DAPC 2023 Training Sessions
Session 3

Verwoerd
September 18, 2023

« Team Reference Document
« Solutions to Sorting and Search Problems
« Solving interactive problems

+ Solving Dynamic Programming Problems

Slides are available on https://chipcie.wisv.ch/ inthe training news post.

This work is licensed under a Creative Commons @ @@
“Attribution-ShareAlike 4.0 International” license.

https://chipcie.wisv.ch/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Team Reference Document

Team Reference Document

During the DAPC you may bring any analogue reference material you want
Starting from the BAPC, you may only bring limited reference material (=
same rules as World Finals)

« This reference is called the Team Reference Document (TRD)

« Sometimes the old term Team Contest Reference (TCR) is used

Team Reference Document: Rules

Each contestant may bring an (identical) copy of a Team Reference Doc-
ument. This document may contain up to 25 pages of reference mate-
rials, single-sided, letter or A4 size, with pages numbered in the upper
right-hand corner and your university name printed in the upper left-
hand corner. Text and illustrations must be readable by a person with
correctable eyesight without magnification from a distance of 2 meter.
It may include handwritten comments and corrections on the fronts of
pages only. The document should be in some type of notebook or folder
with the name of your institution on the front.

TRD: Example

Formulas for Geometric Shapes
oppervlakte cirkel : 7r?
omtrek cirkel
opperviakte ellips

oppervlakte kegel

inhoud kegel

opperviakte bol : 47r?
1
inhoud bol : Zrr*
oppervlakte cillinder : 2zrh + 271
inhoud cilinder : 7r*h

More Formulas
[m -n|

least common multiple : lem(m, n) = ————
e (1) = o)

1 (20 (2n)! ok k
: n = =— —_
Catalan number:: €, = 2= (,,) (n+)l 11

Catalan numbers : C = {1,1,2,5, 14,42, 132,429, 1430, 4862, 16796}
Triangle number {1,3.6,10,15,21,28, 66,78, 91, 1

n(n+1
Triangle numbers : 7o, = > k = % = (
=1

Fibonacci Numbers
1,1,2,3,5,8.

13,21,34,

5,89, 144,233,377, 610, 987, 1597, 2581

© When we take a pairs of large consecutive Fibonacci numbers, we can approximate the
golden ratio by dividing them.

« The sum of any ten consecutive Fibonacci numbers is divisible by 11
 Two consecutive Fibonacci numbers are co-prime,

« The Fibonacci numbers in the composite-number (i.e. non-prime) positions are also
composite numbers

Team Integer

z
TUDelft

Computational Geometry

Cross product 0] [b] [aybe—a
axb=|a| x b| = |azbe — asb.
ac] 6] [acby - aybe

Links of rechts ombuigen

|
‘. 7 BC < 0= finksaf
=1
“p] 7 BC> 0= rechtsaf
A
Punt in concaaf/convex polygon test

Tel het aantal doorsnijdingen van polygon met lijn P naar oneindig. Als het aantal
doorsnijdingen oneven is, dan P € ABCDE.

a=(APB+ ..+ (DPE+ LEPA
0= P ¢ ABCDE
7= P € ABCDE

Centroid of polygon
The centroid or geometric center of a plane figure is the arithmetic mean ("average")
position of all the points in the shape. Informally, it is the point at which an infinitesimally
thin cutout of the shape could be perfectly balanced on the tip of a pin.
pet
1

@ i) @it — Tisan)
i

D v @avisr — wisap)

=

c,

¢,

et

3 @i —wiaw)

2

TRD: Example

Math

int ceildiv(int a, int b) {
urn (2 + b - 1) /b
3

Euler Totient Function (aantal coprimes < n)

if (@ > 1) ans -= ans / n;
return ans;

Discrete logaritme a
1 (maakt gebruik van eged)

(1m0d m), retourneert de kleinste i die hieraan voldoet anders

public long modLog(long a, long b, long m) {
if (b % exged(a, m)[2]

if (a == 0) return 0;

long n = (long)sqrt(m) +

Map<Long, Long> map = new HashMap<Long, Long>();

long an = 1;

for (long j =

1= 0) return -1;

1

0; n; j
if (map.containskey(an)) map.put(an, j);

¥
long ain = 1, res = Long.MAX_VALUE;
for (long & = 0; 4 < nj i+e) {
long(] ie = congruence(ain, b, m)
for (long aj = 180015 aj < m; aj += is(1]) €
if (map.containsKey (aj) {
long j = map.get(a));
res = min(res, i+ + §);
)
)
if (res < Long MAX_VALUE) roturn res;
ain = ain * an % w;
return -1;

TUDelft

Rekent (a) mod c uit

int modpou(int a, int b, int o){
7/ long is taken to

avoid overflow of intermediate results

¥ = (yxy)ie; // squaring the base
b /=

return xic;

Rekent (a- b) mod c uit

e x = 0.y
unile (b > 0) {
1o % 2 == DI
x = ey hes

long mulmod(long a, long b, long e){
“ate;

3
y= e e
b /e 2;

return x % ¢;

