 or n == 2:
4 return 1
5 else:
6 return fibonacci(n - 1) + fibonacci(n - 2)

1 val cache = mutableMapOf<Long, Long>()
2 fun fibonacci(i: Long): Long = when(i) {
3 1L, 2L -> 1
4 else -> cache.getOrPut(i - 1) { fibonacci(i - 1) }
5 + cache.getOrPut(i - 2) { fibonacci(i - 2) }
6 }

39

Dynamic Programming: Using States

Consider a weighted graph with a adjacency matrix w

5
1

5

1

1
7
1

3

B

C

F

D

A

E
w =



0 7 ∞ ∞ 1 ∞
7 0 5 5 1 ∞
∞ 5 0 ∞ ∞ 1
1 5 ∞ 0 ∞ 1
∞ 1 ∞ ∞ 0 3
∞ ∞ 1 1 3 0


Calculate a matrix giving the shortest path from and to all nodes (All Pair
Shortest Path (APSP)).

40

Dynamic Programming: Using States (APSP)

• Calculating Dijkstra for every node is very inefficient
• Create the sub-problem calculate APSP with a subset of the connections
• Define k as the number of nodes to use
• Then do the DP by using the following formula:

f (i, j, k) =

w(i, j) if k = 0
min(f (i, j, k− 1), f (i, k, k− 1) + f (k, j, k− 1))

• The shortest path between i and j with using only the first k nodes is the min
of:
• the shortest path when using k− 1
• the shortest path from i to k plus the shortest path from k to j

• This is Floyd-Warshall’s APSP with a complexity O(n3)

41

Cookbook Composition

• Source BAPC Preliminaries 2022
• Time limit: 2s
• Given a list of recipes, print the order the recipes by accessibility (lowest
beginner time
expert time first).

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

42

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Cookbook Composition

• Observation: n · s ≤ 2.5 · 104, so we are aiming for a O(n · s log n · s)

• Observation: Steps are in order, dependencies are always declared first
• The beginner time is trivial to calculate, the sum of the time of all steps
• The expert time can be defined as a DP relation

times =

t if no dependencies are given

t + i=0
max
steps

timei

• This can be calculated in linear time by processing the steps one by one,
where the expert time is the time of the last step.

• Then sort the recipes based on beginner time
expert time and print out the result

• This results in a O(n · s+ n log n) solution

43

Cookbook Composition

• Observation: n · s ≤ 2.5 · 104, so we are aiming for a O(n · s log n · s)
• Observation: Steps are in order, dependencies are always declared first

• The beginner time is trivial to calculate, the sum of the time of all steps
• The expert time can be defined as a DP relation

times =

t if no dependencies are given

t + i=0
max
steps

timei

• This can be calculated in linear time by processing the steps one by one,
where the expert time is the time of the last step.

• Then sort the recipes based on beginner time
expert time and print out the result

• This results in a O(n · s+ n log n) solution

43

Cookbook Composition

• Observation: n · s ≤ 2.5 · 104, so we are aiming for a O(n · s log n · s)
• Observation: Steps are in order, dependencies are always declared first
• The beginner time is trivial to calculate, the sum of the time of all steps

• The expert time can be defined as a DP relation

times =

t if no dependencies are given

t + i=0
max
steps

timei

• This can be calculated in linear time by processing the steps one by one,
where the expert time is the time of the last step.

• Then sort the recipes based on beginner time
expert time and print out the result

• This results in a O(n · s+ n log n) solution

43

Cookbook Composition

• Observation: n · s ≤ 2.5 · 104, so we are aiming for a O(n · s log n · s)
• Observation: Steps are in order, dependencies are always declared first
• The beginner time is trivial to calculate, the sum of the time of all steps
• The expert time can be defined as a DP relation

times =

t if no dependencies are given

t + i=0
max
steps

timei

• This can be calculated in linear time by processing the steps one by one,
where the expert time is the time of the last step.

• Then sort the recipes based on beginner time
expert time and print out the result

• This results in a O(n · s+ n log n) solution

43

Cookbook Composition

• Observation: n · s ≤ 2.5 · 104, so we are aiming for a O(n · s log n · s)
• Observation: Steps are in order, dependencies are always declared first
• The beginner time is trivial to calculate, the sum of the time of all steps
• The expert time can be defined as a DP relation

times =

t if no dependencies are given

t + i=0
max
steps

timei

• This can be calculated in linear time by processing the steps one by one,
where the expert time is the time of the last step.

