Freshmen Programming Contests 2025

Solutions presentation

By the Freshmen Programming Contests 2025 jury for:

AAPJE in Amsterdam
FPC in Delft

FYPC in Eindhoven
GAPC in Groningen

Contest in Mons

May 3, 2025

Please do not post the problems online

Other universities will have their contests in the coming weeks.
Please, do not post/discuss the problems online before

Saturday 17 May 2025 at 17:00

G: Gambler’s Dilemma

Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.
Solution: For each property, check whether the cards match it.
Pitfall: Be careful of off-by-one errors when calculating the rank of a card.

Running time: O(1).

Statistics: 82 submissions, 42 accepted, 7 unknown

B: Bakfiets

Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.

Observation 1: The bottle packaging can be in two possible orientations.

Observation 2: You can have at most 10'® bottles, hence we need 64-bit integers.

Solution: Compute w - h — max(min (w, a) - min (h, b), min (w, b) - min (h, a)). Compute

w - h — max(min (w, a) - min (h, b), min (w, b) - min (h, a)). Compute

w - h — max(min (w, a) - min (h, b), min (w, b) - min (h, a)). Compute

w - h — max(min (w, a) - min (h, b), min (w, b) - min (h, a)).

Running time: O(1).

L J

L J

o ®

Statistics: 90 submissions, 39 accepted, 13 unknown

J: Jumbled Keys

Problem author: Arnoud van der Leer

Problem:

Solution:

Edge case:

Running time:

Decipher a message, using a series of mapped words.

Use a map! Process every pair of words, and map every letter in the first word to the
letter it corresponds to in the second word.

If 25 letters are mapped, the 26th letter maps to the only letter that has no other
letter mapped to it.

O(n - £), where £ is the average length of the words.

Statistics: 86 submissions, 33 accepted, 17 unknown

H: Hopelessly Hungover l“ S 1

Problem author: Wietze Koops

Problem: Each weekday you can learn k facts, each day in the weekend you forget m facts.
Given a starting day of the week, how many days do you need to wait before you know
all n facts?

Observation 1: The input limits are very small, all integers are up to a 1000.

Observation 2: In the worstcase in which we can eventually know n facts, the net effect of one week is
adding 1 fact. So after 7n+ O(1) days we can give up.

Solution: We can simulate the process for 7n + 14 days. Whenever the number of facts is n we
stop. After 7n+ 14 days we can be sure that we will never learn all n facts.

Fun fact: The actual maximum number of days you have to wait is 6976.
Running time: O(7n) (the 7 is to signify the dependence on the number of days in the week).

Pitfall: It is possible to solve this problem in O(1) by case-working on the ending day, and
using formulas involving ceil division. This solution is prone to mistakes.

Statistics: 97 submissions, 26 accepted, 36 unknown

A: Array Annihilation anm ol .I..L

Problem author: Leon van der Waal

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly
decrementing two or more consecutive values in the array.

Observation: Every value in the array needs to be decremented along with either of its neighbours.
So for each position i, it is necessary that a; > ai—1 + aj11.

Solution: If this inequality holds for each triplet of positions in the array: “possible”.
Else: “impossible”.

Pitfall: Be sure to handle the first and last value in the array: a; < ap and a,—1 > an.

Running time: O(n).

A: Array Annihilation

Problem author: Leon van der Waal

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly
decrementing two or more consecutive values in the array.
Solution: If a; > a;_1 + a;41 holds for each triplet of positions in the array: “possible”.
Else: “impossible”.
Proof: It's clear the condition is necessary. We need to show that it's sufficient.
= |It's sufficient to restrict use to length-2 and length-3 segments only.
= The total number of length-2, length-3 segments starting at 1 is a;.
= Those segments cover [1,2] or [1,2,3]. This means a; -=ay, as -=0, where

€ [0, 21].
= If the original a1, ..., a, satisfied condition, one can select d such that
a — a1, as — 0, as,...,a, satisfies the condition.

= Using induction, the condition is sufficient.

Statistics: 66 submissions, 18 accepted, 22 unknown

D: Delicious Trees

Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.

Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest
of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.

Observation 3: Assuming we can split the big tree into n trees of size 1,
the answer is only “impossible"” when k > n.

Solution: First calculate the depth of each vertex in the tree using BFS/DFS,
then remove vertices one-by-one from largest to smallest depth.

Red herring: The first sample cuts off larger AVL trees on purpose.
Running time: Dominated by sorting by depth: O(nlog n).

Statistics: 39 submissions, 10 accepted, 17 unknown

E: Equation Extrapolation

Problem author: Jeroen Op de Beek

Problem:

Observation:

Solution:

Running time:

Fun fact:

Recover the coefficients of a hidden polynomial P(x) using at most 9 queries.

Since each coefficient a; satisfies 0 < a; < 9, querying at any x > 9 returns all
coefficients directly in base-x.

