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D: Dragged-out Duel
Problem author: Wietze Koops

• Problem: Read two lines, comprised of ‘R’, ‘P’, and ‘S’, and determine who wins the most games.

• Solution:
• Read the two lines character by character, increment a counter if player 1 wins and

decrement it if player 2 wins.
• Finally, print “victory” if the counter is positive, and “defeat” if it is negative.

• Complexity: O(n).

Statistics: 45 submissions, 37 accepted
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B: Building Pyramids
Problem author: Maarten Sijm

• Problem: Given the edge length of a tetrahedron, calculate the number of spheres in the pyramid.

• Observation: The pyramid consists of n equilateral triangles.
The number of spheres in triangle t is T (t) =

∑t
i=1 i .

• Slow solution: Calculate P(n) =
∑n

i=1 T (i). Runs in O(n2), too slow.
• Solution: Simplify T (t) = t·(t+1)

2 . Now calculating P(n) runs in O(n), accepted!
• Pitfall: If t is an int, t · (t + 1) overflows. Use 64-bit integers!
• Challenge: The calculation of P(n) can even be simplified to run in O(1).

Statistics: 75 submissions, 36 accepted, 1 unknown
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F: Flag Rotation
Problem author: Jeroen Op de Beek

• Problem: Count how many cells will change when painting the flag rotated.

• Observation: Since each column has to be repainted to one color, we will change n − cntc cells in
it (where c is the final color).

• Solution: Count how many cells won’t change.

• First sort the array, then check for segments made of identical elements, this way we find the
count of each cell color.

• answer = n2 −
∑

c cnt2
c

• Complexity: O(n log n).
• Note: this can also be done using a (hash) map.

Statistics: 85 submissions, 31 accepted, 9 unknown
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E: European Election
Problem author: Veselin Mitev

• Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.

• Fun Fact: This is also known as the Condorcet voting method.
• How to determine whether candidate A is better than B?

• Go through all ballots – count how many times A appears before B, and vice-versa. Runs in O(n · k).

• Observation: We can preprocess the ballots in O(n · k), such that we can access the position that
each candidate appears in each ballot in O(1). Thus, answering whether candidate A beats
candidate B, now only takes O(n).

• Solution:
• Pick a candidate d .

• Go through all candidates ci : Anytime ci beats d : d ← ci . Runs in O(n · k).
• Observation: If the election has a winner, it must be d . (This can be proven using contradiction!)
• Check if d beats all other candidates. Runs in O(n · k).

• Complexity: O(n · k).

• But we chose the time limit to also accept O(n · k2) or even O(n · k3).

Statistics: 50 submissions, 15 accepted, 21 unknown



E: European Election
Problem author: Veselin Mitev

• Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
• Fun Fact: This is also known as the Condorcet voting method.

• How to determine whether candidate A is better than B?
• Go through all ballots – count how many times A appears before B, and vice-versa. Runs in O(n · k).

• Observation: We can preprocess the ballots in O(n · k), such that we can access the position that
each candidate appears in each ballot in O(1). Thus, answering whether candidate A beats
candidate B, now only takes O(n).

• Solution:
• Pick a candidate d .

• Go through all candidates ci : Anytime ci beats d : d ← ci . Runs in O(n · k).
• Observation: If the election has a winner, it must be d . (This can be proven using contradiction!)
• Check if d beats all other candidates. Runs in O(n · k).

• Complexity: O(n · k).

• But we chose the time limit to also accept O(n · k2) or even O(n · k3).

Statistics: 50 submissions, 15 accepted, 21 unknown



E: European Election
Problem author: Veselin Mitev

• Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
• Fun Fact: This is also known as the Condorcet voting method.
• How to determine whether candidate A is better than B?

• Go through all ballots – count how many times A appears before B, and vice-versa. Runs in O(n · k).

• Observation: We can preprocess the ballots in O(n · k), such that we can access the position that
each candidate appears in each ballot in O(1). Thus, answering whether candidate A beats
candidate B, now only takes O(n).

• Solution:
• Pick a candidate d .

• Go through all candidates ci : Anytime ci beats d : d ← ci . Runs in O(n · k).
• Observation: If the election has a winner, it must be d . (This can be proven using contradiction!)
• Check if d beats all other candidates. Runs in O(n · k).

• Complexity: O(n · k).

• But we chose the time limit to also accept O(n · k2) or even O(n · k3).

