Freshmen Programming Contests 2025

Solutions presentation

By the Freshmen Programming Contests 2025 jury for:

- AAPJE in Amsterdam
- FPC in Delft
- FYPC in Eindhoven
- GAPC in Groningen
- Contest in Mons

May 3, 2025

Other universities will have their contests in the coming weeks.

Please, do not post/discuss the problems online before

Saturday 17 May 2025 at 17:00

Problem: Determine whether two playing cards have any of the four given properties.

Problem: Determine whether two playing cards have any of the four given properties. **Solution:** For each property, check whether the cards match it.

Problem: Determine whether two playing cards have any of the four given properties.

Solution: For each property, check whether the cards match it.

Pitfall: Be careful of off-by-one errors when calculating the rank of a card.

Problem: Determine whether two playing cards have any of the four given properties.

Solution: For each property, check whether the cards match it.

Pitfall: Be careful of off-by-one errors when calculating the rank of a card.

Running time: $\mathcal{O}(1)$.

Problem: Determine whether two playing cards have any of the four given properties.

Solution: For each property, check whether the cards match it.

Pitfall: Be careful of off-by-one errors when calculating the rank of a card. **Running time:** O(1).

Statistics: 82 submissions, 42 accepted, 7 unknown

Observation 1: The bottle packaging can be in two possible orientations.

Observation 1: The bottle packaging can be in two possible orientations.

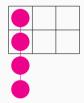
Observation 2: You can have at most 10¹⁸ bottles, hence we need 64-bit integers.

Observation 1: The bottle packaging can be in two possible orientations.

Observation 2: You can have at most 10¹⁸ bottles, hence we need 64-bit integers.

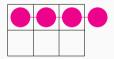
Observation 1: The bottle packaging can be in two possible orientations.

Observation 2: You can have at most 10¹⁸ bottles, hence we need 64-bit integers.



Observation 1: The bottle packaging can be in two possible orientations.

Observation 2: You can have at most 10¹⁸ bottles, hence we need 64-bit integers.



Observation 1: The bottle packaging can be in two possible orientations.

Observation 2: You can have at most 10¹⁸ bottles, hence we need 64-bit integers.

Observation 1: The bottle packaging can be in two possible orientations.

Observation 2: You can have at most 10¹⁸ bottles, hence we need 64-bit integers.

Solution: Compute $w \cdot h - \max(\min(w, a) \cdot \min(h, b), \min(w, b) \cdot \min(h, a))$. **Running time:** $\mathcal{O}(1)$.

Observation 1: The bottle packaging can be in two possible orientations.

Observation 2: You can have at most 10¹⁸ bottles, hence we need 64-bit integers.

Solution: Compute $w \cdot h - \max(\min(w, a) \cdot \min(h, b), \min(w, b) \cdot \min(h, a))$. **Running time:** $\mathcal{O}(1)$.

Statistics: 90 submissions, 39 accepted, 13 unknown

Solution: Use a map! Process every pair of words, and map every letter in the first word to the letter it corresponds to in the second word.

- **Solution:** Use a map! Process every pair of words, and map every letter in the first word to the letter it corresponds to in the second word.
- Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other letter mapped to it.

- **Solution:** Use a map! Process every pair of words, and map every letter in the first word to the letter it corresponds to in the second word.
- Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other letter mapped to it.

Running time: $\mathcal{O}(n \cdot \ell)$, where ℓ is the average length of the words.

- **Solution:** Use a map! Process every pair of words, and map every letter in the first word to the letter it corresponds to in the second word.
- Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other letter mapped to it.

Running time: $\mathcal{O}(n \cdot \ell)$, where ℓ is the average length of the words.

Statistics: 86 submissions, 33 accepted, 17 unknown

Problem: Each weekday you can learn *k* facts, each day in the weekend you forget *m* facts. Given a starting day of the week, how many days do you need to wait before you know all *n* facts?

. .

المرجعة والشريع

Problem: Each weekday you can learn *k* facts, each day in the weekend you forget *m* facts. Given a starting day of the week, how many days do you need to wait before you know all *n* facts?

. .

المراجع والمطالبة المراجع

Observation 1: The input limits are very small, all integers are up to a 1000.

Problem: Each weekday you can learn *k* facts, each day in the weekend you forget *m* facts. Given a starting day of the week, how many days do you need to wait before you know all *n* facts?

المحر ومحمد والمحاد والمح

Observation 1: The input limits are very small, all integers are up to a 1000.

Observation 2: In the worstcase in which we can eventually know *n* facts, the net effect of one week is adding 1 fact. So after 7n + O(1) days we can give up.

Problem: Each weekday you can learn *k* facts, each day in the weekend you forget *m* facts. Given a starting day of the week, how many days do you need to wait before you know all *n* facts?

المراجع ومعطونا المربي

Observation 1: The input limits are very small, all integers are up to a 1000.

- **Observation 2:** In the worstcase in which we can eventually know *n* facts, the net effect of one week is adding 1 fact. So after 7n + O(1) days we can give up.
 - **Solution:** We can simulate the process for 7n + 14 days. Whenever the number of facts is *n* we stop. After 7n + 14 days we can be sure that we will never learn all *n* facts.

Problem: Each weekday you can learn *k* facts, each day in the weekend you forget *m* facts. Given a starting day of the week, how many days do you need to wait before you know all *n* facts?

- **Observation 1:** The input limits are very small, all integers are up to a 1000.
- **Observation 2:** In the worstcase in which we can eventually know *n* facts, the net effect of one week is adding 1 fact. So after 7n + O(1) days we can give up.
 - **Solution:** We can simulate the process for 7n + 14 days. Whenever the number of facts is *n* we stop. After 7n + 14 days we can be sure that we will never learn all *n* facts.
 - Fun fact: The actual maximum number of days you have to wait is 6976.

Problem: Each weekday you can learn *k* facts, each day in the weekend you forget *m* facts. Given a starting day of the week, how many days do you need to wait before you know all *n* facts?

المراجع والمتعادية المتعادية

Observation 1: The input limits are very small, all integers are up to a 1000.

