
Delft Algorithm Programming Contest (DAPC) 2024

Solutions presentation

The BAPC 2024 jury
September 21, 2024

H: Human Pyramid
Problem author: Mees de Vries

Problem: Find the highest possible pyramid you can build with n ≤ 1012 people.

Note: A human pyramid of height h consists of p(h) = h · (h + 1)
2 people.

Solution 1: Iterate over increasing values of h until you hit n. O(√n).
Solution 2: Binary search the height of the pyramid. O(log n).

Solution 3: Invert the function p: p−1(n) =
⌊√

8n + 1 − 1
2

⌋
. O(1).

Statistics: 143 submissions, 75 accepted

H: Human Pyramid
Problem author: Mees de Vries

Problem: Find the highest possible pyramid you can build with n ≤ 1012 people.

Note: A human pyramid of height h consists of p(h) = h · (h + 1)
2 people.

Solution 1: Iterate over increasing values of h until you hit n. O(√n).
Solution 2: Binary search the height of the pyramid. O(log n).

Solution 3: Invert the function p: p−1(n) =
⌊√

8n + 1 − 1
2

⌋
. O(1).

Statistics: 143 submissions, 75 accepted

H: Human Pyramid
Problem author: Mees de Vries

Problem: Find the highest possible pyramid you can build with n ≤ 1012 people.

Note: A human pyramid of height h consists of p(h) = h · (h + 1)
2 people.

Solution 1: Iterate over increasing values of h until you hit n. O(√n).

Solution 2: Binary search the height of the pyramid. O(log n).

Solution 3: Invert the function p: p−1(n) =
⌊√

8n + 1 − 1
2

⌋
. O(1).

Statistics: 143 submissions, 75 accepted

H: Human Pyramid
Problem author: Mees de Vries

Problem: Find the highest possible pyramid you can build with n ≤ 1012 people.

Note: A human pyramid of height h consists of p(h) = h · (h + 1)
2 people.

Solution 1: Iterate over increasing values of h until you hit n. O(√n).
Solution 2: Binary search the height of the pyramid. O(log n).

Solution 3: Invert the function p: p−1(n) =
⌊√

8n + 1 − 1
2

⌋
. O(1).

Statistics: 143 submissions, 75 accepted

H: Human Pyramid
Problem author: Mees de Vries

Problem: Find the highest possible pyramid you can build with n ≤ 1012 people.

Note: A human pyramid of height h consists of p(h) = h · (h + 1)
2 people.

Solution 1: Iterate over increasing values of h until you hit n. O(√n).
Solution 2: Binary search the height of the pyramid. O(log n).

Solution 3: Invert the function p: p−1(n) =
⌊√

8n + 1 − 1
2

⌋
. O(1).

Statistics: 143 submissions, 75 accepted

H: Human Pyramid
Problem author: Mees de Vries

Problem: Find the highest possible pyramid you can build with n ≤ 1012 people.

Note: A human pyramid of height h consists of p(h) = h · (h + 1)
2 people.

Solution 1: Iterate over increasing values of h until you hit n. O(√n).
Solution 2: Binary search the height of the pyramid. O(log n).

Solution 3: Invert the function p: p−1(n) =
⌊√

8n + 1 − 1
2

⌋
. O(1).

This could give floating-point errors, but with these input limits and using doubles, it does not.

Statistics: 143 submissions, 75 accepted

H: Human Pyramid
Problem author: Mees de Vries

Problem: Find the highest possible pyramid you can build with n ≤ 1012 people.

Note: A human pyramid of height h consists of p(h) = h · (h + 1)
2 people.

Solution 1: Iterate over increasing values of h until you hit n. O(√n).
Solution 2: Binary search the height of the pyramid. O(log n).

Solution 3: Invert the function p: p−1(n) =
⌊√

8n + 1 − 1
2

⌋
. O(1).

This could give floating-point errors, but with these input limits and using doubles, it does not.