Statistics: 50 submissions, 15 accepted, 21 unknown



E: European Election
Problem author: Veselin Mitev

• Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
• Fun Fact: This is also known as the Condorcet voting method.
• How to determine whether candidate A is better than B?

• Go through all ballots – count how many times A appears before B, and vice-versa. Runs in O(n · k).

• Observation: We can preprocess the ballots in O(n · k), such that we can access the position that
each candidate appears in each ballot in O(1). Thus, answering whether candidate A beats
candidate B, now only takes O(n).

• Solution:
• Pick a candidate d .

• Go through all candidates ci : Anytime ci beats d : d ← ci . Runs in O(n · k).
• Observation: If the election has a winner, it must be d . (This can be proven using contradiction!)
• Check if d beats all other candidates. Runs in O(n · k).

• Complexity: O(n · k).

• But we chose the time limit to also accept O(n · k2) or even O(n · k3).

Statistics: 50 submissions, 15 accepted, 21 unknown



E: European Election
Problem author: Veselin Mitev

• Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
• Fun Fact: This is also known as the Condorcet voting method.
• How to determine whether candidate A is better than B?

• Go through all ballots – count how many times A appears before B, and vice-versa. Runs in O(n · k).

• Observation: We can preprocess the ballots in O(n · k), such that we can access the position that
each candidate appears in each ballot in O(1). Thus, answering whether candidate A beats
candidate B, now only takes O(n).

• Solution:
• Pick a candidate d .

• Go through all candidates ci : Anytime ci beats d : d ← ci . Runs in O(n · k).
• Observation: If the election has a winner, it must be d . (This can be proven using contradiction!)
• Check if d beats all other candidates. Runs in O(n · k).

• Complexity: O(n · k).

• But we chose the time limit to also accept O(n · k2) or even O(n · k3).

Statistics: 50 submissions, 15 accepted, 21 unknown



E: European Election
Problem author: Veselin Mitev

• Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
• Fun Fact: This is also known as the Condorcet voting method.
• How to determine whether candidate A is better than B?

• Go through all ballots – count how many times A appears before B, and vice-versa. Runs in O(n · k).

• Observation: We can preprocess the ballots in O(n · k), such that we can access the position that
each candidate appears in each ballot in O(1). Thus, answering whether candidate A beats
candidate B, now only takes O(n).

• Solution:
• Pick a candidate d .
• Go through all candidates ci : Anytime ci beats d : d ← ci . Runs in O(n · k).

• Observation: If the election has a winner, it must be d . (This can be proven using contradiction!)
• Check if d beats all other candidates. Runs in O(n · k).

• Complexity: O(n · k).

• But we chose the time limit to also accept O(n · k2) or even O(n · k3).

Statistics: 50 submissions, 15 accepted, 21 unknown



E: European Election
Problem author: Veselin Mitev

• Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
• Fun Fact: This is also known as the Condorcet voting method.
• How to determine whether candidate A is better than B?

• Go through all ballots – count how many times A appears before B, and vice-versa. Runs in O(n · k).

• Observation: We can preprocess the ballots in O(n · k), such that we can access the position that
each candidate appears in each ballot in O(1). Thus, answering whether candidate A beats
candidate B, now only takes O(n).

• Solution:
• Pick a candidate d .
• Go through all candidates ci : Anytime ci beats d : d ← ci . Runs in O(n · k).
• Observation: If the election has a winner, it must be d . (This can be proven using contradiction!)

• Check if d beats all other candidates. Runs in O(n · k).
• Complexity: O(n · k).

• But we chose the time limit to also accept O(n · k2) or even O(n · k3).

Statistics: 50 submissions, 15 accepted, 21 unknown



E: European Election
Problem author: Veselin Mitev

• Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
• Fun Fact: This is also known as the Condorcet voting method.
• How to determine whether candidate A is better than B?

• Go through all ballots – count how many times A appears before B, and vice-versa. Runs in O(n · k).

• Observation: We can preprocess the ballots in O(n · k), such that we can access the position that
each candidate appears in each ballot in O(1). Thus, answering whether candidate A beats
candidate B, now only takes O(n).

• Solution:
• Pick a candidate d .
• Go through all candidates ci : Anytime ci beats d : d ← ci . Runs in O(n · k).
• Observation: If the election has a winner, it must be d . (This can be proven using contradiction!)
• Check if d beats all other candidates. Runs in O(n · k).

