
DAPC 2023 Training Sessions
Session 1

Verwoerd
September 9, 2023

Introduction

Welcome

• Welcome to the DAPC 2023 Training Sessions
• 4 sessions
• We will discuss all last years problems of the DAPC and BAPC
• Every session some problems we solve together
• Other problems you can solve in between sessions and only the solutions
will be presented

• Every session starts with some practical information
• Maybe guest speakers?

1

Who am I

• Alumnus, working in the Software Industry
• Involved in organizing programming contests since 2003 as volunteer
• “Coach” for TU Delft teams since NWERC 2003
• Twice coach on the World Finals

This work is licensed under a Creative Commons
“Attribution-ShareAlike 4.0 International” license.

2

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Session 1 (Today)

• Introduction to Programming Contests
• Reading a problem
• Introduction to DOMJudge
• Some tips on estimate the problem complexity
• Solving an ad-hoc Math problem
• Meet and Greet to look for team or team-members

3

Session 2

• Team Tactics
• Utilizing the Test Session
• How to select problems
• Dealing with wrong submissions
• Solutions to the Ad-hoc and Math Problems
• Solving Sorting and Search Problems

4

Session 3

• Creating a Team Reference Document
• Solutions to Sorting and Search Problems
• Solving Interactive Problems and Randomized Input Problems

5

Session 4

• Role of the coach on big contests
• Tips, tricks and common mistakes
• Solutions to the Interactive Problems and Randomized Input Problems
• Solving the Hardest Problems

6

Introduction to Programming
Contests

What is a programming contest?

• Team of 3 people
• Single computer
• Solve as many problems from the problem set (8 to 15 problems)
• In 5 hours
• In any order

• Solve it efficiently
• do it as quickly as possible (under pressure)
• and do it correctly (without bugs)

• With limited documentation and no internet

7

What is a programming contest?

• Team of 3 people
• Single computer
• Solve as many problems from the problem set (8 to 15 problems)
• In 5 hours
• In any order

• Solve it efficiently
• do it as quickly as possible (under pressure)
• and do it correctly (without bugs)

• With limited documentation and no internet

7

What is a programming contest?

• Team of 3 people
• Single computer
• Solve as many problems from the problem set (8 to 15 problems)
• In 5 hours
• In any order

• Solve it efficiently
• do it as quickly as possible (under pressure)
• and do it correctly (without bugs)

• With limited documentation and no internet

7

How is score calculated?

• Sorted by number of problems solved

• Sorted by the total time for solved problems

• Time in minutes since the start of the contest
• Penalty for each wrong attempt on a solved solution of 20 minutes

• Penalty time is counts only if the problem is solved afterward.
• Penalty time does not reduce your contest time.
• Penalty time is not added after wrong attempts after the problem is solved.
• No penalty for compiler errors.

8

How is score calculated?

• Sorted by number of problems solved
• Sorted by the total time for solved problems

• Time in minutes since the start of the contest
• Penalty for each wrong attempt on a solved solution of 20 minutes

• Penalty time is counts only if the problem is solved afterward.
• Penalty time does not reduce your contest time.
• Penalty time is not added after wrong attempts after the problem is solved.
• No penalty for compiler errors.

8

How is score calculated?

• Sorted by number of problems solved
• Sorted by the total time for solved problems

• Time in minutes since the start of the contest
• Penalty for each wrong attempt on a solved solution of 20 minutes

• Penalty time is counts only if the problem is solved afterward.
• Penalty time does not reduce your contest time.
• Penalty time is not added after wrong attempts after the problem is solved.
• No penalty for compiler errors.

8

How is score calculated?

• Sorted by number of problems solved
• Sorted by the total time for solved problems

• Time in minutes since the start of the contest
• Penalty for each wrong attempt on a solved solution of 20 minutes

• Penalty time is counts only if the problem is solved afterward.
• Penalty time does not reduce your contest time.
• Penalty time is not added after wrong attempts after the problem is solved.
• No penalty for compiler errors.

8

Example Scoreboard

9

Road to the world finals

The DAPC is an official preliminary of the ICPC.
International Collegiate Programming Contest World Finals

NWERC

BAPC

DAPC

~5 best teams

AAPP EAPC TAPC . . .

~3 best teams per university

GCPC NCPC UKIEPC

~3 best teams

NAC SWERC . . .

10

Reading a problem

Problem structure

A typical problem has the following structure

• Problem description
• Input description
• Output description
• Example input/output
• A time limit in seconds

You are asked to write a program that solves the problem for all valid inputs
within the time limit.

11

Example problem

Problem description
Write a program that multiplies pairs of integers.

Input description
The input consists of:

• One line with an integer t (1 ≤ t ≤ 100), the number of test cases.
• t lines, each with two integers a and b (|a|, |b| ≤ 106), the numbers to
multiply.

Output description
For each test case, output the value of a× b.