- **Observation 2:** In the worstcase in which we can eventually know *n* facts, the net effect of one week is adding 1 fact. So after 7n + O(1) days we can give up.
 - **Solution:** We can simulate the process for 7n + 14 days. Whenever the number of facts is *n* we stop. After 7n + 14 days we can be sure that we will never learn all *n* facts.

Fun fact: The actual maximum number of days you have to wait is 6976.

Running time: O(7n) (the 7 is to signify the dependence on the number of days in the week).

Problem: Each weekday you can learn *k* facts, each day in the weekend you forget *m* facts. Given a starting day of the week, how many days do you need to wait before you know all *n* facts?

and the first state of the second state of the

Observation 1: The input limits are very small, all integers are up to a 1000.

- **Observation 2:** In the worstcase in which we can eventually know *n* facts, the net effect of one week is adding 1 fact. So after 7n + O(1) days we can give up.
 - **Solution:** We can simulate the process for 7n + 14 days. Whenever the number of facts is *n* we stop. After 7n + 14 days we can be sure that we will never learn all *n* facts.

Fun fact: The actual maximum number of days you have to wait is 6976.

Running time: O(7n) (the 7 is to signify the dependence on the number of days in the week).

Pitfall: It is possible to solve this problem in O(1) by case-working on the ending day, and using formulas involving ceil division. This solution is prone to mistakes.

Problem: Each weekday you can learn *k* facts, each day in the weekend you forget *m* facts. Given a starting day of the week, how many days do you need to wait before you know all *n* facts?

and the Bessie and

Observation 1: The input limits are very small, all integers are up to a 1000.

- **Observation 2:** In the worstcase in which we can eventually know *n* facts, the net effect of one week is adding 1 fact. So after 7n + O(1) days we can give up.
 - **Solution:** We can simulate the process for 7n + 14 days. Whenever the number of facts is *n* we stop. After 7n + 14 days we can be sure that we will never learn all *n* facts.

Fun fact: The actual maximum number of days you have to wait is 6976.

Running time: O(7n) (the 7 is to signify the dependence on the number of days in the week).

Pitfall: It is possible to solve this problem in O(1) by case-working on the ending day, and using formulas involving ceil division. This solution is prone to mistakes.

Statistics: 97 submissions, 26 accepted, 36 unknown

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly decrementing two or more consecutive values in the array.

.b .b.b

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly decrementing two or more consecutive values in the array.

Observation: Every value in the array needs to be decremented along with either of its neighbours. So for each position *i*, it is necessary that $a_i \ge a_{i-1} + a_{i+1}$.

.....

a area and about

A: Array Annihilation

Problem author: Leon van der Waal

- **Problem:** Given an array, is it possible to make all values equal to 0 when repeatedly decrementing two or more consecutive values in the array.
- **Observation:** Every value in the array needs to be decremented along with either of its neighbours. So for each position *i*, it is necessary that $a_i \ge a_{i-1} + a_{i+1}$.

a transmitted and

Solution: If this inequality holds for each triplet of positions in the array: "possible". Else: "impossible".

- **Problem:** Given an array, is it possible to make all values equal to 0 when repeatedly decrementing two or more consecutive values in the array.
- **Observation:** Every value in the array needs to be decremented along with either of its neighbours. So for each position *i*, it is necessary that $a_i \ge a_{i-1} + a_{i+1}$.

. ... mark shall

- **Solution:** If this inequality holds for each triplet of positions in the array: "possible". Else: "impossible".
 - **Pitfall:** Be sure to handle the first and last value in the array: $a_1 \leq a_2$ and $a_{n-1} \geq a_n$.

- **Problem:** Given an array, is it possible to make all values equal to 0 when repeatedly decrementing two or more consecutive values in the array.
- **Observation:** Every value in the array needs to be decremented along with either of its neighbours. So for each position *i*, it is necessary that $a_i \ge a_{i-1} + a_{i+1}$.

t the mark that

Solution: If this inequality holds for each triplet of positions in the array: "possible". Else: "impossible".

Pitfall: Be sure to handle the first and last value in the array: $a_1 \le a_2$ and $a_{n-1} \ge a_n$. **Running time:** $\mathcal{O}(n)$.

- **Problem:** Given an array, is it possible to make all values equal to 0 when repeatedly decrementing two or more consecutive values in the array.
- **Solution:** If $a_i \ge a_{i-1} + a_{i+1}$ holds for each triplet of positions in the array: "possible". Else: "impossible".

a an a mark alar

Proof: It's clear the condition is necessary. We need to show that it's sufficient.

- **Problem:** Given an array, is it possible to make all values equal to 0 when repeatedly decrementing two or more consecutive values in the array.
- **Solution:** If $a_i \ge a_{i-1} + a_{i+1}$ holds for each triplet of positions in the array: "possible". Else: "impossible".

Proof: It's clear the condition is necessary. We need to show that it's sufficient.

• It's sufficient to restrict use to length-2 and length-3 segments only.

a area and also

Problem author: Leon van der Waal

- **Problem:** Given an array, is it possible to make all values equal to 0 when repeatedly decrementing two or more consecutive values in the array.
- **Solution:** If $a_i \ge a_{i-1} + a_{i+1}$ holds for each triplet of positions in the array: "possible". Else: "impossible".

Proof: It's clear the condition is necessary. We need to show that it's sufficient.

• It's sufficient to restrict use to length-2 and length-3 segments only.

.**b** .b.B

• The total number of length-2, length-3 segments starting at 1 is *a*₁.

- **Problem:** Given an array, is it possible to make all values equal to 0 when repeatedly decrementing two or more consecutive values in the array.
- **Solution:** If $a_i \ge a_{i-1} + a_{i+1}$ holds for each triplet of positions in the array: "possible". Else: "impossible".

.....

Proof: It's clear the condition is necessary. We need to show that it's sufficient.

- It's sufficient to restrict use to length-2 and length-3 segments only.
- The total number of length-2, length-3 segments starting at 1 is a₁.
- Those segments cover [1,2] or [1,2,3]. This means $a_2 = a_1$, $a_3 = \delta$, where $\delta \in [0, a_1]$.