• Complexity: O(n · k).

• But we chose the time limit to also accept O(n · k2) or even O(n · k3).

Statistics: 50 submissions, 15 accepted, 21 unknown



E: European Election
Problem author: Veselin Mitev

• Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
• Fun Fact: This is also known as the Condorcet voting method.
• How to determine whether candidate A is better than B?

• Go through all ballots – count how many times A appears before B, and vice-versa. Runs in O(n · k).

• Observation: We can preprocess the ballots in O(n · k), such that we can access the position that
each candidate appears in each ballot in O(1). Thus, answering whether candidate A beats
candidate B, now only takes O(n).

• Solution:
• Pick a candidate d .
• Go through all candidates ci : Anytime ci beats d : d ← ci . Runs in O(n · k).
• Observation: If the election has a winner, it must be d . (This can be proven using contradiction!)
• Check if d beats all other candidates. Runs in O(n · k).

• Complexity: O(n · k).

• But we chose the time limit to also accept O(n · k2) or even O(n · k3).

Statistics: 50 submissions, 15 accepted, 21 unknown



E: European Election
Problem author: Veselin Mitev

• Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
• Fun Fact: This is also known as the Condorcet voting method.
• How to determine whether candidate A is better than B?

• Go through all ballots – count how many times A appears before B, and vice-versa. Runs in O(n · k).

• Observation: We can preprocess the ballots in O(n · k), such that we can access the position that
each candidate appears in each ballot in O(1). Thus, answering whether candidate A beats
candidate B, now only takes O(n).

• Solution:
• Pick a candidate d .
• Go through all candidates ci : Anytime ci beats d : d ← ci . Runs in O(n · k).
• Observation: If the election has a winner, it must be d . (This can be proven using contradiction!)
• Check if d beats all other candidates. Runs in O(n · k).

• Complexity: O(n · k).
• But we chose the time limit to also accept O(n · k2) or even O(n · k3).

Statistics: 50 submissions, 15 accepted, 21 unknown



E: European Election
Problem author: Veselin Mitev

• Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
• Fun Fact: This is also known as the Condorcet voting method.
• How to determine whether candidate A is better than B?

• Go through all ballots – count how many times A appears before B, and vice-versa. Runs in O(n · k).

• Observation: We can preprocess the ballots in O(n · k), such that we can access the position that
each candidate appears in each ballot in O(1). Thus, answering whether candidate A beats
candidate B, now only takes O(n).

• Solution:
• Pick a candidate d .
• Go through all candidates ci : Anytime ci beats d : d ← ci . Runs in O(n · k).
• Observation: If the election has a winner, it must be d . (This can be proven using contradiction!)
• Check if d beats all other candidates. Runs in O(n · k).

• Complexity: O(n · k).
• But we chose the time limit to also accept O(n · k2) or even O(n · k3).

Statistics: 50 submissions, 15 accepted, 21 unknown



H: Horrendous Mistake
Problem author: Jeroen Op de Beek

• Problem: Calculate the value of the function sum, which uses values instead of indices.

• Naive solution: Simply run the function after every update. This takes O(n · q) time, too slow!
• Observation: To be fast enough, every query must be processed in O(1).
• Solution: Do some extra bookkeeping:

• Count how often every value occurs in the initial array (= cx for every 0 ≤ x < n).
• Calculate the value of sum for the initial array and store this.
• For every update (x , v) (let the old value in the array be vold ):

• Decrement cvold .
• Subtract cx · vold + avold and add cx · v + av to the stored value of sum.
• Increment cv .
• Update the value in the array.

• Complexity: O(n + q).
• Pitfall: Beware of int overflow, be sure to use 64-bit integers!

Statistics: 46 submissions, 11 accepted, 24 unknown
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• For every update (x , v) (let the old value in the array be vold ):

• Decrement cvold .
• Subtract cx · vold + avold and add cx · v + av to the stored value of sum.
• Increment cv .
• Update the value in the array.

• Complexity: O(n + q).
• Pitfall: Beware of int overflow, be sure to use 64-bit integers!

Statistics: 46 submissions, 11 accepted, 24 unknown
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I: Intelligence Exploration
Problem author: Makar Kuleshov

• Problem: Calculate the value of the implication al → al+1 → . . . → ar for many subarrays.

• Naive solution: Go through the whole subarray to calculate the result. Runs in O(n · q), too slow!
• Observation: When the right argument of an implication is 1, the result is always equal to 1.