Query with x = 10, then extract the coefficients by reading the returned number's

digits in reverse.
O(d).
Can be solved in one very short line of Python!

print("!", *input("? 10\n")[::-11)

Statistics: 25 submissions, 11 accepted, 8 unknown

F: Frog and Princess Il
Problem author: Wietze Koops IL u [| I w

Problem: Given positions of frog and princess, find out if the frog can jump to the princess
within n jumps. The ith jump should jump a distance of a;.

Observation 1: Only Euclidean distance matters: d(f,p) = \/(xp —xr)2+ (yp — yr)?

Observation 2: If there exists a valid path, then the lengths d(f, p), a1, a, ..., ax can form the sides of
a polygon, for some k.

Observation 3: Arbitrary integers by, by, ..., by can form a polygon iff
2-max (b1, by, ..., bx) < b+ by + -+ by

Solution: Calculate prefix maximums and prefix sums of array a;. For each prefix of length k from
1 to n, check the polygon condition and output “yes” if any of the checks succeed.

F: Frog and Princess

Problem author: Wietze Koops

Problem: Given positions of frog and princess, find out if the frog can jump to the princess
within n jumps. The ith jump should jump a distance of a;.

Solution: Calculate prefix maximums and prefix sums of array a;. For each prefix of length k from
1 to n, check the polygon condition and output “yes” if any of the checks succeed.

Pitfall: The square root for calculation of d(f, p) results in a floating point number. Using
standard double floating-point arithmetic this is not precise enough (input into the
function can go up to 10'® while doubles only have a relative precision of a2 107'°).

Fixes: Use long double and sqrtl in C++, or BigDecimal.sqrt() in Java,
or rewrite the polygon formula to use d(f, p)?, which fits in a 64-bit integer:

d(f,p) < x < x>0 A d(f,p)* < x°

Running time: Everything can be done in linear time O(n).

Statistics: 86 submissions, 5 accepted, 66 unknown

I: Interesting Mountains ma Il 1

Problem author: Mihail Bankov

Problem: Calculate the number of “interesting formations”.
Observation 1: This is similar to counting inversions.
An inversion is a pair i < j such that h; > h;.

Let's first learn how to count inversions.

ting Mountains men |l 1

Problem authol hail Bankov

Q: How to count inversions?

A: We go from i = nto i = 1 in decreasing order.
We maintain a datastructure that supports range queries.
For i, answer increases by the number of values lower than h; in the datastructure.
After doing this, insert h; into the datastructure.

O

Using Fenwick tree or segment tree, O(log(n)) per query / update.

I: Interesting Mountains

Problem author: Mihail Bankov

Problem:

Solution:

However:

Calculate the number of “interesting formations.
Let's loop over i, the first / highest mountain.
Suppose there are k lower mountains in our datastructure.

We add number of pairs (@) to the answer.

This way, we don't distinguish between h; > hx > h; and h; > h; > hy:

I: Interesting Mountains ma Il 1

Problem author: Mihail Bankov

However: This way, we don't distinguish between h; > hx > h; and h; > h; > hy:

Solution: Therefore, we subtract the number of formations where h; > h; > hy from the answer.
We can count these by iterating over j:
We then count higher mountains to the left, and lower mountains to the right.
Then multiply and add up these counts.

Running time: We have O(n) calls to a Fenwick tree / segment tree, so O(nlog(n)) total.

Statistics: 22 submissions, 1 accepted, 14 unknown

K: Kite Construction

Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ¢), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas.

Solution: Let (a;,0), (4, bi), (ci,£) and (0, d;) be the coordinates of the corners of the ith
quadrilateral. Then we can compute the sum of the areas by considering how much is
cut off from the full £ x £ square:

Z (£2 — %a,-d,- — %(Z — a,-)b,- — %(5 — b,)(ﬁ — C,') — %C;(f — d,)) o
i=1
(0,0) (ci, 0) (.0

(€ 5:)

(£,0)

K: Kite Construction

Problem author: Jeroen Op de Beek

Problem:

Insight:

Proof:

Given are 4n points on the perimeter of a square (with sidelength ¢), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas

n

Z (62 — %a,'d,- — %(Z — a,-)b,- — %(5 — b,)(f — C,') — %C;(Z — d,)) o

i=1
over all possible ways to order the points on each side of the square.
Without loss of generality assume a1 < a2 < ... < ap.

First consider minimizing 27:1 %a,—d,- only. To do this, we should sort the d; in the
other order, i.e. such that di > db > ... > d,.

Suppose that i < j (and hence a; < g;), but d; < d;. T,

aid; + ajd; = aid; + ajd; + (ai —

so swapping d; and d; would lead to a smaller area cutfoff.
Hence, whenever i < j we have d; > d;.

K: Kite Construction

Problem author: Jeroen Op de Beek

Problem:

Insight:

Given are 4n points on the perimeter of a square (with sidelength ¢), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas

n

D (f - 3adi — §(€— a)bi — 3L - b)(¢—) — 3t — d)).

i=1

over all possible ways to order the points on each side of the square.
Without loss of generality assume a; < ... < ap.