.b .b.B

- **Problem:** Given an array, is it possible to make all values equal to 0 when repeatedly decrementing two or more consecutive values in the array.
- **Solution:** If $a_i \ge a_{i-1} + a_{i+1}$ holds for each triplet of positions in the array: "possible". Else: "impossible".

Proof: It's clear the condition is necessary. We need to show that it's sufficient.

- It's sufficient to restrict use to length-2 and length-3 segments only.
- The total number of length-2, length-3 segments starting at 1 is a₁.
- Those segments cover [1,2] or [1,2,3]. This means $a_2 = a_1$, $a_3 = \delta$, where $\delta \in [0, a_1]$.

ւ ուս սուն մես‼

 If the original a₁,..., a_n satisfied condition, one can select δ such that a₂ − a₁, a₃ − δ, a₄,..., a_n satisfies the condition.

- **Problem:** Given an array, is it possible to make all values equal to 0 when repeatedly decrementing two or more consecutive values in the array.
- **Solution:** If $a_i \ge a_{i-1} + a_{i+1}$ holds for each triplet of positions in the array: "possible". Else: "impossible".

Proof: It's clear the condition is necessary. We need to show that it's sufficient.

- It's sufficient to restrict use to length-2 and length-3 segments only.
- The total number of length-2, length-3 segments starting at 1 is a₁.
- Those segments cover [1,2] or [1,2,3]. This means $a_2 = a_1$, $a_3 = \delta$, where $\delta \in [0, a_1]$.

ւ ուս սուն մես‼

- If the original a₁,..., a_n satisfied condition, one can select δ such that a₂ − a₁, a₃ − δ, a₄,..., a_n satisfies the condition.
- Using induction, the condition is sufficient.

Problem author: Leon van der Waal

- **Problem:** Given an array, is it possible to make all values equal to 0 when repeatedly decrementing two or more consecutive values in the array.
- **Solution:** If $a_i \ge a_{i-1} + a_{i+1}$ holds for each triplet of positions in the array: "possible". Else: "impossible".

Proof: It's clear the condition is necessary. We need to show that it's sufficient.

- It's sufficient to restrict use to length-2 and length-3 segments only.
- The total number of length-2, length-3 segments starting at 1 is a₁.
- Those segments cover [1,2] or [1,2,3]. This means $a_2 = a_1$, $a_3 = \delta$, where $\delta \in [0, a_1]$.

.

- If the original a_1, \ldots, a_n satisfied condition, one can select δ such that $a_2 a_1, a_3 \delta, a_4, \ldots, a_n$ satisfies the condition.
- Using induction, the condition is sufficient.

Statistics: 66 submissions, 18 accepted, 22 unknown

all of a second second second

it at an all the second

Observation 1: An AVL tree with only one vertex, is also an AVL tree.

and the second second

- Observation 1: An AVL tree with only one vertex, is also an AVL tree.
- **Observation 2:** Removing the deepest vertex from the tree can only decrease the depth of the largest of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.

- **Observation 1:** An AVL tree with only one vertex, is also an AVL tree.
- **Observation 2:** Removing the deepest vertex from the tree can only decrease the depth of the largest of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.

Observation 3: Assuming we can split the big tree into n trees of size 1, the answer is only "impossible" when k > n.

- Observation 1: An AVL tree with only one vertex, is also an AVL tree.
- **Observation 2:** Removing the deepest vertex from the tree can only decrease the depth of the largest of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
- **Observation 3:** Assuming we can split the big tree into n trees of size 1, the answer is only "impossible" when k > n.
 - **Solution:** First calculate the depth of each vertex in the tree using BFS/DFS, then remove vertices one-by-one from largest to smallest depth.

- Observation 1: An AVL tree with only one vertex, is also an AVL tree.
- **Observation 2:** Removing the deepest vertex from the tree can only decrease the depth of the largest of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
- **Observation 3:** Assuming we can split the big tree into n trees of size 1, the answer is only "impossible" when k > n.
 - **Solution:** First calculate the depth of each vertex in the tree using BFS/DFS, then remove vertices one-by-one from largest to smallest depth.
 - Red herring: The first sample cuts off larger AVL trees on purpose.

a contra contrador e a

- Observation 1: An AVL tree with only one vertex, is also an AVL tree.
- **Observation 2:** Removing the deepest vertex from the tree can only decrease the depth of the largest of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
- **Observation 3:** Assuming we can split the big tree into n trees of size 1, the answer is only "impossible" when k > n.
 - **Solution:** First calculate the depth of each vertex in the tree using BFS/DFS, then remove vertices one-by-one from largest to smallest depth.
 - Red herring: The first sample cuts off larger AVL trees on purpose.

Running time: Dominated by sorting by depth: $O(n \log n)$.

and the second second

- Observation 1: An AVL tree with only one vertex, is also an AVL tree.
- **Observation 2:** Removing the deepest vertex from the tree can only decrease the depth of the largest of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
- **Observation 3:** Assuming we can split the big tree into n trees of size 1, the answer is only "impossible" when k > n.
 - **Solution:** First calculate the depth of each vertex in the tree using BFS/DFS, then remove vertices one-by-one from largest to smallest depth.
 - **Red herring:** The first sample cuts off larger AVL trees on purpose.

Running time: Dominated by sorting by depth: $O(n \log n)$.

Statistics: 39 submissions, 10 accepted, 17 unknown

Problem: Recover the coefficients of a hidden polynomial P(x) using at most 9 queries.

Problem: Recover the coefficients of a hidden polynomial P(x) using at most 9 queries. **Observation:** Since each coefficient a_i satisfies $0 \le a_i \le 9$, querying at any x > 9 returns all coefficients directly in base-x.

Problem: Recover the coefficients of a hidden polynomial P(x) using at most 9 queries.

- **Observation:** Since each coefficient a_i satisfies $0 \le a_i \le 9$, querying at any x > 9 returns all coefficients directly in base-x.
 - **Solution:** Query with x = 10, then extract the coefficients by reading the returned number's digits in reverse.