• Then sort the recipes based on beginner time
expert time and print out the result

• This results in a O(n · s+ n log n) solution

43

Cookbook Composition

• Observation: n · s ≤ 2.5 · 104, so we are aiming for a O(n · s log n · s)
• Observation: Steps are in order, dependencies are always declared first
• The beginner time is trivial to calculate, the sum of the time of all steps
• The expert time can be defined as a DP relation

times =

t if no dependencies are given

t + i=0
max
steps

timei

• This can be calculated in linear time by processing the steps one by one,
where the expert time is the time of the last step.

• Then sort the recipes based on beginner time
expert time and print out the result

• This results in a O(n · s+ n log n) solution

43

Cookbook Composition

• Observation: n · s ≤ 2.5 · 104, so we are aiming for a O(n · s log n · s)
• Observation: Steps are in order, dependencies are always declared first
• The beginner time is trivial to calculate, the sum of the time of all steps
• The expert time can be defined as a DP relation

times =

t if no dependencies are given

t + i=0
max
steps

timei

• This can be calculated in linear time by processing the steps one by one,
where the expert time is the time of the last step.

• Then sort the recipes based on beginner time
expert time and print out the result

• This results in a O(n · s+ n log n) solution

43

Cookbook Composition

1 n, recipes = int(input()), []
2
3 for _ in range(n):
4 (recipe, s), end = input().split(), {}
5 steps = [(sn, int(t), ds) for sn, t, d, *ds in (input().split() for _ in range(int(s)))]
6 for step, t, ds in steps:
7 end[step] = t + max((end[d] for d in ds), default=0)
8 recipes.append((sum(t for _, t, _ in steps) / max(end.values()), recipe))
9

10 print("\n".join(name for _, name in sorted(recipes)))

44

Guest Speaker: Maarten Sijm

Guest speaker

Maarten Sijm

• Head of jury for BAPC since 2022
• FPC jury member since 2018
• BAPC jury member since 2020
• NWERC jury member since 2022

• BAPC/NWERC particpant (best result: 24th)
• 2016: “Tie Limit Exceeded”
• 2017: “class RubberDuck extends Throwable {}”
• 2018: “Ω(n

)”

• BSc+MSc Computer Science @ TU Delft
• Second-oldest member of CHipCie

45

Recipe for a Contest

• About a dozen jury members
• Tens of problem ideas
• A few months of time

• Meeting every two weeks

46

Problem Selection

• Label problems submitted to Call for Problems
• How much we like the problem
• Difficulty rating
• Categories (math, geometry, graph, …)

• Select problems that we like best,
with spread in difficulty and categories

47

Problem Naming

Problem naming sheet of DAPC 2022

48

Problem Naming

Problem naming sheet of DAPC 2022

48

Problem Implementation

• Problem statement (LaTeX)
• Generating test data (YAML spec + C++/Python scripts)
• Validating input (C++/Python scripts)
• Validating output (C++/Python scripts)
• Submissions in all supported languages
• Solution slides (LaTeX)

• Tooling: github.com/RagnarGrootKoerkamp/BAPCtools

49

github.com/RagnarGrootKoerkamp/BAPCtools

Trying to Break Stuff

• Constraints checking
• Minimal/maximal input

• Fuzzing
• Generate more random test data from existing scripts

• Write submissions that should be wrong/too slow
• Invite proof readers/solvers

50

Check That Everything Works

• Continuous Integration
• Upload problems to DOMjudge

• Local machine
• Test in Drebbelweg with Maarten (systems Maarten)

• Check time limits on contest hardware

51

Start of the Contest

• Waiting for the first submissions to come in
• Taking guesses

• Which problem would be solved first, and after how many minutes?
• What will be the order of most-solved to least-solved?

52

During the Contest

• Check incoming submissions
• Are they correctly marked as AC/TLE/WA/…?
• Are they using clever solutions that we didn’t think of?

• Answer incoming clarification requests
• The dreadful “No comment.” and
“Please read the problem statement carefully.”

• Add common mistakes to solution slides

53

During the Contest

54

During the Contest

54

During the Contest

54

After the Contest

• Generate solve stats

• Present solutions

And, next year…

• Do it all over again!

55

Conclusion

Next Session

Next session is on Thursday the 21st of September.
Guest Speaker: Jeroen op de Beek and Leon van der Waal from Segment goes
BRRRR about geometry problems.

https://domjudge.ewi.tudelft.nl/

56

https://domjudge.ewi.tudelft.nl/

	Team Reference Document
	Solutions to the sorting and search problems
	Solving interactive problems
	Solving Dynamic Programming Problems
	Guest Speaker: Maarten Sijm
	Conclusion