Aantal mogelijke manieren om een nummer te splitsen in positieve getallen. Bijvoorbeeld:
SO ={43+ 12422+ 1+ 11 +1+1+1}.

int partition(int n) {
int(] dp = new intln + 11;

for (int i = 1; 4 <= m; 149) {
for (int § = 1, 1= 1; 1 - (303 % § = 1) /250 0; jos, x xe =) {
ap[i] += dpli - (3 ¢ § ¢ 5 - 3 /2]
i G- @ gege) S25m0) (
apli] += dpli'= v 3 e 5+ /20w

3

}
return dplnl;

Team Integer

TRD: Example

1 Contest 1
2 Mathematics 1
3 Data structures 3
4 Numerical 5
5 Number theory 8
6 Combinatorial 10
7 Graph 1
8 Geometry 17
9 Strings 21
10 Various 22
Contest (1)

plate.cpp .
Frr=— ™
ssing namespace

troubleshoot.txt

Mathematics (2)

2.1 Equations

ar’ tbrte=0=a=

The extrenum is given by z = —b/2a.

az 4 by =

=
extdy=f

In general, given an equation Az = b, the solution to a variable
z, is given

= et
where A is A with the #'th column replaced by b
2.2 Recurrences

+cran—s, and ri, ..., vy are distinet xoots of

f an = cran-1 +
* a +cx, there are dy, ... d s.t.

an=dyr} ook dur].

Non-distinet roots r become polynomial factors, e.g
an = (din+ do)r

2.3 Trigonometry

sin(v+ w) = sinv cas w + cos vsinw

cos(v +w)

tan(v + w)

(V4 W) tan(v - w)/2 = (V = W) tan(v +w)/2

where V, IV are lengths of sides oppasite angles v, w.
acosz + bsinz = reas(z — ¢)
asinz + beosz = rsin(z +6)

where r = Va

6 = atan2(b,a).
2.4 Geometry
2.4.1 Triangles

de lengths: a,b, ¢

Semiperimeter: p 5 6
[N o Y e s
Area: A= ol - @) - BD)(p—0)

Circumradins: R = 77

TRD: Example

KTH multinomial BellmanFord FloydWarshall TopoSort 1
6.2.2 Lucas’ Theorem 6.3.4 Stirling numbers of the second kind nodes(s) .dist = 0
rt(allfedal, [1(5d 8, £ b) { retum s.s()
Let n,m be non-negative integers and p a prime. Write Partitions of n distinct elements into exactly k groups.
nodes) /2 + 2; // /34100 with shuffled vertices

n=np* + ...+ mp+no and m=mip* + ... + mip+ma. Then

() =TT () (mod p)
6.2.3 Binomials
multinomial.h

Description: Computes (1 1

6.3 General purpose numbers

6.3.1 Bernoulli numbers
EGF of Bernoulli numbers is B(() = 7y (FFT-able)
B0,..]=[1,-4,4,0,-%.0,

Sums of powers:

P LSy

Maclaurin formula for infinite sums;

Z/m a soyas - 35 B

Euler-

1)

fom)

+0(/® (m))

= / f(z)dr +

6.3.2 Stirling numbers of the first kind
Number of permutations on n items with k eycles
=cn — 1,k = 1)+ (n— De(n — 1,k), (0,0) =1
(z4n-1)

cn.k)
S eln k)2 = x(x+1)

€(8,k) =8,0,5040, 13068, 13132, 6769, 1960, 322, 25, 1

o(n,2) 0,1,3, 11,50, 274, 1764, 13068, 109584,

6.3.3 Eulerian numbers
Number of permutations 7 € S, in which exactly k clements are
greater than the previous clement. k jis s.t. x(j) > =(j +1)
kst 7(j) 2, k s st w(j) >

E(n,k) = (n—k)E(n— 1,k —1)+ (k+ 1) E(n - 1,k)

E(n,0)= E(n,n—1) =1

E(n, k) =Y (1) (”J")un I

S(n,k) = S(n— 1,k — 1) + kS(n — 1,k)

S(n,1) = S(n,n) =
L&
S(n. ”:TZ::(’” 4()

6.3.5 Bell numbers
ber of partitions of n distinct elements. B(n) =
§77,4140,21147,.... For p prime

Total m
1,1,2,5,15,52

B(p" +n) =mB(n) + Bln+1) (mod p)

6.3.6 Labeled unrooted trees

on n vertices: n”
on k existing trees of s
with degrees d;: (n —2)!/((dr —1)!

mang - ongn*
(dn —1)Y)

6.3.7 Catalan numbers

- ()t
On= =Gt o
o S¢

5, 14,42, 132, 429, 1430, 4862, 16796, 58786,

sub-diagonal
strings with n pairs of pare
binary trees with with n + 1 leaves (0 or 2 children)
ordered trees with n + 1 vertice

tone paths in an n x n grid
hesis, correctly nested.

sides can be eut into

ways a convex polygon with n

triangles by connecting vertices with straight lines.