Problem: Recover the coefficients of a hidden polynomial P(x) using at most 9 queries.

- **Observation:** Since each coefficient a_i satisfies $0 \le a_i \le 9$, querying at any x > 9 returns all coefficients directly in base-x.
 - **Solution:** Query with x = 10, then extract the coefficients by reading the returned number's digits in reverse.

Running time: $\mathcal{O}(d)$.

Problem: Recover the coefficients of a hidden polynomial P(x) using at most 9 queries.

- **Observation:** Since each coefficient a_i satisfies $0 \le a_i \le 9$, querying at any x > 9 returns all coefficients directly in base-x.
 - **Solution:** Query with x = 10, then extract the coefficients by reading the returned number's digits in reverse.

Running time: $\mathcal{O}(d)$.

Fun fact: Can be solved in one very short line of Python!

```
print("!", *input("? 10\n")[::-1])
```

Problem: Recover the coefficients of a hidden polynomial P(x) using at most 9 queries.

- **Observation:** Since each coefficient a_i satisfies $0 \le a_i \le 9$, querying at any x > 9 returns all coefficients directly in base-x.
 - **Solution:** Query with x = 10, then extract the coefficients by reading the returned number's digits in reverse.

Running time: $\mathcal{O}(d)$.

Fun fact: Can be solved in one very short line of Python!

```
print("!", *input("? 10\n")[::-1])
```

Statistics: 25 submissions, 11 accepted, 8 unknown

. H

the second s

. 🖬

the second second

Observation 1: Only Euclidean distance matters: $d(f, p) = \sqrt{(x_p - x_f)^2 + (y_p - y_f)^2}$

Observation 1: Only Euclidean distance matters: $d(f, p) = \sqrt{(x_p - x_f)^2 + (y_p - y_f)^2}$

Observation 2: If there exists a valid path, then the lengths $d(f, p), a_1, a_2, \ldots, a_k$ can form the sides of a polygon, for some k.

Observation 1: Only Euclidean distance matters: $d(f, p) = \sqrt{(x_p - x_f)^2 + (y_p - y_f)^2}$

Observation 2: If there exists a valid path, then the lengths $d(f, p), a_1, a_2, \ldots, a_k$ can form the sides of a polygon, for some k.

Observation 3: Arbitrary integers b_1, b_2, \ldots, b_k can form a polygon iff

 $2 \cdot \max(b_1, b_2, \ldots, b_k) \leq b_1 + b_2 + \cdots + b_k$

Observation 1: Only Euclidean distance matters: $d(f, p) = \sqrt{(x_p - x_f)^2 + (y_p - y_f)^2}$

Observation 2: If there exists a valid path, then the lengths $d(f, p), a_1, a_2, \ldots, a_k$ can form the sides of a polygon, for some k.

Observation 3: Arbitrary integers b_1, b_2, \ldots, b_k can form a polygon iff

$$2 \cdot \max(b_1, b_2, \ldots, b_k) \le b_1 + b_2 + \cdots + b_k$$

11 Ib Ib-

Solution: Calculate prefix maximums and prefix sums of array a_i . For each prefix of length k from 1 to n, check the polygon condition and output "yes" if any of the checks succeed.

Solution: Calculate prefix maximums and prefix sums of array a_i . For each prefix of length k from 1 to n, check the polygon condition and output "yes" if any of the checks succeed.

الأحصار المراجع

- **Problem:** Given positions of frog and princess, find out if the frog can jump to the princess within n jumps. The *i*th jump should jump a distance of a_i .
- **Solution:** Calculate prefix maximums and prefix sums of array a_i . For each prefix of length k from 1 to n, check the polygon condition and output "yes" if any of the checks succeed.

and the second second

Pitfall: The square root for calculation of d(f, p) results in a floating point number. Using standard double floating-point arithmetic this is not precise enough (input into the function can go up to 10^{18} while doubles only have a relative precision of $\approx 10^{-16}$).

- **Problem:** Given positions of frog and princess, find out if the frog can jump to the princess within n jumps. The *i*th jump should jump a distance of a_i .
- **Solution:** Calculate prefix maximums and prefix sums of array a_i . For each prefix of length k from 1 to n, check the polygon condition and output "yes" if any of the checks succeed.
 - **Pitfall:** The square root for calculation of d(f, p) results in a floating point number. Using standard double floating-point arithmetic this is not precise enough (input into the function can go up to 10^{18} while doubles only have a relative precision of $\approx 10^{-16}$). Fixes: Use long double and sqrtl in C++, or BigDecimal.sqrt() in Java, or rewrite the polygon formula to use $d(f, p)^2$, which fits in a 64-bit integer:

$$d(f,p) \leq x \iff x \geq 0 \land d(f,p)^2 \leq x^2$$

I I I I I

- **Problem:** Given positions of frog and princess, find out if the frog can jump to the princess within n jumps. The *i*th jump should jump a distance of a_i .
- **Solution:** Calculate prefix maximums and prefix sums of array a_i . For each prefix of length k from 1 to n, check the polygon condition and output "yes" if any of the checks succeed.
 - **Pitfall:** The square root for calculation of d(f, p) results in a floating point number. Using standard double floating-point arithmetic this is not precise enough (input into the function can go up to 10^{18} while doubles only have a relative precision of $\approx 10^{-16}$). Fixes: Use long double and sartl in C++, or BigDecimal.sart() in Java.

or rewrite the polygon formula to use $d(f, p)^2$, which fits in a 64-bit integer:

$$d(f,p) \leq x \iff x \geq 0 \land d(f,p)^2 \leq x^2$$

I I I I

Running time: Everything can be done in linear time $\mathcal{O}(n)$.

- **Problem:** Given positions of frog and princess, find out if the frog can jump to the princess within n jumps. The *i*th jump should jump a distance of a_i .
- **Solution:** Calculate prefix maximums and prefix sums of array a_i . For each prefix of length k from 1 to n, check the polygon condition and output "yes" if any of the checks succeed.
 - **Pitfall:** The square root for calculation of d(f, p) results in a floating point number. Using standard double floating-point arithmetic this is not precise enough (input into the function can go up to 10^{18} while doubles only have a relative precision of $\approx 10^{-16}$).