To minimize area cut off at bottom left corner we should sort di > ... > d,.

Then ¢/ — di < ... < { —d,, so to minimize the area cut ©.0
off at the top left corner we should sort ¢; > ... > c,.

Then / — ¢c; < ... < { — ¢, so to minimize the area cut
off at the top right corner we should sort ¢ — by > ... > ¢ — by,
i.e. by <...< by.

(0,d;)

Then by < ... < bp,and £ —a; > ... > { — ap, so this
also mimimizes the area cut off at the bottom right corner. @O

K: Kite Construction

Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ¢), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas

n

Z (£2 — %a,'d,- — %(6 — a,')b,‘ — %(Z — b,)(ﬁ — C,') — %C,‘([— d,)) o

i=1
over all possible ways to order the points on each side of the square.
Without loss of generality assume a; < ... < ap.

Solution: Sort the given points such that a1 < ... < a,, b1 < ... < b,, a > ... > ¢y, and
di > ... > dn, and then compute the area with the above formula.

Running time: O(nlogn).

Statistics: 7 submissions, 0 accepted, 7 unknown

C: Characterithmetic

Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, find the minimum number of changes to make t = t' ® d for
some string t’.
Observation 1: n < 10°, so there can be at most 128 different divisors of n.

Naive solution: = Handle each divisor d separately.
= For each position in t’, pick the character that occurs most often.

abc B abcabcabcabc | abc B abcabcabcabc

abc A abcabcabcabc

abc A abcabcabcabc abcabcabcabc

T —
abc B abcabcabcabc

= Then count how many letters we must have changed.

C: Characterithmetic

Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, find the minimum number of changes to make t = t' ® d for

some string t’.
WA: But what if there is a larger divisor!?
Observation 2: Then our current solution t’ has a divisor d’ > 1.

Observation 3: We only need to change one character to make t’ indivisible.

C: Characterithmetic

Problem author: Jeroen Op de Beek

Problem:

Observation 3:

Correct solution:

Running time:

Homework:

For every divisor d of n, find the minimum number of changes to make t = t' © d for

some string t’.
We only need to change one character to make t’ indivisible.

= Check if t’ obtained from the naive solution is indivisible.
= |n this case, we are done.
= Otherwise, for each position in t’ check how much more it costs to modify this

letter.
= Greedily pick the modification that increases cost the least.

O(n - w(n)), where w(n) is the number of divisors of n.

O(nloglog(n)) is possible with some optimizations.

Statistics: 2 submissions, 0 accepted, 2 unknown

Language stats

56 mm correct
N wrong answer
H timelimit
run error

80 1 pending

60 -

40 -

20 1

0 T

C C++ Java Kotlin Python 3

Jury work
= 423 commits (last year: 447)
= 625 secret test cases (last year: 357)
= 160 accepted jury/proofreader solutions (last year: 120)

= The minimum! number of lines the jury needed to solve all problems is
2 L@ DL 242404340 =39

On average 3.5 lines per problem, down from 6.0 last year

! After codegolfing

Thanks to the proofreaders:

= Arnoud van der Leer (TU Delft)
= Dany Sluijk (TU Delft)

= Davina van Meer (Delft)

= Mattia Marziali (RU Groningen)

= Michael Ziindorf @
(KIT Karlsruhe / NWERC jury)

Pavel Kunyavskiy (JetBrains Amsterdam)
Pierre Vandenhove (UMons)

Thomas Verwoerd
(TU Delft, KKotlin Hero @)

Thore Husfeldt (ITU Copenhagen / BAPC Jury)
Wendy Yi (KIT Karlsruhe / NWERC jury)

Thanks to the Jury for the
Freshmen Programming Contests:

= Alice Sayutina (VU Amsterdam) = Liudas Staniulis (VU Amsterdam)

= Angel Karchev (TU Delft) = Maarten Sijm (TU Delft)

= Balint Kollmann (TU Delft) = Mihail Bankov (TU Delft)

= Jeroen Op de Beek (TU Delft) = Moham Balfakeih (TU Delft)

= Leon van der Waal (TU Delft) = Wietze Koops (Radboud Nijmegen / RU Groningen)

Nk | | AR U\VONS

W28258

GAPC 2025

Open online contest

Want to solve the problems you could not finish?
Or have friends that like to solve algorithmic problems?

https://fpcs2025.bapc.eu/

Saturday 17 May 2025 13:00-17:00

Please, do not post/discuss the problems online before this time!

Future contest fun

Excited to participate in the next contest?

Register for DAPC (20 September) at wisv.ch/dapc

Want to organize these contests?

Join the CHipCie: wisv.ch/chipcieinterest

Want to create programming problems for FPC next year?

Either join the CHipCie, or contact Maarten Sijm

wisv.ch/dapc
wisv.ch/chipcieinterest