So, we can look only at the last 1 in the subarray and the following zeros.
• Solution: For each position precompute the index of the last 1 appearing not after it.

This way you can determine the number of zeros in the end of a subarray in O(1).
• Complexity: O(n + q)
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A: Annoying Alliterations
Problem author: Maciek Sidor

• Problem: Given n words, find a pair such that after their common prefix is removed, the sum of
lengths of the two resulting words is the greatest.

• Naive solution: Check every pair. Runs in O(n2), too slow.
• Claim: For a given pair s, t and a third word v such that |v | ≥ max(|s|, |t|), we can always

replace one of the words and the score will not decrease.
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• Claim: For a given pair s, t and a third word v such that |v | ≥ max(|s|, |t|), we can always
replace one of the words and the score will not decrease.

• Proof: Denote the common prefix of s, t as p(s, t) and let g(s, t) = |s| + |t| − 2|p(s, t)| be our
goodness function.

• Suppose g(s, t) > g(s, v) and g(s, t) > g(v , t). Then:

• Similarly, |p(v , t)| > |p(s, t)|, but these two together give us a contradiction.
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• Claim: For a given pair s, t and a third word v such that |v | ≥ max(|s|, |t|), we can always
replace one of the words and the score will not decrease.

• Therefore: Any word of maximum length is part of a valid solution.
• Solution: Pick any word of maximum length and check it with every other word, take the

maximum result.
• Complexity: O(n).
• Note: Can also be solved using a trie (also known as a prefix tree).

Statistics: 58 submissions, 7 accepted, 20 unknown
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J: Jailbreak
Problem author: Wietze Koops

• Problem: Escape from a w × h grid jail where you can go up only if you have a ladder. Ladders
can be carried to a different place on the same storey.

• Observation: If we know to which holes a ladder can be carried, then for each cell, we know
which cell we can move to.

• Solution:
• Using a for loop in both directions, determine which cells can access a ladder.

• Then we know for each cell to which cell we can move.
• Hence, we can define a graph representing the grid.
• Determining whether a path exists from the starting cell to an exit can be done using O(wh)

BFS/DFS.

Statistics: 18 submissions, 4 accepted, 9 unknown
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C: Curious Jury
Problem author: Jeroen Op de Beek

• Problem: Given two types of penalty times for n teams (1 ≤ li < si ≤ n), find out over all ways of
choosing the type of penalty time for each team, how many fixed points the scoreboard contains
in total.

• Observation 1: Instead of finding fixed points for each out of 2n options, find how many times
team i is a fixed point.

• Observation 2: Loop over all teams, try both options li and si as potential fixed point, for team i ,
call this potential fixed point f .

• Observation 3: Other teams form 3 groups:
• A Teams with lj < f , sj < f
• B Teams with lj < f , sj ≥ f
• C Teams with lj ≥ f , sj ≥ f

• Observation 4: The number of ways to choose the other submission times, for team i to have a
fixed point at rank f : 2|A|+|C| ·

( |B|
f −|A|

)
• Team j is in group A if sj < f .
• Team j is in group C if lj ≥ f .
• Otherwise, team j is in B. By sorting the lj and sj arrays, |A| and |C | can be found by binary

search.
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)
• Need to calculate O(n) binomial coefficients

(a
b

)
, with 0 ≤ a, b ≤ n:

(a
b

)
= a!

b!(a−b)!
and 2a for 0 ≤ a ≤ n, both mod (109 + 7)

• Can precalculate factorial[k] and twopower[k] in O(n).
• Can find inverse of factorial[n] in O(log(MOD)) (or if you don’t know how to calculate a modular

inverse, you can bruteforce it on your own computer).
• Now fill the array invfactorial[k] using invfactorial[k] = invfactorial[k + 1] · (k + 1) in O(n).
• Complexity varying from O(n (log(n) + log(MOD))) to O(n + log(MOD)) depending on exact

implementation.

Statistics: 6 submissions, 3 accepted, 2 unknown
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K: Kangaroo Race
Problem author: Leon van der Waal

• Problem: A kangeroo jumps from x to x + x(x − 1) = x2 in one step. How many steps until it
reaches 1?

• Notice that when a kangeroo jumps over the n-th segment, it jumps to x2 mod n.
• So after i jumps, the kangeroo is in segment x2i

mod n.
• Therefore we need to determine the first i such that x2i

≡ 1 mod n.
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• Problem: Determine the first i such that x2i
≡ 1 mod n.