Statistics: 143 submissions, 75 accepted

B: Battle of Nieuwpoort
Problem author: Timon Knigge

Problem: Given a year y in decimal, with 2 ≤ y ≤ 2024, if possible, find base b with 2 ≤ b ≤ 16
such that when y is written in base-b, it ends with “00”.

Equivalently: Determine b such that b2 divides y without remainder. So, just check for all
b ∈ {2, . . . , 16} if b2 | y . In fact, suffices to check the primes b ∈ {2, 3, 5, 7, 11, 13}.

Solution (math): Check if b2 | y using integer modulus:

y % (b * b) == 0

Solution (string): Check if y written in base-b ends with “00”. Some programming languages support this
natively, such as Java’s Integer.toString(y, b). You can also do this digit by digit:

letters = “0123456789abcdef”
s = “”
while y > 0:

s += letters[y % b]
y = y/b (integer division)

return reversed(s)

Statistics: 142 submissions, 71 accepted, 4 unknown

B: Battle of Nieuwpoort
Problem author: Timon Knigge

Problem: Given a year y in decimal, with 2 ≤ y ≤ 2024, if possible, find base b with 2 ≤ b ≤ 16
such that when y is written in base-b, it ends with “00”.

Equivalently: Determine b such that b2 divides y without remainder. So, just check for all
b ∈ {2, . . . , 16} if b2 | y . In fact, suffices to check the primes b ∈ {2, 3, 5, 7, 11, 13}.

Solution (math): Check if b2 | y using integer modulus:

y % (b * b) == 0

Solution (string): Check if y written in base-b ends with “00”. Some programming languages support this
natively, such as Java’s Integer.toString(y, b). You can also do this digit by digit:

letters = “0123456789abcdef”
s = “”
while y > 0:

s += letters[y % b]
y = y/b (integer division)

return reversed(s)

Statistics: 142 submissions, 71 accepted, 4 unknown

B: Battle of Nieuwpoort
Problem author: Timon Knigge

Problem: Given a year y in decimal, with 2 ≤ y ≤ 2024, if possible, find base b with 2 ≤ b ≤ 16
such that when y is written in base-b, it ends with “00”.

Equivalently: Determine b such that b2 divides y without remainder. So, just check for all
b ∈ {2, . . . , 16} if b2 | y . In fact, suffices to check the primes b ∈ {2, 3, 5, 7, 11, 13}.

Solution (math): Check if b2 | y using integer modulus:

y % (b * b) == 0

Solution (string): Check if y written in base-b ends with “00”. Some programming languages support this
natively, such as Java’s Integer.toString(y, b). You can also do this digit by digit:

letters = “0123456789abcdef”
s = “”
while y > 0:

s += letters[y % b]
y = y/b (integer division)

return reversed(s)

Statistics: 142 submissions, 71 accepted, 4 unknown

B: Battle of Nieuwpoort
Problem author: Timon Knigge

Problem: Given a year y in decimal, with 2 ≤ y ≤ 2024, if possible, find base b with 2 ≤ b ≤ 16
such that when y is written in base-b, it ends with “00”.

Equivalently: Determine b such that b2 divides y without remainder. So, just check for all
b ∈ {2, . . . , 16} if b2 | y . In fact, suffices to check the primes b ∈ {2, 3, 5, 7, 11, 13}.

Solution (math): Check if b2 | y using integer modulus:

y % (b * b) == 0

Solution (string): Check if y written in base-b ends with “00”. Some programming languages support this
natively, such as Java’s Integer.toString(y, b). You can also do this digit by digit:

letters = “0123456789abcdef”
s = “”
while y > 0:

s += letters[y % b]
y = y/b (integer division)

return reversed(s)

Statistics: 142 submissions, 71 accepted, 4 unknown

B: Battle of Nieuwpoort
Problem author: Timon Knigge

Problem: Given a year y in decimal, with 2 ≤ y ≤ 2024, if possible, find base b with 2 ≤ b ≤ 16
such that when y is written in base-b, it ends with “00”.