Fixes: Use long double and sqrtl in C++, or BigDecimal.sqrt() in Java, or rewrite the polygon formula to use $d(f, p)^2$, which fits in a 64-bit integer:

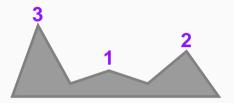
$$d(f,p) \leq x \iff x \geq 0 \land d(f,p)^2 \leq x^2$$

I I I I

Running time: Everything can be done in linear time $\mathcal{O}(n)$.

Statistics: 86 submissions, 5 accepted, 66 unknown

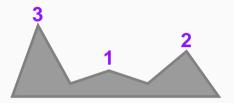
Problem author: Mihail Bankov



առՈւ տ

Problem: Calculate the number of "interesting formations".

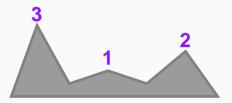
Problem author: Mihail Bankov



un all i di

Problem: Calculate the number of "interesting formations". **Observation 1:** This is similar to counting **inversions**.

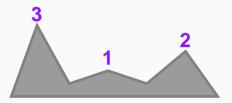
Problem author: Mihail Bankov



Problem: Calculate the number of "interesting formations". **Observation 1:** This is similar to counting **inversions**.

An **inversion** is a pair i < j such that $h_i > h_j$.

Problem author: Mihail Bankov



Problem: Calculate the number of "interesting formations".

Observation 1: This is similar to counting **inversions**.

An **inversion** is a pair i < j such that $h_i > h_j$.

Let's first learn how to count inversions.

Problem author: Mihail Bankov

Q: How to count inversions?

i malli di

Q: How to count inversions?

A: We go from i = n to i = 1 in decreasing order.

ان بالعس

Q: How to count inversions?

A: We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.

mulli di

- Q: How to count inversions?
- **A:** We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.

For *i*, answer increases by the number of values lower than h_i in the datastructure.

- **Q:** How to count **inversions**?
- **A:** We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.

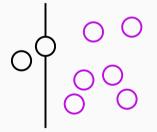
For *i*, answer increases by the number of values lower than h_i in the datastructure.

After doing this, insert h_i into the datastructure.

- Q: How to count inversions?
- **A:** We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.

For *i*, answer increases by the number of values lower than h_i in the datastructure. After doing this, insert h_i into the datastructure.

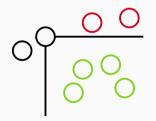


- Q: How to count inversions?
- **A:** We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.

For *i*, answer increases by the number of values lower than h_i in the datastructure. After doing this, insert h_i into the datastructure.

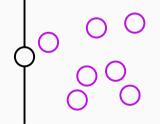
_____ 11__1



- Q: How to count inversions?
- **A:** We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.

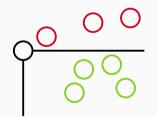
For *i*, answer increases by the number of values lower than h_i in the datastructure. After doing this, insert h_i into the datastructure.



- Q: How to count inversions?
- **A:** We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.

For *i*, answer increases by the number of values lower than h_i in the datastructure. After doing this, insert h_i into the datastructure.

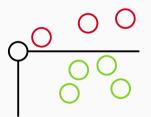


- Q: How to count inversions?
- **A:** We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.

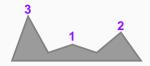
For *i*, answer increases by the number of values lower than h_i in the datastructure.

After doing this, insert h_i into the datastructure.



Using Fenwick tree or segment tree, $O(\log(n))$ per query / update.

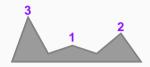
Problem author: Mihail Bankov



un all i di

Problem: Calculate the number of "interesting formations". **Solution:** Let's loop over *i*, the first / highest mountain.

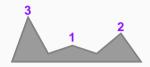
Problem author: Mihail Bankov



Problem: Calculate the number of "interesting formations".**Solution:** Let's loop over *i*, the first / highest mountain.

Suppose there are k lower mountains in our datastructure.

Problem author: Mihail Bankov

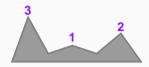


Problem: Calculate the number of "interesting formations".

Solution: Let's loop over *i*, the first / highest mountain.

Suppose there are k lower mountains in our datastructure. We add number of pairs $\left(\frac{k(k-1)}{2}\right)$ to the answer.

Problem author: Mihail Bankov



Problem: Calculate the number of "interesting formations".

Solution: Let's loop over *i*, the first / highest mountain.

Suppose there are k lower mountains in our datastructure.

We add number of pairs $\left(\frac{k(k-1)}{2}\right)$ to the answer.

However: This way, we don't distinguish between $h_i > h_k > h_j$ and $h_i > h_j > h_k$:

However: This way, we don't distinguish between $h_i > h_k > h_j$ and $h_i > h_j > h_k$:

ار بالعس

However: This way, we don't distinguish between $h_i > h_k > h_j$ and $h_i > h_j > h_k$:

Solution: Therefore, we subtract the number of formations where $h_i > h_j > h_k$ from the answer.

un II i di

However: This way, we don't distinguish between $h_i > h_k > h_j$ and $h_i > h_j > h_k$:

Solution: Therefore, we subtract the number of formations where $h_i > h_j > h_k$ from the answer. We can count these by iterating over *j*:

However: This way, we don't distinguish between $h_i > h_k > h_j$ and $h_i > h_j > h_k$:

Solution: Therefore, we subtract the number of formations where $h_i > h_j > h_k$ from the answer. We can count these by iterating over *j*:

We then count higher mountains to the left, and lower mountains to the right.

However: This way, we don't distinguish between $h_i > h_k > h_j$ and $h_i > h_j > h_k$:

Solution: Therefore, we subtract the number of formations where $h_i > h_j > h_k$ from the answer. We can count these by iterating over *j*:

We then count higher mountains to the left, and lower mountains to the right.

Then multiply and add up these counts.