• Observation: If gcd(x , n) ̸= 1, then gcd(x , n)
∣∣ x2i

mod n, so the kangeroo will never reach 1.
• Otherwise, x r ≡ 1 mod n for some r . We call the smallest such r the order of x mod n.
• Notice that the powers of x repeat every r -th power:

1, x , x2, x3, . . . , x r−1, x r = 1, x r+1 = x , x2, x3, . . .



K: Kangaroo Race
Problem author: Leon van der Waal

• Problem: Determine the first i such that x2i
≡ 1 mod n.

• Observation: If gcd(x , n) ̸= 1, then gcd(x , n)
∣∣ x2i

mod n, so the kangeroo will never reach 1.

• Otherwise, x r ≡ 1 mod n for some r . We call the smallest such r the order of x mod n.
• Notice that the powers of x repeat every r -th power:

1, x , x2, x3, . . . , x r−1, x r = 1, x r+1 = x , x2, x3, . . .



K: Kangaroo Race
Problem author: Leon van der Waal

• Problem: Determine the first i such that x2i
≡ 1 mod n.

• Observation: If gcd(x , n) ̸= 1, then gcd(x , n)
∣∣ x2i

mod n, so the kangeroo will never reach 1.
• Otherwise, x r ≡ 1 mod n for some r . We call the smallest such r the order of x mod n.

• Notice that the powers of x repeat every r -th power:

1, x , x2, x3, . . . , x r−1, x r = 1, x r+1 = x , x2, x3, . . .



K: Kangaroo Race
Problem author: Leon van der Waal

• Problem: Determine the first i such that x2i
≡ 1 mod n.

• Observation: If gcd(x , n) ̸= 1, then gcd(x , n)
∣∣ x2i

mod n, so the kangeroo will never reach 1.
• Otherwise, x r ≡ 1 mod n for some r . We call the smallest such r the order of x mod n.
• Notice that the powers of x repeat every r -th power:

1, x , x2, x3, . . . , x r−1, x r = 1, x r+1 = x , x2, x3, . . .



K: Kangaroo Race
Problem author: Leon van der Waal

• Problem: What is the first i such that x2i
≡ 1 mod n.

• Therefore, any i that satisfies x2i
≡ 1 mod n also satisfies 2i ≡ 0 mod r .

• Observation: This means that r is a divisor of 2i , and thus r = 2k for some k.
• Therefore, the answer to the problem is k.
• Observation: r ≤ n, so k ≤ log2(n)
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• Problem: What is the first i such that x2i
≡ 1 mod n.

• Observation: r ≤ n, so k ≤ log2(n)

• Solution: It therefore suffices to check the first log2(n) < 60 jumps. If the kangeroo has not
reached segment 1 by then, it never will.

• Complexity: O(q log n)

Statistics: 44 submissions, 2 accepted, 27 unknown
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G: Galactic Expedition
Problem author: Veselin Mitev

• Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.

• Observation: You can refuel more than enough times to simply explore all wormholes, until you
find a way to reach the relic.

• Solution: Perform a “live” search – explore the wormholes while always keeping enough fuel ( d
2 )

to go back to home base:

• If you can reach the relic within the fuel limit, do that.
• Find the closest unexplored wormhole:

• You can do that using Dijkstra, or Floyd-Warshall.
• Can we reach it while still having enough fuel to go back to home base?

• If yes: Go to that wormhole and update the distances between the points.
• If no: Go back to home base and refuel.

• Repeat.

• Worst case: We can explore all wormholes in n
2 runs.

• If we know all wormholes, it is guaranteed that we can reach the relic, if we follow an optimal path.
• Time Complexity: O(n3) or O(n3 log n). Or if you’re clever about how you cache the results from

the Dijkstra search algorithm you can do it in O(n2) or O(n2 log n).

Statistics: 3 submissions, 0 accepted, 3 unknown
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• Solution: Perform a “live” search – explore the wormholes while always keeping enough fuel ( d

2 )
to go back to home base:

• If you can reach the relic within the fuel limit, do that.
• Find the closest unexplored wormhole:

• You can do that using Dijkstra, or Floyd-Warshall.
• Can we reach it while still having enough fuel to go back to home base?

• If yes: Go to that wormhole and update the distances between the points.

• If no: Go back to home base and refuel.
• Repeat.