Equivalently: Determine b such that b2 divides y without remainder. So, just check for all
b ∈ {2, . . . , 16} if b2 | y . In fact, suffices to check the primes b ∈ {2, 3, 5, 7, 11, 13}.

Solution (math): Check if b2 | y using integer modulus:

y % (b * b) == 0

Solution (string): Check if y written in base-b ends with “00”. Some programming languages support this
natively, such as Java’s Integer.toString(y, b). You can also do this digit by digit:

letters = “0123456789abcdef”
s = “”
while y > 0:

s += letters[y % b]
y = y/b (integer division)

return reversed(s)

Statistics: 142 submissions, 71 accepted, 4 unknown

E: Expected Error
Problem author: Mike de Vries

Problem: You are typing your password, but your finger slipped and you are not sure whether you
pressed a wrong key. Determine whether to continue typing, press backspace and
continue typing or restart typing from scratch.

Solution: Let us measure time in deciseconds to avoid decimals.
• If the password is wrong, this adds 4 + n deciseconds to your total time.
• We find continue yields an expected time of 1 + n − k + (4 + n)p/100

deciseconds.
• We find backspace yields an expected time of 2 + n − k + (4 + n)(1 − p/100)

deciseconds.
• We find restart yields an expected time of 4 + n deciseconds.
• To avoid decimals again, compare 100(1 + n − k) + (4 + n)p with

100(2 + n − k) + (4 + n)(100 − p) and 100(4 + n).
• The guarantee of a unique optimal strategy means one of these integers will be

the smallest.

Statistics: 165 submissions, 67 accepted, 16 unknown

E: Expected Error
Problem author: Mike de Vries

Problem: You are typing your password, but your finger slipped and you are not sure whether you
pressed a wrong key. Determine whether to continue typing, press backspace and
continue typing or restart typing from scratch.

Solution: Let us measure time in deciseconds to avoid decimals.
• If the password is wrong, this adds 4 + n deciseconds to your total time.
• We find continue yields an expected time of 1 + n − k + (4 + n)p/100

deciseconds.
• We find backspace yields an expected time of 2 + n − k + (4 + n)(1 − p/100)

deciseconds.
• We find restart yields an expected time of 4 + n deciseconds.
• To avoid decimals again, compare 100(1 + n − k) + (4 + n)p with

100(2 + n − k) + (4 + n)(100 − p) and 100(4 + n).
• The guarantee of a unique optimal strategy means one of these integers will be

the smallest.

Statistics: 165 submissions, 67 accepted, 16 unknown

E: Expected Error
Problem author: Mike de Vries

Problem: You are typing your password, but your finger slipped and you are not sure whether you
pressed a wrong key. Determine whether to continue typing, press backspace and
continue typing or restart typing from scratch.

Solution: Let us measure time in deciseconds to avoid decimals.
• If the password is wrong, this adds 4 + n deciseconds to your total time.
• We find continue yields an expected time of 1 + n − k + (4 + n)p/100

deciseconds.
• We find backspace yields an expected time of 2 + n − k + (4 + n)(1 − p/100)

deciseconds.
• We find restart yields an expected time of 4 + n deciseconds.
• To avoid decimals again, compare 100(1 + n − k) + (4 + n)p with

100(2 + n − k) + (4 + n)(100 − p) and 100(4 + n).
• The guarantee of a unique optimal strategy means one of these integers will be

the smallest.

Statistics: 165 submissions, 67 accepted, 16 unknown

D: Dialling Digits
Problem author: Ragnar Groot Koerkamp

Problem: For each phone number, output the matching words.

Observation: n · m ≤ 105, so run-time complexity of O(nm) is fine.
Solution: For each phone number p, for each word w :

• Let wd be the letters in w converted to digits using the keypad.
• Add w the output of p if wd = p.