« permutations of [n] with no Hterm increasing subseq
Graph (7)
7.1

Fundamentals
d.h

‘Caleutes shortest paths from i raph that might e
e ghts. Unreachable nodes get dist = inf; nod bl
Vhrough nagative- wolght cyeios go dist = et Asures V2
Time: O (VE)

Const 11 in

rep(i,0, Liny for (Ed

FloydWasshall b
Doscription: Caleultes alptis shortst path in a directel raph shat
.wm huw negative s wegite. Tyt o an " e i he
ol 73 and 7 are not adjacent. As entput, m{[] s st to the
£ if 1o path, or -int If the path goes

botwaen § and j,
& negative-woight cydle
o(vh

TopoSort
o Topetaica sorting. Given

ordeing of rtice,such that thir arsclges

e cycln, he ettt il oo s amaen

i an orionted graph. Output & an
< nly from kit o ight. 1 ther
. reachable

from cyclos will not be retu
vi+IE) atasar. 14 e

e 4 (int (retum s <b7a om0
stmct Node | 165 dne prev - <17)
void belin Node>s nodes, vector<Ed>i eds, int =) (

1. Mathematics

« Formulas and Theories
« Trigonometry

2. Data Structures

+ Segement Tree, Treap, RMQ
« HashMap, PriorityQueue

3. Numerical Methods

« Simplex, Integration

« Linear Problem-solving
4. Number Theory

« Primality, Divisability
5. Combinatorial

+ Permutations, Partitions

Potential subjects in a TRD

6. Graph
« Search algorithms
* Flow algorithms
+ Spanning Tree, Connected
Components
7. Geometry

« Line intersection, length
« Triangles and Circles
+ Polygons

8. Strings
9. Templates
10. Tests and reminders

Tips on TRD

+ Only put stuff in that you know how/when to use

« Ensure that the code is correct and complete

« Add short description, complexity, and hash

« Evaluate document after each contest for improvements

- Several templates available at https://chipcie.wisv.ch/resources

Solutions to the sorting and search
problems

Abbreviated Aliases

+ Source BAPC Preliminaries 2022
+ Time limit: 2s
« For every username calculate the size of the shortest unique prefix.

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

@00

10

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Abbreviated Aliases

« Observation: n - [<107, so we are aiming for O(n log n)

L

Abbreviated Aliases

« Observation: n - [<107, so we are aiming for O(nlogn)

- Comparing every username with all other usernames is O(n?), which is too
slow

L

Abbreviated Aliases

« Observation: n - [<107, so we are aiming for O(nlogn)

- Comparing every username with all other usernames is O(n?), which is too
slow

« We only need to compare the two usernames where the prefix is most
similar
james is closest to jacob and janos, there is no other username that will
increase the prefix

L

Abbreviated Aliases

« Observation: n - [<107, so we are aiming for O(nlogn)

- Comparing every username with all other usernames is O(n?), which is too
slow

« We only need to compare the two usernames where the prefix is most
similar
james is closest to jacob and janos, there is no other username that will
increase the prefix

« If we sort the list, we only have to compare with the username before and
after

L

Abbreviated Aliases

« Observation: n - [<107, so we are aiming for O(nlogn)

- Comparing every username with all other usernames is O(n?), which is too
slow

« We only need to compare the two usernames where the prefix is most
similar
james is closest to jacob and janos, there is no other username that will
increase the prefix

« If we sort the list, we only have to compare with the username before and
after

« Alternatively, build a compressed Trie, and for each leaf, count the distance
to the root

L

Abbreviated Aliases

1 n,l = [int(i) for i in input().split()]
2 a = sorted([input() for i in range(n)])
3 t =1

4 p =0

5 for i in range(1,n):

6 for j in range(l):

7 if ali-11[3j]1 '= alilljl:

8 t += j+1 + max(j-p,0)

9 p =13

10 break

11 print(t)

12

Dimensional Debugging

« Source BAPC Preliminaries 2022

* Time limit: 2s

« Given n algorithms that only work when their input ¢ is small enough
(¢ < H), can you verify the correctness on sufficient large inputs (o > L).

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

@00

13

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Dimensional Debugging

- Observation: n < 103, so we are aiming for an O(n?) algorithm.

14

Dimensional Debugging

- Observation: n < 103, so we are aiming for an O(n?) algorithm.

« We can verify all algorithms with L = g

14

Dimensional Debugging

- Observation: n < 103, so we are aiming for an O(n?) algorithm.

« We can verify all algorithms with L = g
+ Add those algorithms to verified algorithms, then find any unverified where
H; <L;
=Y

14

Dimensional Debugging

- Observation: n < 103, so we are aiming for an O(n?) algorithm.
« We can verify all algorithms with L = g
+ Add those algorithms to verified algorithms, then find any unverified where
H; <L;
=Y

« In this way you can create a graph between the different algorithms.

14

Dimensional Debugging

- Observation: n < 103, so we are aiming for an O(n?) algorithm.

« We can verify all algorithms with L = g

+ Add those algorithms to verified algorithms, then find any unverified where
H; < L;

« In this way you can create a graph between the different algorithms.

« Use a flood fill by BFS/DFS to count the number of algorithms you can reach.