• Worst case: We can explore all wormholes in n
2 runs.

• If we know all wormholes, it is guaranteed that we can reach the relic, if we follow an optimal path.
• Time Complexity: O(n3) or O(n3 log n). Or if you’re clever about how you cache the results from

the Dijkstra search algorithm you can do it in O(n2) or O(n2 log n).

Statistics: 3 submissions, 0 accepted, 3 unknown



G: Galactic Expedition
Problem author: Veselin Mitev

• Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
• Observation: You can refuel more than enough times to simply explore all wormholes, until you

find a way to reach the relic.
• Solution: Perform a “live” search – explore the wormholes while always keeping enough fuel ( d

2 )
to go back to home base:

• If you can reach the relic within the fuel limit, do that.
• Find the closest unexplored wormhole:

• You can do that using Dijkstra, or Floyd-Warshall.
• Can we reach it while still having enough fuel to go back to home base?

• If yes: Go to that wormhole and update the distances between the points.
• If no: Go back to home base and refuel.

• Repeat.
• Worst case: We can explore all wormholes in n

2 runs.
• If we know all wormholes, it is guaranteed that we can reach the relic, if we follow an optimal path.
• Time Complexity: O(n3) or O(n3 log n). Or if you’re clever about how you cache the results from

the Dijkstra search algorithm you can do it in O(n2) or O(n2 log n).

Statistics: 3 submissions, 0 accepted, 3 unknown



G: Galactic Expedition
Problem author: Veselin Mitev

• Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
• Observation: You can refuel more than enough times to simply explore all wormholes, until you

find a way to reach the relic.
• Solution: Perform a “live” search – explore the wormholes while always keeping enough fuel ( d

2 )
to go back to home base:

• If you can reach the relic within the fuel limit, do that.
• Find the closest unexplored wormhole:

• You can do that using Dijkstra, or Floyd-Warshall.
• Can we reach it while still having enough fuel to go back to home base?

• If yes: Go to that wormhole and update the distances between the points.
• If no: Go back to home base and refuel.

• Repeat.

• Worst case: We can explore all wormholes in n
2 runs.

• If we know all wormholes, it is guaranteed that we can reach the relic, if we follow an optimal path.
• Time Complexity: O(n3) or O(n3 log n). Or if you’re clever about how you cache the results from

the Dijkstra search algorithm you can do it in O(n2) or O(n2 log n).

Statistics: 3 submissions, 0 accepted, 3 unknown



G: Galactic Expedition
Problem author: Veselin Mitev

• Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
• Observation: You can refuel more than enough times to simply explore all wormholes, until you

find a way to reach the relic.
• Solution: Perform a “live” search – explore the wormholes while always keeping enough fuel ( d

2 )
to go back to home base:

• If you can reach the relic within the fuel limit, do that.
• Find the closest unexplored wormhole:

• You can do that using Dijkstra, or Floyd-Warshall.
• Can we reach it while still having enough fuel to go back to home base?

• If yes: Go to that wormhole and update the distances between the points.
• If no: Go back to home base and refuel.

• Repeat.
• Worst case: We can explore all wormholes in n

2 runs.

• If we know all wormholes, it is guaranteed that we can reach the relic, if we follow an optimal path.
• Time Complexity: O(n3) or O(n3 log n). Or if you’re clever about how you cache the results from

the Dijkstra search algorithm you can do it in O(n2) or O(n2 log n).

Statistics: 3 submissions, 0 accepted, 3 unknown



G: Galactic Expedition
Problem author: Veselin Mitev

• Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
• Observation: You can refuel more than enough times to simply explore all wormholes, until you

find a way to reach the relic.
• Solution: Perform a “live” search – explore the wormholes while always keeping enough fuel ( d

2 )
to go back to home base:

• If you can reach the relic within the fuel limit, do that.
• Find the closest unexplored wormhole:

• You can do that using Dijkstra, or Floyd-Warshall.
• Can we reach it while still having enough fuel to go back to home base?

• If yes: Go to that wormhole and update the distances between the points.
• If no: Go back to home base and refuel.

• Repeat.
• Worst case: We can explore all wormholes in n

2 runs.
• If we know all wormholes, it is guaranteed that we can reach the relic, if we follow an optimal path.

• Time Complexity: O(n3) or O(n3 log n). Or if you’re clever about how you cache the results from
the Dijkstra search algorithm you can do it in O(n2) or O(n2 log n).