Note: Can also be done in O(n + m) by precalculating the digits for each word.

Statistics: 176 submissions, 63 accepted, 22 unknown

D: Dialling Digits
Problem author: Ragnar Groot Koerkamp

Problem: For each phone number, output the matching words.
Observation: n · m ≤ 105, so run-time complexity of O(nm) is fine.

Solution: For each phone number p, for each word w :
• Let wd be the letters in w converted to digits using the keypad.
• Add w the output of p if wd = p.

Note: Can also be done in O(n + m) by precalculating the digits for each word.

Statistics: 176 submissions, 63 accepted, 22 unknown

D: Dialling Digits
Problem author: Ragnar Groot Koerkamp

Problem: For each phone number, output the matching words.
Observation: n · m ≤ 105, so run-time complexity of O(nm) is fine.

Solution: For each phone number p, for each word w :
• Let wd be the letters in w converted to digits using the keypad.
• Add w the output of p if wd = p.

Note: Can also be done in O(n + m) by precalculating the digits for each word.

Statistics: 176 submissions, 63 accepted, 22 unknown

D: Dialling Digits
Problem author: Ragnar Groot Koerkamp

Problem: For each phone number, output the matching words.
Observation: n · m ≤ 105, so run-time complexity of O(nm) is fine.

Solution: For each phone number p, for each word w :
• Let wd be the letters in w converted to digits using the keypad.
• Add w the output of p if wd = p.

Note: Can also be done in O(n + m) by precalculating the digits for each word.

Statistics: 176 submissions, 63 accepted, 22 unknown

D: Dialling Digits
Problem author: Ragnar Groot Koerkamp

Problem: For each phone number, output the matching words.
Observation: n · m ≤ 105, so run-time complexity of O(nm) is fine.

Solution: For each phone number p, for each word w :
• Let wd be the letters in w converted to digits using the keypad.
• Add w the output of p if wd = p.

Note: Can also be done in O(n + m) by precalculating the digits for each word.

Statistics: 176 submissions, 63 accepted, 22 unknown

G: Giganotosaurus Game
Problem author: Tobias Roehr

Problem: A game where you jump over cactuses, trying to reach the end of the world. Each
jump is one cell longer than the last. How many different winning paths exist?

Observation: If you jump k times, you move past 1 + 2 + . . . + k ∈ O(k2) cells. Hence, you can
jump at most O(√n) times.

Solution: Let A[x][k] denote the number of paths to cell x with exactly k jumps. You can reach
this state by either jumping or not, so

A[x][k] =

{
0 if there is a cactus at x
A[x − k − 1][k − 1] + A[x − 1][k] otherwise

So we use dynamic programming. The answer is the sum of all values in A past n.
Pitfall: Bounds checking in the recurrence. It is easier to use a bottom-up approach.

Run time: O(n√
n), due to the size of the table.

Statistics: 232 submissions, 23 accepted, 90 unknown

G: Giganotosaurus Game
Problem author: Tobias Roehr

Problem: A game where you jump over cactuses, trying to reach the end of the world. Each
jump is one cell longer than the last. How many different winning paths exist?

Observation: If you jump k times, you move past 1 + 2 + . . . + k ∈ O(k2) cells. Hence, you can
jump at most O(√n) times.

Solution: Let A[x][k] denote the number of paths to cell x with exactly k jumps. You can reach
this state by either jumping or not, so

A[x][k] =

{
0 if there is a cactus at x
A[x − k − 1][k − 1] + A[x − 1][k] otherwise

So we use dynamic programming. The answer is the sum of all values in A past n.
Pitfall: Bounds checking in the recurrence. It is easier to use a bottom-up approach.

Run time: O(n√
n), due to the size of the table.

Statistics: 232 submissions, 23 accepted, 90 unknown

G: Giganotosaurus Game
Problem author: Tobias Roehr

Problem: A game where you jump over cactuses, trying to reach the end of the world. Each
jump is one cell longer than the last. How many different winning paths exist?