However: This way, we don't distinguish between $h_i > h_k > h_j$ and $h_i > h_j > h_k$:

Solution: Therefore, we subtract the number of formations where $h_i > h_j > h_k$ from the answer. We can count these by iterating over *j*:

We then count higher mountains to the left, and lower mountains to the right.

Then multiply and add up these counts.

Running time: We have $\mathcal{O}(n)$ calls to a Fenwick tree / segment tree, so $\mathcal{O}(n \log(n))$ total.

However: This way, we don't distinguish between $h_i > h_k > h_j$ and $h_i > h_j > h_k$:

Solution: Therefore, we subtract the number of formations where $h_i > h_j > h_k$ from the answer. We can count these by iterating over *j*:

We then count higher mountains to the left, and lower mountains to the right.

Then multiply and add up these counts.

Running time: We have O(n) calls to a Fenwick tree / segment tree, so $O(n \log(n))$ total.

Statistics: 22 submissions, 1 accepted, 14 unknown

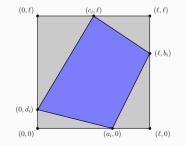
Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on each side. Divide these points into n quadrilaterals maximizing the sum of their areas.

K: Kite Construction

Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on each side. Divide these points into n quadrilaterals maximizing the sum of their areas. **Solution:** Let $(a_i, 0)$, (ℓ, b_i) , (c_i, ℓ) and $(0, d_i)$ be the coordinates of the corners of the *i*th quadrilateral. Then we can compute the sum of the areas by considering how much is cut off from the full $\ell \times \ell$ square:

$$\sum_{i=1}^n \left(\ell^2 - \frac{1}{2}a_id_i - \frac{1}{2}(\ell - a_i)b_i - \frac{1}{2}(\ell - b_i)(\ell - c_i) - \frac{1}{2}c_i(\ell - d_i)\right).$$



Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on each side. Divide these points into n quadrilaterals maximizing the sum of their areas

$$\sum_{i=1}^n \left(\ell^2 - \frac{1}{2} a_i d_i - \frac{1}{2} (\ell - a_i) b_i - \frac{1}{2} (\ell - b_i) (\ell - c_i) - \frac{1}{2} c_i (\ell - d_i) \right).$$

over all possible ways to order the points on each side of the square. Without loss of generality assume $a_1 < a_2 < \ldots < a_n$.

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on each side. Divide these points into n quadrilaterals maximizing the sum of their areas

$$\sum_{i=1}^n \left(\ell^2 - \frac{1}{2}a_id_i - \frac{1}{2}(\ell - a_i)b_i - \frac{1}{2}(\ell - b_i)(\ell - c_i) - \frac{1}{2}c_i(\ell - d_i)\right).$$

over all possible ways to order the points on each side of the square. Without loss of generality assume $a_1 < a_2 < \ldots < a_n$.

Insight: First consider minimizing $\sum_{i=1}^{n} \frac{1}{2} a_i d_i$ only. To do this, we should sort the d_i in the other order, i.e. such that $d_1 > d_2 > \ldots > d_n$.

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on each side. Divide these points into n quadrilaterals maximizing the sum of their areas

$$\sum_{i=1}^n \left(\ell^2 - \frac{1}{2}a_id_i - \frac{1}{2}(\ell - a_i)b_i - \frac{1}{2}(\ell - b_i)(\ell - c_i) - \frac{1}{2}c_i(\ell - d_i)\right).$$

over all possible ways to order the points on each side of the square. Without loss of generality assume $a_1 < a_2 < \ldots < a_n$.

Insight: First consider minimizing $\sum_{i=1}^{n} \frac{1}{2} a_i d_i$ only. To do this, we should sort the d_i in the other order, i.e. such that $d_1 > d_2 > \ldots > d_n$.

Proof: Suppose that i < j (and hence $a_i < a_j$), but $d_i < d_j$. Then

$$a_i d_j + a_j d_i = a_i d_i + a_j d_j + \underbrace{(a_i - a_j)}_{>0} \underbrace{(d_j - d_i)}_{<0},$$

so swapping d_i and d_j would lead to a smaller area cut off. Hence, whenever i < j we have $d_i > d_j$.

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on each side. Divide these points into n quadrilaterals maximizing the sum of their areas

$$\sum_{i=1}^n \left(\ell^2 - \frac{1}{2}a_id_i - \frac{1}{2}(\ell - a_i)b_i - \frac{1}{2}(\ell - b_i)(\ell - c_i) - \frac{1}{2}c_i(\ell - d_i)\right).$$

over all possible ways to order the points on each side of the square. Without loss of generality assume $a_1 < a_2 < \ldots < a_n$.

Insight: First consider minimizing $\sum_{i=1}^{n} \frac{1}{2} a_i d_i$ only. To do this, we should sort the d_i in the other order, i.e. such that $d_1 > d_2 > \ldots > d_n$.

Proof: Suppose that i < j (and hence $a_i < a_j$), but $d_i < d_j$. Then

$$a_id_j + a_jd_i = a_id_i + a_jd_j + \underbrace{(a_i - a_j)}_{>0}\underbrace{(d_j - d_i)}_{<0},$$

so swapping d_i and d_j would lead to a smaller area cut off. Hence, whenever i < j we have $d_i > d_j$.

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on each side. Divide these points into n quadrilaterals maximizing the sum of their areas

$$\sum_{i=1}^n \left(\ell^2 - \frac{1}{2}a_id_i - \frac{1}{2}(\ell - a_i)b_i - \frac{1}{2}(\ell - b_i)(\ell - c_i) - \frac{1}{2}c_i(\ell - d_i)\right).$$

over all possible ways to order the points on each side of the square.

Without loss of generality assume $a_1 < \ldots < a_n$.

Insight: To minimize area cut off at bottom left corner we should sort $d_1 > \ldots > d_n$.

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on each side. Divide these points into n quadrilaterals maximizing the sum of their areas

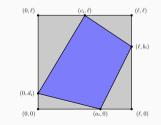
$$\sum_{i=1}^n \left(\ell^2 - \frac{1}{2}a_id_i - \frac{1}{2}(\ell - a_i)b_i - \frac{1}{2}(\ell - b_i)(\ell - c_i) - \frac{1}{2}c_i(\ell - d_i)\right).$$

over all possible ways to order the points on each side of the square.