12

Example problem

Sample input Sample output

4
3 4
13 0
1 8
100 100

12
0
8
10000

13

Solution in C++

1 #include <iostream>
2 using namespace std;
3

4 int main() {
5 int t;
6 cin >> t;
7 for (int i = 0; i < t; i++) {
8 int a, b;
9 cin >> a >> b;

10 cout << a * b << endl;
11 }
12 return 0;
13 }

14

Solution in Java

1 import java.io.*;
2

3 class Problem {
4 public static void main(String[] args) throws IOException {
5 var input = new BufferedReader(new InputStreamReader(System.in));
6 var cases = Integer.parseInt(input.readLine());
7 for (int i = 0; i < cases; i++) {
8 var line = input.readLine().split(" ");
9 System.out.println(

10 Integer.parseInt(line[0]) * Integer.parseInt(line[1])
11);
12 }
13 }
14 }

15

Solution in Kotlin and Python

1 fun main() {
2 val t = readln().toInt();
3 System.`in`.bufferedReader().lineSequence().take(t).forEach { line ->
4 println(line.split(" ").map { it.toInt() }.let { (a, b) -> a * b })
5 }
6 }

1 t = int(input())
2 for t in range(t):
3 numbers = list(map(int, input().split()))
4 print(numbers[0] * numbers[1])

16

Introduction to DOMJudge

Submitting the Solution

• During the contest you submit to a contest control system
• Usually DOMJudge, but sometimes Kattis or PC^2

• Submit solutions
• Ask questions about the problems or programming environment
• Read clarifications from the jury

17

Domjudge Interface - home

18

Domjudge Interface - problems

19

Domjudge Interface - submit

20

Are the solutions correct?

21

We made a whoopsy?

22

Or not

23

Lets ask the jury

24

Lets hope they respond fast

25

We have a response

26

The jury is not helping us

27

Why did the 3 solutions fail?

• Lets check the input again: |a|, |b| ≤ 106

• Worst case scenario: a = 106 and b = 106 giving a× b = 1012

• Does 1012 fit in a 32-bit int?
• log2 1012 ≈ 40, so NO, 40 bits don’t fit in an int
• Use long (long) when possible, except in Python

28

Why did the 3 solutions fail?

• Lets check the input again: |a|, |b| ≤ 106

• Worst case scenario: a = 106 and b = 106 giving a× b = 1012

• Does 1012 fit in a 32-bit int?
• log2 1012 ≈ 40, so NO, 40 bits don’t fit in an int
• Use long (long) when possible, except in Python

28

Why did the 3 solutions fail?

• Lets check the input again: |a|, |b| ≤ 106

• Worst case scenario: a = 106 and b = 106 giving a× b = 1012

• Does 1012 fit in a 32-bit int?

• log2 1012 ≈ 40, so NO, 40 bits don’t fit in an int
• Use long (long) when possible, except in Python

28

Why did the 3 solutions fail?

• Lets check the input again: |a|, |b| ≤ 106

• Worst case scenario: a = 106 and b = 106 giving a× b = 1012

• Does 1012 fit in a 32-bit int?
• log2 1012 ≈ 40, so NO, 40 bits don’t fit in an int

• Use long (long) when possible, except in Python

28

Why did the 3 solutions fail?

• Lets check the input again: |a|, |b| ≤ 106

• Worst case scenario: a = 106 and b = 106 giving a× b = 1012

• Does 1012 fit in a 32-bit int?
• log2 1012 ≈ 40, so NO, 40 bits don’t fit in an int
• Use long (long) when possible, except in Python

28

Solution in C++

1 #include <iostream>
2 using namespace std;
3

4 int main() {
5 int t;
6 cin >> t;
7 for (int i = 0; i < t; i++) {
8 long long a, b;
9 cin >> a >> b;

10 cout << a * b << endl;
11 }
12 return 0;
13 }

29

Solution in Java

1 import java.io.*;
2

3 class ProblemCorrect {
4 public static void main(String[] args) throws IOException {
5 var input = new BufferedReader(new InputStreamReader(System.in));
6 var cases = Integer.parseInt(input.readLine());
7 for (int i = 0; i < cases; i++) {
8 var line = input.readLine().split(" ");
9 System.out.println(

10 Long.parseLong(line[0]) * Long.parseLong(line[1])
11);
12 }
13 }
14 }

30

Solution in Kotlin

1 fun main() {
2 val t = readln().toInt();
3 System.`in`.bufferedReader().lineSequence().take(t).forEach { line ->
4 println(line.split(" ").map { it.toLong() }.let { (a, b) -> a * b })
5 }
6 }

31

All solutions correct

32

Estimating problem complexity

About time limit

• The time limit specifies the time you program may run
• This includes JVM-startup and I/O
• High time limit signify

• lots of I/O
• Slower algorithms can be accepted

• Low limit signifies fast algorithms, usually the use of formulas
• You can use the time limit to check your code on your local machine
$ time myjava ProblemA < worst-case.in

33

About input size1

Based on the input size you can an idea of the time complexity.