Observation: If you jump k times, you move past 1 + 2 + . . . + k ∈ O(k2) cells. Hence, you can
jump at most O(√n) times.

Solution: Let A[x][k] denote the number of paths to cell x with exactly k jumps. You can reach
this state by either jumping or not, so

A[x][k] =

{
0 if there is a cactus at x
A[x − k − 1][k − 1] + A[x − 1][k] otherwise

So we use dynamic programming. The answer is the sum of all values in A past n.

Pitfall: Bounds checking in the recurrence. It is easier to use a bottom-up approach.
Run time: O(n√

n), due to the size of the table.

Statistics: 232 submissions, 23 accepted, 90 unknown

G: Giganotosaurus Game
Problem author: Tobias Roehr

Problem: A game where you jump over cactuses, trying to reach the end of the world. Each
jump is one cell longer than the last. How many different winning paths exist?

Observation: If you jump k times, you move past 1 + 2 + . . . + k ∈ O(k2) cells. Hence, you can
jump at most O(√n) times.

Solution: Let A[x][k] denote the number of paths to cell x with exactly k jumps. You can reach
this state by either jumping or not, so

A[x][k] =

{
0 if there is a cactus at x
A[x − k − 1][k − 1] + A[x − 1][k] otherwise

So we use dynamic programming. The answer is the sum of all values in A past n.
Pitfall: Bounds checking in the recurrence. It is easier to use a bottom-up approach.

Run time: O(n√
n), due to the size of the table.

Statistics: 232 submissions, 23 accepted, 90 unknown

G: Giganotosaurus Game
Problem author: Tobias Roehr

Problem: A game where you jump over cactuses, trying to reach the end of the world. Each
jump is one cell longer than the last. How many different winning paths exist?

Observation: If you jump k times, you move past 1 + 2 + . . . + k ∈ O(k2) cells. Hence, you can
jump at most O(√n) times.

Solution: Let A[x][k] denote the number of paths to cell x with exactly k jumps. You can reach
this state by either jumping or not, so

A[x][k] =

{
0 if there is a cactus at x
A[x − k − 1][k − 1] + A[x − 1][k] otherwise

So we use dynamic programming. The answer is the sum of all values in A past n.
Pitfall: Bounds checking in the recurrence. It is easier to use a bottom-up approach.

Run time: O(n√
n), due to the size of the table.

Statistics: 232 submissions, 23 accepted, 90 unknown

G: Giganotosaurus Game
Problem author: Tobias Roehr

Problem: A game where you jump over cactuses, trying to reach the end of the world. Each
jump is one cell longer than the last. How many different winning paths exist?

Observation: If you jump k times, you move past 1 + 2 + . . . + k ∈ O(k2) cells. Hence, you can
jump at most O(√n) times.

Solution: Let A[x][k] denote the number of paths to cell x with exactly k jumps. You can reach
this state by either jumping or not, so

A[x][k] =

{
0 if there is a cactus at x
A[x − k − 1][k − 1] + A[x − 1][k] otherwise

So we use dynamic programming. The answer is the sum of all values in A past n.
Pitfall: Bounds checking in the recurrence. It is easier to use a bottom-up approach.

Run time: O(n√
n), due to the size of the table.

Statistics: 232 submissions, 23 accepted, 90 unknown

L: Lawful Limits
Problem author: Dirk van Bree

Problem: Find the length of the shortest path through a graph where the maximum speed of all
edges increases at some time t.

Possible pitfall: If the speed limit increases when you are on a road, you can drive at that higher
velocity instead.

Remark: The time it takes to drive down a road of length ℓ with speeds v1 < v2 changing at
time t is given by

time =

ℓ/v2 T ≥ t
ℓ/v1 (t − T) · v1 > ℓ

t − T + (ℓ − (t − T) · v1)/v2 else.

when the current time is T .
Solution: Apply Dijkstra to the time it takes to get to a vertex.