Without loss of generality assume $a_1 < \ldots < a_n$.

Insight: To minimize area cut off at bottom left corner we should sort $d_1 > \ldots > d_n$.

Then $\ell - d_1 < \ldots < \ell - d_n$, so to minimize the area cut off at the top left corner we should sort $c_1 > \ldots > c_n$.



Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on each side. Divide these points into n quadrilaterals maximizing the sum of their areas

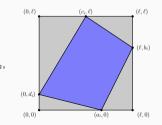
$$\sum_{i=1}^n \left(\ell^2 - \tfrac{1}{2} a_i d_i - \tfrac{1}{2} (\ell - a_i) b_i - \tfrac{1}{2} (\ell - b_i) (\ell - c_i) - \tfrac{1}{2} c_i (\ell - d_i) \right).$$

over all possible ways to order the points on each side of the square.

Without loss of generality assume $a_1 < \ldots < a_n$.

Insight: To minimize area cut off at bottom left corner we should sort $d_1 > \ldots > d_n$.

Then $\ell - d_1 < \ldots < \ell - d_n$, so to minimize the area cut off at the top left corner we should sort $c_1 > \ldots > c_n$. Then $\ell - c_1 < \ldots < \ell - c_n$, so to minimize the area cut off at the top right corner we should sort $\ell - b_1 > \ldots > \ell - b_n$, i.e. $b_1 < \ldots < b_n$.



Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on each side. Divide these points into n quadrilaterals maximizing the sum of their areas

$$\sum_{i=1}^n \left(\ell^2 - \tfrac{1}{2} a_i d_i - \tfrac{1}{2} (\ell - a_i) b_i - \tfrac{1}{2} (\ell - b_i) (\ell - c_i) - \tfrac{1}{2} c_i (\ell - d_i) \right).$$

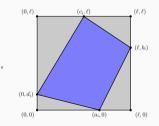
over all possible ways to order the points on each side of the square.

Without loss of generality assume $a_1 < \ldots < a_n$.

Insight: To minimize area cut off at bottom left corner we should sort $d_1 > \ldots > d_n$.

Then $\ell - d_1 < \ldots < \ell - d_n$, so to minimize the area cut off at the top left corner we should sort $c_1 > \ldots > c_n$. Then $\ell - c_1 < \ldots < \ell - c_n$, so to minimize the area cut off at the top right corner we should sort $\ell - b_1 > \ldots > \ell - b_n$, i.e. $b_1 < \ldots < b_n$.

Then $b_1 < \ldots < b_n$ and $\ell - a_1 > \ldots > \ell - a_n$, so this also mimimizes the area cut off at the bottom right corner.



Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on each side. Divide these points into n quadrilaterals maximizing the sum of their areas

$$\sum_{i=1}^n \left(\ell^2 - \frac{1}{2}a_id_i - \frac{1}{2}(\ell - a_i)b_i - \frac{1}{2}(\ell - b_i)(\ell - c_i) - \frac{1}{2}c_i(\ell - d_i)\right).$$

over all possible ways to order the points on each side of the square. Without loss of generality assume $a_1 < \ldots < a_n$.

Solution: Sort the given points such that $a_1 < \ldots < a_n$, $b_1 < \ldots < b_n$, $c_1 > \ldots > c_n$, and $d_1 > \ldots > d_n$, and then compute the area with the above formula.

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on each side. Divide these points into n quadrilaterals maximizing the sum of their areas

$$\sum_{i=1}^n \left(\ell^2 - \tfrac{1}{2} a_i d_i - \tfrac{1}{2} (\ell - a_i) b_i - \tfrac{1}{2} (\ell - b_i) (\ell - c_i) - \tfrac{1}{2} c_i (\ell - d_i) \right).$$

over all possible ways to order the points on each side of the square. Without loss of generality assume $a_1 < \ldots < a_n$.

Solution: Sort the given points such that $a_1 < \ldots < a_n$, $b_1 < \ldots < b_n$, $c_1 > \ldots > c_n$, and $d_1 > \ldots > d_n$, and then compute the area with the above formula.

Running time: $\mathcal{O}(n \log n)$.

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on each side. Divide these points into n quadrilaterals maximizing the sum of their areas

$$\sum_{i=1}^n \left(\ell^2 - \tfrac{1}{2} a_i d_i - \tfrac{1}{2} (\ell - a_i) b_i - \tfrac{1}{2} (\ell - b_i) (\ell - c_i) - \tfrac{1}{2} c_i (\ell - d_i) \right).$$

over all possible ways to order the points on each side of the square. Without loss of generality assume $a_1 < \ldots < a_n$.

Solution: Sort the given points such that $a_1 < \ldots < a_n$, $b_1 < \ldots < b_n$, $c_1 > \ldots > c_n$, and $d_1 > \ldots > d_n$, and then compute the area with the above formula.

Running time: $\mathcal{O}(n \log n)$.

Statistics: 7 submissions, 0 accepted, 7 unknown

Problem: For every divisor *d* of *n*, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

Problem: For every divisor *d* of *n*, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

Observation 1: $n \le 10^5$, so there can be at most 128 different divisors of *n*.

Problem: For every divisor *d* of *n*, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

Observation 1: $n \le 10^5$, so there can be at most 128 different divisors of *n*.

Naive solution: • Handle each divisor *d* separately.

Problem: For every divisor *d* of *n*, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

Observation 1: $n \le 10^5$, so there can be at most 128 different divisors of *n*.

- **Naive solution:** Handle each divisor *d* separately.
 - For each position in t', pick the character that occurs most often.

Problem: For every divisor *d* of *n*, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

Observation 1: $n \le 10^5$, so there can be at most 128 different divisors of *n*.

- **Naive solution:** Handle each divisor *d* separately.
 - For each position in t', pick the character that occurs most often.

Problem: For every divisor *d* of *n*, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

Observation 1: $n \le 10^5$, so there can be at most 128 different divisors of *n*.