O(n!) n ≤ 10 O(n log 2n) n ≤ 105

O(2n) n ≤ 20 O(n log n) n ≤ 106

O(n3) n ≤ 500 O(n) n ≤ 108

O(n2 log n) n ≤ 1000 O(
√
n) n ≤ 1015

O(n2) n ≤ 5000 O(log n) n ≤ 1018

O(n
√
n) n ≤ 105

Warning: This is not guaranteed to be always the case!

1https://gcpc.nwerc.eu/primer.pdf

34

Solving an ad-hoc math problem

An other problem

• Source BAPC Preliminaries 2022
• Problem name: Fastestest Function
• Time limit: 1s

Original problem written by the BAPC 2022 jury and licensed under Creative
Commons Attribution-ShareAlike 4.0 International.

35

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Problem: Fastestest Function

You are working as a software developer for the Bug Acquisition Programming
Company. They developed a specific piece of software called Program C that
they sell to their clients. For the past weeks, you have been working on
optimising a specific function foo in the main code path in Program C. You have
made it a lot faster and would like to show off to your boss about it.

Your IDE has a nice tool that allows you to profile your code and tell you what
percentage of the total running time foo takes. You can run this on the version
before your change and after your change. However, you think it looks a lot
cooler if you can just tell your boss how much faster you have made foo itself.

36

Problem: Fastestest Function: Input and Output

Input

The input consists of:

• One line with two integers x and y (0 < x, y < 100), where x is the
percentage of the total running time that foo took before optimising and y
the percentage of the total running time it took after optimising.

Output

Output the factor of how much faster foo got after your optimization.

Your answer should have an absolute or relative error of at most 10−6.

37

Problem: Fastestest Function: Samples

Sample Input 1 Sample Output 1
75 50 3.0

So foo first took 75% of the total running time, after optimization only 50% of
the running time. foo is now 3× faster than before.

Sample Input 2 Sample Output 2
50 75 0.3333333333333333

Sample Input 3 Sample Output 3
50 50 1.0

38

Problem: Fastestest Function: Observations

• We receive the result of the following equations:
x = ax

b+ax and y =
ay

b+ay
where ax is the time spent on foo for x and b is the remaining runtime of
the program.

• The factor we are looking for is calculated by ax
ay .

• Rewrite the two equations to ax and bx:
x = ax

b+ax ≡ bx + axx = ax ≡ bx = ax − axx ≡ bx = ax(1− x) ≡ ax = bx
1−x

Resulting in ax = bx
1−x and ay =

by
1−y .

• filling the factor formula:
ax
ay = axa−1y = bx

1−x ·
1−y
by = bx(1−y)

(1−x)by ≡ x(1−y)
y(1−x) .

• Calculate the factor by the formula, resulting in O(1) solution.

39

Solution in C++

1 #include <iostream>
2 using namespace std;
3

4 signed main() {
5 long double x, y;
6 cout << setprecision(20);
7 cin >> x >> y;
8 cout << (1/(1-x/100)-1)/(1/(1-y/100)-1) << endl;
9 return 0;

10 }

40

Solution in Java

1 import java.util.*;
2 import java.io.*;
3

4 public class DAPCF {
5 public static void main(String[] args) throws IOException {
6 Scanner scanner = new Scanner(System.in);
7 int x = scanner.nextInt();
8 int y = scanner.nextInt();
9 double ans = x / (((1.0 * (100 - x) / (100 - y)) * 100.0) - (100 - x));

10 System.out.println(ans);
11 }
12 }

41

Solution in Kotlin and Python

1 fun main() {
2 val (x, y) = readln().split(" ").take(2).map { it.toDouble() / 100.0 }
3 println((x * (1 - y)) / (y * (1 - x)))
4 }

1 import sys
2

3 x, y = [int(x) / 100 for x in sys.stdin.readline().split()]
4 print((x * (1 - y)) / (y * (1 - x)))

42

Practising between sessions

• All problems from DAPC 2022 and BAPC 2022 are available at
https://domjudge.ewi.tudelft.nl/, self-register a team.

• Next three sessions have their own contest
• All sessions contain similar-themed problems

Session 2 Ad-hoc and Math solutions
Session 3 Sort and Search
Session 4 Interactive Problems, Dynamic programming, Divide and Conquer

43

https://domjudge.ewi.tudelft.nl/

Meet and Greet

Looking for team?

If you are looking for a team, please raise your hand. If you want, you can give an
introduction in the front, like experience and programming languages known.
Please don’t forget to register at wisv.ch/dapc.

Next session is on <Insert date and location>.

https://domjudge.ewi.tudelft.nl/

44

https://domjudge.ewi.tudelft.nl/

	Introduction
	Introduction to Programming Contests
	Reading a problem
	Introduction to DOMJudge
	Estimating problem complexity
	Solving an ad-hoc math problem
	Meet and Greet