14

Dimensional Debugging

- Observation: n < 103, so we are aiming for an O(n?) algorithm.

« We can verify all algorithms with L = g

+ Add those algorithms to verified algorithms, then find any unverified where
H; < L;

« In this way you can create a graph between the different algorithms.

« Use a flood fill by BFS/DFS to count the number of algorithms you can reach.

« This results in an O(n?) algorithm.

14

Dimensional Debugging

n, k = map(int, input().split())
algs = {tuple(zip(*(map(int, input().split()) for _ in ".."))) for
stack = [[(0, 0) for _ in range(k)]]
while stack:
base = stack.pop()
add = {alg for alg in algs if all(l <= b for (a, b), (1, h) in zip(base, alg))}
stack.extend(add)
algs = algs.difference(add)
print(n - len(algs))

in range(n)}

© 00O U W

15

Extended Braille

« Source BAPC Preliminaries 2022

« Time limit: 8s

« Given n braille characters by their points, determine how many of them are
distinct up to translation.

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

@00

16

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Extended Braille

+ Observation 1: time limit of 8s is due to high input size

17

Extended Braille

+ Observation 1: time limit of 8s is due to high input size

« Observation 2: at most 10° dots, so we are looking for O(n log n)

17

Extended Braille

+ Observation 1: time limit of 8s is due to high input size
« Observation 2: at most 10° dots, so we are looking for O(n log n)

« Per Braille character, sort the dots on x then y

17

Extended Braille

+ Observation 1: time limit of 8s is due to high input size
« Observation 2: at most 10° dots, so we are looking for O(n log n)
« Per Braille character, sort the dots on x then y

+ Move the first ordered dot to (0, 0) by subtracting the first point coordinate
from all the dots

VI (XL) = (X — X1, Yi — Y1)

17

Extended Braille

+ Observation 1: time limit of 8s is due to high input size
« Observation 2: at most 10° dots, so we are looking for O(n log n)
« Per Braille character, sort the dots on x then y

+ Move the first ordered dot to (0, 0) by subtracting the first point coordinate
from all the dots
VI (XL YD) = (X — X1, ¥ — Y1)
 Add the transposed characters to a HashMap or Set and count the unique
keys

17

Extended Braille

+ Observation 1: time limit of 8s is due to high input size
« Observation 2: at most 10° dots, so we are looking for O(n log n)
« Per Braille character, sort the dots on x then y

+ Move the first ordered dot to (0, 0) by subtracting the first point coordinate
from all the dots
VI (XL YD) = (X — X1, ¥ — Y1)
 Add the transposed characters to a HashMap or Set and count the unique
keys

+ Resulting a O(nlogn) or amortized O(n)

17

Extended Braille

n, chars = int(input()), set()

for _ in range(n):
cc = [list(map(int, input().split())) for _
min_x, min_y = (min(xs) for xs in zip(xcc))
chars.add(tuple(sorted([(x - min_x, y - min_y) for x, y in cc])))

print(len(chars))

in range(int(input()))]

(=2} t - w [V —

18

Knitting Pattern

+ Source BAPC Preliminaries 2022

 Time limit: 3s

+ Given a knitting pattern and amount of wool it costs for letting the wool
strand unused, using the wool in a stitch, and for starting or ending the use

of wool. Compute the minimal amount of wool required for every colour of
wool.

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

@00

19

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Knitting Pattern

- Observation: |p| < 10°, so we are aiming for a O(|p| log |p|)

20

Knitting Pattern

- Observation: |p| < 10°, so we are aiming for a O(|p| log |p|)
- For gap between colours you have 2 options

20

Knitting Pattern

- Observation: |p| < 10°, so we are aiming for a O(|p| log |p|)
- For gap between colours you have 2 options
1. let the strand continue

20

Knitting Pattern

- Observation: |p| < 10°, so we are aiming for a O(|p| log |p|)
- For gap between colours you have 2 options

1. let the strand continue
2. stop the strand and start again

20

Knitting Pattern

- Observation: |p| < 10°, so we are aiming for a O(|p| log |p|)
- For gap between colours you have 2 options

1. let the strand continue
2. stop the strand and start again

« For every colour, we have to calculate for every gap:

min(Cstop + Cstart; 9Psize - Cunused)

20

Knitting Pattern

- Observation: |p| < 10°, so we are aiming for a O(|p| log |p|)
- For gap between colours you have 2 options

1. let the strand continue
2. stop the strand and start again

« For every colour, we have to calculate for every gap:

min(Cstop + Cstart; 9Psize - Cunused)

+ Calculate the total cost for each colour and sum it together

20

Knitting Pattern

« Observation: |p| < 108, so we are aiming for a O(|p| log |p|)
- For gap between colours you have 2 options

1. let the strand continue
2. stop the strand and start again

« For every colour, we have to calculate for every gap:

min(Cstop + Cstart; 9Psize - Cunused)

+ Calculate the total cost for each colour and sum it together

+ The complexity is O(|w| - |p]), or in a single pass over p with creative
bookkeeping

20

Knitting Pattern

1 a, b, ¢ = map(int, input().split())
2w = input()
3 s = input()
4 for x in w:

5 off = 0

6 on = 10*%*9

7 for y in s:

8 if x ==

9 on = min(on, off + c) + b
10 off = on + ¢

11 else:

12 on = on + a

13 print(off)

21

Kiosk Construction

* Source BAPC 2022
 Time limit: 8s
« Find the optimal kiosk position for a given camping layout.