- **Naive solution:** Handle each divisor *d* separately.
 - For each position in t', pick the character that occurs most often.

Problem: For every divisor *d* of *n*, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

Observation 1: $n \le 10^5$, so there can be at most 128 different divisors of *n*.

- **Naive solution:** Handle each divisor *d* separately.
 - For each position in t', pick the character that occurs most often.

• Then count how many letters we must have changed.

Problem: For every divisor *d* of *n*, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

WA: But what if there is a larger divisor!?

Problem: For every divisor *d* of *n*, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

WA: But what if there is a larger divisor!?

Observation 2: Then our current solution t' has a divisor d' > 1.

Problem: For every divisor *d* of *n*, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

WA: But what if there is a larger divisor!?

Observation 2: Then our current solution t' has a divisor d' > 1.

Problem: For every divisor *d* of *n*, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

Problem: For every divisor *d* of *n*, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

Observation 3: We only need to change one character to make t' indivisible.

Correct solution: • Check if t' obtained from the naive solution is indivisible.

Problem: For every divisor *d* of *n*, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

- **Correct solution:** Check if t' obtained from the naive solution is indivisible.
 - In this case, we are done.

Problem: For every divisor *d* of *n*, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

- **Correct solution:** Check if t' obtained from the naive solution is indivisible.
 - In this case, we are done.
 - Otherwise, for each position in t' check how much more it costs to modify this letter.

Problem: For every divisor d of n, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

- **Correct solution:** Check if t' obtained from the naive solution is indivisible.
 - In this case, we are done.
 - Otherwise, for each position in t' check how much more it costs to modify this letter.
 - Greedily pick the modification that increases cost the least.

Problem: For every divisor d of n, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

Observation 3: We only need to change one character to make t' indivisible.

- **Correct solution:** Check if t' obtained from the naive solution is indivisible.
 - In this case, we are done.
 - Otherwise, for each position in t' check how much more it costs to modify this letter.
 - Greedily pick the modification that increases cost the least.

Running time: $\mathcal{O}(n \cdot \omega(n))$, where $\omega(n)$ is the number of divisors of *n*.

Problem: For every divisor d of n, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

Observation 3: We only need to change one character to make t' indivisible.

- **Correct solution:** Check if t' obtained from the naive solution is indivisible.
 - In this case, we are done.
 - Otherwise, for each position in t' check how much more it costs to modify this letter.
 - Greedily pick the modification that increases cost the least.

Running time: $\mathcal{O}(n \cdot \omega(n))$, where $\omega(n)$ is the number of divisors of *n*.

Homework: $O(n \log \log(n))$ is possible with some optimizations.

Problem: For every divisor *d* of *n*, find the minimum number of changes to make $t = t' \odot d$ for some string t'.

Observation 3: We only need to change one character to make t' indivisible.

Correct solution: • Check if t' obtained from the naive solution is indivisible.

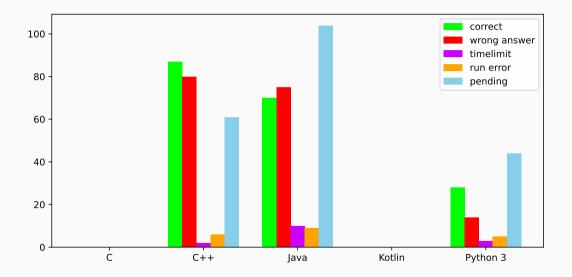
- In this case, we are done.
- Otherwise, for each position in t' check how much more it costs to modify this letter.
- Greedily pick the modification that increases cost the least.

Running time: $\mathcal{O}(n \cdot \omega(n))$, where $\omega(n)$ is the number of divisors of *n*.

Homework: $O(n \log \log(n))$ is possible with some optimizations.

Statistics: 2 submissions, 0 accepted, 2 unknown

Language stats



Jury work

• 423 commits (last year: 447)

Jury work

- 423 commits (last year: 447)
- 625 secret test cases (last year: 357)

Jury work

- 423 commits (last year: 447)
- 625 secret test cases (last year: 357)
- 160 accepted jury/proofreader solutions (last year: 120)

Jury work

- 423 commits (last year: 447)
- 625 secret test cases (last year: 357)
- 160 accepted jury/proofreader solutions (last year: 120)
- The minimum¹ number of lines the jury needed to solve all problems is

2+1+6+5+1+5+2+2+6+3+6=39

On average 3.5 lines per problem, down from 6.0 last year

Thanks to the proofreaders:

- Arnoud van der Leer (TU Delft)
- Dany Sluijk (TU Delft)
- Davina van Meer (Delft)
- Mattia Marziali (RU Groningen)
- Michael Zündorf

 (KIT Karlsruhe / NWERC jury)

- Pavel Kunyavskiy (JetBrains Amsterdam)
- Pierre Vandenhove (UMons)
- Thomas Verwoerd
 (TU Delft, Kotlin Hero ♥)
- Thore Husfeldt (ITU Copenhagen / BAPC Jury)
- Wendy Yi (KIT Karlsruhe / NWERC jury)

Thanks to the Jury for the Freshmen Programming Contests:

- Alice Sayutina (VU Amsterdam)
- Angel Karchev (TU Delft)
- Bálint Kollmann (TU Delft)
- Jeroen Op de Beek (TU Delft)
- Leon van der Waal (TU Delft)

- Liudas Staniulis (VU Amsterdam)
- Maarten Sijm (TU Delft)
- Mihail Bankov (TU Delft)
- Moham Balfakeih (TU Delft)
- Wietze Koops (Radboud Nijmegen / RU Groningen)

Want to solve the problems you could not finish? Or have friends that like to solve algorithmic problems?

https://fpcs2025.bapc.eu/

Saturday 17 May 2025 13:00–17:00

Please, do not post/discuss the problems online before this time!

Excited to participate in the next contest?

Register for DAPC (20 September) at wisv.ch/dapc

Want to organize these contests?

Join the CHipCie: wisv.ch/chipcieinterest

Want to create programming problems for FPC next year? Either join the CHipCie, or contact Maarten Sijm