
Problem D: Delicious Trees 1

D Delicious Trees Time limit: 3s

The coatis climbing in their AVL
tree, deciding how to cut it.

CC BY-NC-ND 2.0 by Cloudtail
the Snow Leopard on Flickr

There is a Group of Adventurous, Playful Coatis living nearby a
magnificent fruit tree. It provides the band with delicious fruits
throughout the year. The coatis have maximized the tree’s potential
by keeping it in the shape of an AVL tree.1

The group has grown a lot over the years, and this single tree is
no longer enough to satisfy the hunger of the many coati kits. One
particularly smart coati, named Stefan, comes up with the idea to
apply the concept of parallellization to this tree: rather than having
one big tree, they should cut it into smaller trees, each of which can
then grow new fruit to feed the hungry band. Obviously, after the
big tree has been cut up, each of the smaller trees should be an AVL
tree. Find any way to cut the AVL tree into some predetermined
number of smaller AVL trees, or say this is impossible.

As an example, consider the first sample input, a fully balanced
binary tree with height 3. Cutting the edges to the parents of
vertices 2 and 3 produces three AVL trees: one tree containing only vertex 1, and two fully
balanced trees with height 2. Note that it is allowed that a tree is temporarily unbalanced in
between the first and the last cut.

Input

The input consists of:

• One line with two integers n and k (2 ≤ n, k ≤ 105), the number of vertices in the big
AVL tree and the number of smaller trees they want to end up with.

• n lines, the ith of which contains two integers l and r (0 ≤ l, r ≤ n), the indices of the
left and right child of the ith vertex, or 0 if that child is absent.

It is guaranteed that the input is a valid AVL tree rooted at vertex 1.

Output

If it is impossible to end up with k smaller AVL trees, output “impossible”.
Else, output k − 1 numbers between 2 and n (inclusive), indicating that the edges to the
parents of these k − 1 vertices should be cut, to get k AVL trees.

If there are multiple valid solutions, you may output any one of them.
1An AVL tree is a binary tree with the constraint that at each vertex, the difference between the two depths

of its children’s (possibly absent) subtrees is at most 1. Note that the depth of an absent subtree is equal to 0.

https://www.flickr.com/photos/57256462@N07/25924802465


2 Problem D: Delicious Trees

Sample Input 1 Sample Output 1
7 3
2 3
5 4
6 7
0 0
0 0
0 0
0 0

2 3

Sample Input 2 Sample Output 2
3 42
2 3
0 0
0 0

impossible


	Delicious Trees