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

@00

22

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Kiosk Construction

« The shortest path for every kiosk position to every other plot can be found
by using DFS/BFS

23

Kiosk Construction

« The shortest path for every kiosk position to every other plot can be found
by using DFS/BFS

+ Then find the kiosk(s) that can reach all plot and minimize the maximum
distance

23

Kiosk Construction

« The shortest path for every kiosk position to every other plot can be found
by using DFS/BFS

+ Then find the kiosk(s) that can reach all plot and minimize the maximum
distance

- Doing n? DFS/BFS for every kiosk results in a O(n?) solution and receives a
TLE

23

Kiosk Construction

« The shortest path for every kiosk position to every other plot can be found
by using DFS/BFS

+ Then find the kiosk(s) that can reach all plot and minimize the maximum
distance

- Doing n? DFS/BFS for every kiosk results in a O(n?) solution and receives a
TLE

« You an optimize do to some preprocessing, calculate the distance from
every plot to every kiosk position, storing intermediate results

23

Kiosk Construction

« The shortest path for every kiosk position to every other plot can be found
by using DFS/BFS

+ Then find the kiosk(s) that can reach all plot and minimize the maximum
distance

- Doing n? DFS/BFS for every kiosk results in a O(n?) solution and receives a
TLE

« You an optimize do to some preprocessing, calculate the distance from
every plot to every kiosk position, storing intermediate results

- This optimization results in a O(n?) solution

23

Kiosk Construction

0 N O Utk W=

from collections import deque

h, w = map(int, input().split())
plots = [list(map(int, input().split())) for _ in range(h)]
neighs = [[[min((abs(neigh - dest), abs(neigh - plots[y][x]), xx, yy) for xx, yy, neigh in
((xx, yy, plotslyyllxx]) for xx, yy in ((x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1))
if 0 <= xx < wand 0 <= yy < h))[2:]
for x in range(w)] for y in range(h)] for dest in range(1l, w * h + 1)]

def find_paths(dest_x, dest_y, dest):
seen, queue = [[0] = w for _ in range(h)], deque([(dest_x, dest_y, 0)1)
while queue:
X, y, dist = queue.popleft()
for xx, yy in ((x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)):
if 0 <= xx < wand 0 <= yy < h and neighs[dest - 1][yyl[xx] == (x, y) and not seen[yy][xx]:
queue.append((xx, yy, dist + 1))
seen[yy][xx] = dist + 1
return seen

paths = [[find_paths(x, y, plots[y]l[x]) for x in range(w)] for y in range(h)]

best = min((max(paths[dest_yl[dest_x][kiosk_y]l[kiosk_x] or 1e9 for dest_y in range(h) for dest_x in range(w)),
plots[kiosk_yl[kiosk_x]) for kiosk_y in range(h) for kiosk_x in range(w))

print("impossible") if best[0] == 1e9 else print(best[::-1]) 24

Solving interactive problems

What are Interactive Problems?

- Traditional problems give all the input at once, you solve and print all the
output at once

« Interactive problems give input, you do work, print output, and you receive
new input

+ This process continues until you find the final answer

 The problem defines an interaction protocol

 The problem may have an interaction limit

« If an interactive problem may be in the set, an simple interactive problem
will be included in the test session

25

Type of problems for Interactive Problems

« Search in a finite space
« Explore a maze
+ Matching games

« Double interaction problem (very, very rare)

« Program has 2 modes

« the first mode, input transforms input to output following certain rules

+ The second mode, the output of mode 1is given and you have tranform it back
to the input of mode 1

26

Common pitfalls for Interactive problems

* Flush the output after every write

+ Only the output, not the input
+ Not flushing the output results in Time Limit Exceeded

« Verdict of a solution is not deterministic, but the following is guaranteed:

« Wrong Answer means you printed something wrong
« Runtime Error means you returned an 0 error code
« If both occur, you will get either

« ICPC style contests don't have “Idleness Limit Exceeded”, but a total runtime
limit.

27

Flushing the output

C++ : end your output with std::endl or std: : flush
Python : use the flush parameter, like print("abc", flush=True)

Java/Kotlin : use a java.io.Bufferedwriter and after each write use the
.flush() method.

28

Interactive problems testing tool

« Most contests provide a testing tool to test the interaction with a testing tool
« This is usually called testing_tool.py in our region

 The header file tells you how to run run the testing tool, for example
$ python3 testing_tool.py -f 1.in python3 ./solution.py

- Pitfall for Java/Kotlin: You should run the testing tool in the directory which
contains the compiled class file

* Wrong:

~/$ python3 testing_tool.py -f 1.in java ./code/ProblemA
- Right:

~/code/$ python3 testing_tool.py -f 1.in java ProblemA

29

Example Interactive Problem

You are asked to guess a number between 0 and n.