Run time: O(m + n log n).

Statistics: 90 submissions, 23 accepted, 35 unknown

L: Lawful Limits
Problem author: Dirk van Bree

Problem: Find the length of the shortest path through a graph where the maximum speed of all
edges increases at some time t.

Possible pitfall: If the speed limit increases when you are on a road, you can drive at that higher
velocity instead.

Remark: The time it takes to drive down a road of length ℓ with speeds v1 < v2 changing at
time t is given by

time =

ℓ/v2 T ≥ t
ℓ/v1 (t − T) · v1 > ℓ

t − T + (ℓ − (t − T) · v1)/v2 else.

when the current time is T .
Solution: Apply Dijkstra to the time it takes to get to a vertex.

Run time: O(m + n log n).

Statistics: 90 submissions, 23 accepted, 35 unknown

L: Lawful Limits
Problem author: Dirk van Bree

Problem: Find the length of the shortest path through a graph where the maximum speed of all
edges increases at some time t.

Possible pitfall: If the speed limit increases when you are on a road, you can drive at that higher
velocity instead.

Remark: The time it takes to drive down a road of length ℓ with speeds v1 < v2 changing at
time t is given by

time =

ℓ/v2 T ≥ t
ℓ/v1 (t − T) · v1 > ℓ

t − T + (ℓ − (t − T) · v1)/v2 else.

when the current time is T .

Solution: Apply Dijkstra to the time it takes to get to a vertex.
Run time: O(m + n log n).

Statistics: 90 submissions, 23 accepted, 35 unknown

L: Lawful Limits
Problem author: Dirk van Bree

Problem: Find the length of the shortest path through a graph where the maximum speed of all
edges increases at some time t.

Possible pitfall: If the speed limit increases when you are on a road, you can drive at that higher
velocity instead.

Remark: The time it takes to drive down a road of length ℓ with speeds v1 < v2 changing at
time t is given by

time =

ℓ/v2 T ≥ t
ℓ/v1 (t − T) · v1 > ℓ

t − T + (ℓ − (t − T) · v1)/v2 else.

when the current time is T .
Solution: Apply Dijkstra to the time it takes to get to a vertex.

Run time: O(m + n log n).

Statistics: 90 submissions, 23 accepted, 35 unknown

L: Lawful Limits
Problem author: Dirk van Bree

Problem: Find the length of the shortest path through a graph where the maximum speed of all
edges increases at some time t.

Possible pitfall: If the speed limit increases when you are on a road, you can drive at that higher
velocity instead.

Remark: The time it takes to drive down a road of length ℓ with speeds v1 < v2 changing at
time t is given by

time =

ℓ/v2 T ≥ t
ℓ/v1 (t − T) · v1 > ℓ

t − T + (ℓ − (t − T) · v1)/v2 else.

when the current time is T .
Solution: Apply Dijkstra to the time it takes to get to a vertex.

Run time: O(m + n log n).

Statistics: 90 submissions, 23 accepted, 35 unknown

L: Lawful Limits
Problem author: Dirk van Bree

Problem: Find the length of the shortest path through a graph where the maximum speed of all
edges increases at some time t.

Possible pitfall: If the speed limit increases when you are on a road, you can drive at that higher
velocity instead.

Remark: The time it takes to drive down a road of length ℓ with speeds v1 < v2 changing at
time t is given by

time =

ℓ/v2 T ≥ t
ℓ/v1 (t − T) · v1 > ℓ

t − T + (ℓ − (t − T) · v1)/v2 else.

when the current time is T .
Solution: Apply Dijkstra to the time it takes to get to a vertex.

Run time: O(m + n log n).