Statistics: 3 submissions, 0 accepted, 3 unknown



G: Galactic Expedition
Problem author: Veselin Mitev

• Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
• Observation: You can refuel more than enough times to simply explore all wormholes, until you

find a way to reach the relic.
• Solution: Perform a “live” search – explore the wormholes while always keeping enough fuel ( d

2 )
to go back to home base:

• If you can reach the relic within the fuel limit, do that.
• Find the closest unexplored wormhole:

• You can do that using Dijkstra, or Floyd-Warshall.
• Can we reach it while still having enough fuel to go back to home base?

• If yes: Go to that wormhole and update the distances between the points.
• If no: Go back to home base and refuel.

• Repeat.
• Worst case: We can explore all wormholes in n

2 runs.
• If we know all wormholes, it is guaranteed that we can reach the relic, if we follow an optimal path.
• Time Complexity: O(n3) or O(n3 log n). Or if you’re clever about how you cache the results from

the Dijkstra search algorithm you can do it in O(n2) or O(n2 log n).

Statistics: 3 submissions, 0 accepted, 3 unknown



G: Galactic Expedition
Problem author: Veselin Mitev

• Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
• Observation: You can refuel more than enough times to simply explore all wormholes, until you

find a way to reach the relic.
• Solution: Perform a “live” search – explore the wormholes while always keeping enough fuel ( d

2 )
to go back to home base:

• If you can reach the relic within the fuel limit, do that.
• Find the closest unexplored wormhole:

• You can do that using Dijkstra, or Floyd-Warshall.
• Can we reach it while still having enough fuel to go back to home base?

• If yes: Go to that wormhole and update the distances between the points.
• If no: Go back to home base and refuel.

• Repeat.
• Worst case: We can explore all wormholes in n

2 runs.
• If we know all wormholes, it is guaranteed that we can reach the relic, if we follow an optimal path.
• Time Complexity: O(n3) or O(n3 log n). Or if you’re clever about how you cache the results from

the Dijkstra search algorithm you can do it in O(n2) or O(n2 log n).

Statistics: 3 submissions, 0 accepted, 3 unknown



Open online contest

Want to solve the problems you could not finish?
Or have friends that like to solve algorithmic problems?

https://fpcs2024.bapc.eu/

Friday 10 May 2024 13:00–17:00
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Random facts

Jury work

• 448 commits (last year: 361)

• 357 secret test cases (last year: 339)
• 120 accepted jury/proofreader solutions (last year: 96)
• The minimum1 number of lines the jury needed to solve all problems is

2 + 1 + 11 + 1 + 5 + 1 + 22 + 5 + 3 + 11 + 4 = 66

On average 6.0 lines per problem, down from 6.4 last year

1After codegolfing
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Thanks to the proofreaders:

• Arnoud van der Leer (TU Delft)
• Daniel Cortild (RU Groningen)
• Davina van Meer (Delft)
• Henk van der Laan (TU Eindhoven)
• Matei Tinca (VU Amsterdam, )
• Michael Vasseur

(VU Amsterdam / DOMjudge)
• Mylène Martodihardjo (VU Amsterdam)
• Nicky Gerritsen

(TU Eindhoven / DOMjudge)

• Pavel Kunyavskiy
(JetBrains Amsterdam, Hero )

• Ragnar Groot Koerkamp
(ETH Zürich / NWERC jury)

• Rick Wouters (TU Eindhoven)
• Sièna van Schaick (Radboud Nijmegen)
• Thomas Verwoerd

(TU Delft, Hero )
• Yoshi van den Akker (TU Delft)



Thanks to the Jury for the
Freshmen Programming Contests:

• Angel Karchev (TU Delft)
• Ivan Bliznets (RU Groningen)
• Jeroen Op de Beek (TU Delft)
• Leon van der Waal (TU Delft)
• Maarten Sijm (TU Delft)
• Maciek Sidor (VU Amsterdam)

• Makar Kuleshov (TU Delft)
• Mansur Nurmukhambetov (RU Groningen)
• Tymon Cichocki (TU Delft)
• Veselin Mitev (TU Delft)
• Vitor Greati (RU Groningen)
• Wietze Koops (Radboud Nijmegen / RU Groningen)
• Wiktor Cupia l (TU Delft)
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Want to help out with future contests?

https://wisv.ch/chipcie-interest

https://wisv.ch/runner