30

Example Interactive Problem: Interaction

This is an interactive problem. Your submission will be run against an interactor,
which reads from the standard output of your submission and writes to the
standard input of your submission. This interaction needs to follow a specific
protocol:

The interactor first sends one line with an integer n (3 < n < 1000), the upper
bound of the guessing game.

You can then send a guess g (0 < g < n).

The interactor will respond with the strings lower, higher, or correct. This
represents is if the number to guess is lower, higher, or correct, respectively.
After you have guessed the correct number, you should exit the program.

The interactor is not adaptive, i.e. the secret number is fixed during a round.
Using more than 12 guesses will result in a wrong answer. 31

Example Interactive Problem: Example interaction

Sample Input 1 | Sample Output 1
1000
67
higher
967
lower
500
correct

32

Example Interactive Problem: Python Solution

1 low = 0

2 high = int(input())

3 state = "initial"

4 while state != "correct":

5 mid = (high+low)//2

6 _, state = print(mid, flush=True), input().strip()
7 if state == "higher":

8 low = mid+1

9 if state == "lower":

10 high = mid - 1

53

m: C++ Solution

1 #include <iostream>
2 #include <string>
3 using namespace std;
4
5 int main() {
6 int high, low;
7 string state;
8 low = 0;
9 cin >> high;
10 do {
11 int mid;
12 mid = (low+high) / 2;
13 cout << mid << endl << flush;
14 cin >> state;
15 if(state.compare("higher") == 0) {
16 low = mid +1;
17 } else if(state.compare("lower") ==0){
18 high = mid - 1;
19 }
20 }while (state.compare("correct") != 0);
21 return 0;
22 }

34

m: Java Solution

1 import java.io.x;
2
3 public class InteractiveExample {

4 public static void main(String... args) throws IOException {
5 var output = new BufferedWriter(new OutputStreamWriter(System.out));
6 var input = new BufferedReader(new InputStreamReader(System.in));
7 var low = 0;

8 var high = Integer.parseInt(input.readLine());

9 String state;

10 do {

11 var mid = (low + high) >> 1;

12 output.write(mid + "\n");

13 output.flush();

14 state = input.readlLine();

15 if (state.equals("higher")) {

16 low = mid + 1;

17 } else if (state.equals("lower")) {

18 high = mid - 1;

19 }

20 } while (!state.equals("correct"));

21 }

22 }

3

Example Interactive Problem: Kotlin Solution

N

- W

o N o v

10

11

12

13

14

16

fun main() {

3

val output = System.out.bufferedWriter()
var low = 0
var high = readln().toInt()
var state: String
do {
val mid = (low + high) shr 1
output.write("$mid\n")
output.flush()
state = readln()
when (state) {
"higher" -> low = mid + 1
"lower" -> high = mid - 1
}

} while (state != "correct")

36

Solving Dynamic Programming
Problems

Dynamic Programming

« Dynamic Programming (DP) is a techinque of solving problem by solving an
problem by solving it in a recursive simpler sub-problem

- DP requires an overlap to occur, else its considered a Divide and Conquer
algorithm

37

Dynamic Programming: Fibonacci Numbers

« The formula is F; = Fi_1 + Fi_»
« It depends clearly on previous calculations
« It can be solved by 7, and %, which are both 1

def fibonacci(n):

1

2 if n == 1 or n ==

3 return 1

4 else:

5 return fibonacci(n - 1) + fibonacci(n - 2)
1 fun fibonacci(i: Long): Long = when(i) {

2 1L, 2L -> 1

3 else -> fibonacci(i - 1) + fibonacci(i - 2)
a '}

38

Dynamic Programming: Fibonacci Numbers: Caching

1 (None)

2 def fibonacci(n):

3 if n == 1 or n ==

4 return 1

5 else:

6 return fibonacci(n - 1) + fibonacci(n - 2)

1 val cache = mutableMapOf<Long, Long>()
2 fun fibonacci(i: Long): Long = when(i) {

3 1L, 2L -> 1
4 else -> cache.getOrPut(i - 1) { fibonacci(i - 1) }
5 + cache.getOrPut(i - 2) { fibonacci(i - 2) }

39

Dynamic Programming: Using States

Consider a weighted graph with a adjacency matrix w
A _

0 7 o0 oo 1 o0
/7 7 0 5 5 1 oo
/BS\’\I'] W o 5 0 oo oo 1
¢’ 5p b |1 5 o 0 o~ 1
1‘/ oo 1 oo oo 0 3

1
\F 3 0 c0o 1 1 3 0]

Calculate a matrix giving the shortest path from and to all nodes (All Pair
Shortest Path (APSP)).

40

Dynamic Programming: Using States (APSP)

« Calculating Dijkstra for every node is very inefficient

« Create the sub-problem calculate APSP with a subset of the connections
« Define k as the number of nodes to use

« Then do the DP by using the following formula:

. w(i,j) ifk=0
fR) =9 .. : ,
mm(f(’a]vk - 1)»f(’7 kv R — 1) +f(ka]’k - 1))

« The shortest path between i and j with using only the first k nodes is the min
of:

« the shortest path when using k — 1
« the shortest path from i to k plus the shortest path from k to j

« This is Floyd-Warshall's APSP with a complexity O(n?)

41

Cookbook Composition

« Source BAPC Preliminaries 2022
* Time limit: 2s
« Given a list of recipes, print the order the recipes by accessibility (lowest

beginner time
expert time fi rSt)’

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

(N0l

42

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Cookbook Composition

- Observation: n-s < 2.5-10*% so we are aiming fora O(n - slogn - s)

43

Cookbook Composition

- Observation: n-s < 2.5-10*% so we are aiming fora O(n - slogn - s)
 Observation: Steps are in order, dependencies are always declared first

43

Cookbook Composition

- Observation: n-s < 2.5-10*% so we are aiming fora O(n - slogn - s)
 Observation: Steps are in order, dependencies are always declared first
« The beginner time is trivial to calculate, the sum of the time of all steps

43

Cookbook Composition

- Observation: n-s < 2.5-10*% so we are aiming fora O(n - slogn - s)
 Observation: Steps are in order, dependencies are always declared first
« The beginner time is trivial to calculate, the sum of the time of all steps
 The expert time can be defined as a DP relation

. t if no dependencies are given

tlmes = 1:0 .

t + maxtime;
steps

43

Cookbook Composition

- Observation: n-s < 2.5-10*% so we are aiming fora O(n - slogn - s)
 Observation: Steps are in order, dependencies are always declared first
« The beginner time is trivial to calculate, the sum of the time of all steps
 The expert time can be defined as a DP relation

. t if no dependencies are given
times = i=0 .
t + maxtime;
steps
« This can be calculated in linear time by processing the steps one by one,

where the expert time is the time of the last step.

43

Cookbook Composition

- Observation: n-s < 2.5-10*% so we are aiming fora O(n - slogn - s)
 Observation: Steps are in order, dependencies are always declared first
« The beginner time is trivial to calculate, the sum of the time of all steps
 The expert time can be defined as a DP relation

. t if no dependencies are given
times = i=0 .
t + maxtime;
steps
« This can be calculated in linear time by processing the steps one by one,
where the expert time is the time of the last step.

. . beginner time .
Then sort the recipes based on expert fime and print out the result

43

Cookbook Composition

- Observation: n-s < 2.5-10*% so we are aiming fora O(n - slogn - s)
 Observation: Steps are in order, dependencies are always declared first
« The beginner time is trivial to calculate, the sum of the time of all steps
 The expert time can be defined as a DP relation

. t if no dependencies are given

tlmes = 1:0 .

t + maxtime;
steps

« This can be calculated in linear time by processing the steps one by one,
where the expert time is the time of the last step.

. . beginner time .
Then sort the recipes based on expert fime and print out the result

* This resultsina O(n - s + nlogn) solution

43

Cookbook Composition

1 n, recipes = int(input()), []

2

3 for _ in range(n):

4 (recipe, s), end = input().split(), {}

5 steps = [(sn, int(t), ds) for sn, t, d, *ds in (input().split() for _ in range(int(s)))]
6 for step, t, ds in steps:

7 end[step] = t + max((end[d] for d in ds), default=0)

8 recipes.append((sum(t for _, t, _ in steps) / max(end.values()), recipe))

9

10 print("\n".join(name for _, name in sorted(recipes)))

4k

Guest Speaker: Maarten Sijm

Guest speaker

Maarten Sijm

« Head of jury for BAPC since 2022
« FPC jury member since 2018
« BAPC jury member since 2020
« NWERC jury member since 2022
« BAPC/NWERC particpant (best result: 24th)

+ 2016: “Tie Limit Exceeded”
« 2017: “class RubberDuck extends Throwable {}"
. 2018: “Q(&")"

« BSc+MSc Computer Science @ TU Delft
+ Second-oldest member of CHipCie

45

Recipe for a Contest

 About a dozen jury members

« Tens of problem ideas
A few months of time
+ Meeting every two weeks

+—————————— —

46

Problem Selection

« Label problems submitted to Call for Problems

« How much we like the problem
- Difficulty rating
- Categories (math, geometry, graph, ...)

« Select problems that we like best,
with spread in difficulty and categories

_e,— —

47

Problem Naming

A 3 c o € e G H | J K L M
1 A B c) E F [H [J K L
2 Function optimising Algorithm Efficiency Enhanc Function Optimizing
5 Liquid Mixing
List of Cubes Brewing .. Chemistry .. Dangerous Chemi Explosions? Gas usage Liquid Processing
4 k-Bubble Sort Bubblebubblesort Interval Sort k-Bubble Sort
5 ok of Recipes
Cookbook Composition Accessible Cookh Beginner Cookbox Cookbook Composition Expert Cookbook
6 Knitting Patterns. Granny's Knitiing Knitting Patterns
7 Shortest Unique Prefix Abbreviated Aliases Cutting Short
8 Showerhead Drillng Holes
9 Extended Braille Braille Extended Braille
0 Primel (interactive) Factoring is Futile Great Guessing Game
11 Slow Memory Array Adjustment Book Copying Inked Inscriptions
» Comparing Algorit
Testing Correctness .. Dimensional Data
. Heavy Boxes
Moving blocks Arranging Boxes Box Arrangement Cargo Shipping Heavy lfling

Problem naming sheet of DAPC 2022

48

Problem Naming

A s c o e e 13 H ' f K L M
1 A B c) E F G H ' J K L

2 Shortest Unique Prefix Cutting Short

3 k-Bubble Sort rt Interval Sort k-Bubble Sort

Book of Recipes.
Cookbook Composition | Accessible Cookb Beginner Cookt Expert Cookbook

s Comparing Algori
Testing Correctness ... ugging
6 Extended Braille Braille .
justifying changes
B justifying junk
Effciency Enhanc| justifying optimisation
Function optimising Algorithm .. Data manipulation Early optimisation jon Horrible code:

5 Primel (interactive) Factoring is Futilo Integer inquiries.

Junk,
Justiied Jetsam

Moving blocks Arranging Boxes Box Amangement Cargo Shipping
1 Slow Memory Array Adjustment Book Copying Jumbling Pages
"
Showerhead Driling Holes Fancy Showerhead Hole driling
12 Knitting Patterns Crochet. Granny's Knitting
1
List of Cubes Brewing Chemistry Dangerous Chemi Explosions? Gas usage justified jetsam

Problem naming sheet of DAPC 2022

48

Problem Implementation

+ Problem statement (LaTeX)

+ Generating test data (YAML spec + C++/Python scripts)
» Validating input (C++/Python scripts)

- Validating output (C++/Python scripts)

« Submissions in all supported languages

« Solution slides (LaTeX)

« Tooling: github.com/RagnarGrootKoerkamp/BAPCtools

e, -

49

github.com/RagnarGrootKoerkamp/BAPCtools

Trying to Break Stuff

« Constraints checking
+ Minimal/maximal input
* Fuzzing
+ Generate more random test data from existing scripts

« Write submissions that should be wrong/too slow

« Invite proof readers/solvers

—b— -

50

Check That Everything Works

« Continuous Integration
+ Upload problems to DOMjudge

+ Local machine
+ Test in Drebbelweg with Maarten (systems Maarten)

» Check time limits on contest hardware

—&- -

51

Start of the Contest

+ Waiting for the first submissions to come in
« Taking guesses

« Which problem would be solved first, and after how many minutes?
« What will be the order of most-solved to least-solved?

. —

52

During the Contest

+ Check incoming submissions

+ Are they correctly marked as AC/TLE/WA/...?
« Are they using clever solutions that we didn’t think of?

« Answer incoming clarification requests
« The dreadful “No comment.” and
“Please read the problem statement carefully.”

« Add common mistakes to solution slides

53

During the Contest

Submissions

Show: newest unverified unjudged

‘ Y Filter ‘

(235 sbmitea] 151 conect AR

ID time

$233 10:10

$232 09:52

$231 09:25

$230 09:25

team problem lang

(ZZTE3): DROP TABLE teams;

Not The Worst .
Phoenix (2]

(=T Rubber Duck Debuggers n

KT

JAVA

cPP

result verified by test results

CORRECT no ‘ claim ‘
@223
Z

CORRECT no | cam | @
([][]

WRONG-ANSWER yes maarten () BE000000000000000000a
EEEEEEE

TIMELIMIT ves ducky [[] T T Tl Te]xDxIxIx]x [x[x]xx[x[x]x[x x]x]

EEEEEEE

54

During the Contest

Clarification 3

From: R

Subject: D: Ducky Debugging &
To: Jury

Queve: Unassigned issues 4

How do T debug this problea?

sy [e
Send clarification
sendto
Rubber Duck Debuggers (t42)
Subject
0 Ducky Debugging
Message:
» How do debustis problem?

Read the problem statement carefully

Add canned answer.
No comment

nment
Read the problem statement carefully.

54

During the Contest

Clarification 3 13,

From: R

Subject: D: Ducky Debugging &

To: Jury Queue: Unassigned issues

How do T debug this problea?

ey [e

Send clarification
Send to:
ALL .

Subject
D: Ducky Debugging .
Message:
>How do | debug this problem?
Step 1: Talk to the duck
Step 2: Wait for the duck to reply

Step3:772
Step 4: Profitt

m Add canned answer. .

54

After the Contest

- Generate solve stats

+ Present solutions

And, next year...

« Do it all over again!

Conclusion

Next session is on Thursday the 21st of September.
Guest Speaker: Jeroen op de Beek and Leon van der Waal from Segment goes
BRRRR about geometry problems.

https://domjudge.ewi.tudelft.nl/

56

https://domjudge.ewi.tudelft.nl/

	Team Reference Document
	Solutions to the sorting and search problems
	Solving interactive problems
	Solving Dynamic Programming Problems
	Guest Speaker: Maarten Sijm
	Conclusion