Statistics: 90 submissions, 23 accepted, 35 unknown

A: Awkward Auction
Problem author: Mees de Vries

Problem: Consider guessing a secret number m between 1 and n with feedback ‘lower’, ‘higher’,
or ‘correct’. Guessing g < m has cost b, while guessing g ≥ m has cost g . Find the
worst-case cost until guessing m, assuming you play optimally.

Solution: Dynamic Programming.

• For all 1 ≤ x ≤ y ≤ n, find the optimal worst-case cost dp[x][y] of guessing a
number in the interval [x , y].

• Compute the dp[x][y] in increasing order of the length y − x of the interval.
• Then dp[x][x] = x (since we have to guess x), dp[x][y] = 0 if x > y and

dp[x][y] = min

 min
x≤g<y

[
max

{
g +dp[x][g −1]︸ ︷︷ ︸

guess too high

, b+dp[g +1][y]︸ ︷︷ ︸
guess too low

}]
, y + dp[x][y −1]︸ ︷︷ ︸

guess too high

 .

Guessing right is always cheaper than guessing too high, so we can leave it out.
• The answer is dp[1][n].

Run time: O(n3).

Statistics: 54 submissions, 18 accepted, 13 unknown

A: Awkward Auction
Problem author: Mees de Vries

Problem: Consider guessing a secret number m between 1 and n with feedback ‘lower’, ‘higher’,
or ‘correct’. Guessing g < m has cost b, while guessing g ≥ m has cost g . Find the
worst-case cost until guessing m, assuming you play optimally.

Solution: Dynamic Programming.

• For all 1 ≤ x ≤ y ≤ n, find the optimal worst-case cost dp[x][y] of guessing a
number in the interval [x , y].

• Compute the dp[x][y] in increasing order of the length y − x of the interval.
• Then dp[x][x] = x (since we have to guess x), dp[x][y] = 0 if x > y and

dp[x][y] = min

 min
x≤g<y

[
max

{
g +dp[x][g −1]︸ ︷︷ ︸

guess too high

, b+dp[g +1][y]︸ ︷︷ ︸
guess too low

}]
, y + dp[x][y −1]︸ ︷︷ ︸

guess too high

 .

Guessing right is always cheaper than guessing too high, so we can leave it out.
• The answer is dp[1][n].

Run time: O(n3).

Statistics: 54 submissions, 18 accepted, 13 unknown

A: Awkward Auction
Problem author: Mees de Vries

Problem: Consider guessing a secret number m between 1 and n with feedback ‘lower’, ‘higher’,
or ‘correct’. Guessing g < m has cost b, while guessing g ≥ m has cost g . Find the
worst-case cost until guessing m, assuming you play optimally.

Solution: Dynamic Programming.
• For all 1 ≤ x ≤ y ≤ n, find the optimal worst-case cost dp[x][y] of guessing a

number in the interval [x , y].

• Compute the dp[x][y] in increasing order of the length y − x of the interval.
• Then dp[x][x] = x (since we have to guess x), dp[x][y] = 0 if x > y and

dp[x][y] = min

 min
x≤g<y

[
max

{
g +dp[x][g −1]︸ ︷︷ ︸

guess too high

, b+dp[g +1][y]︸ ︷︷ ︸
guess too low

}]
, y + dp[x][y −1]︸ ︷︷ ︸

guess too high

 .

Guessing right is always cheaper than guessing too high, so we can leave it out.
• The answer is dp[1][n].

Run time: O(n3).

Statistics: 54 submissions, 18 accepted, 13 unknown

A: Awkward Auction
Problem author: Mees de Vries

Problem: Consider guessing a secret number m between 1 and n with feedback ‘lower’, ‘higher’,
or ‘correct’. Guessing g < m has cost b, while guessing g ≥ m has cost g . Find the
worst-case cost until guessing m, assuming you play optimally.

Solution: Dynamic Programming.
• For all 1 ≤ x ≤ y ≤ n, find the optimal worst-case cost dp[x][y] of guessing a

number in the interval [x , y].
• Compute the dp[x][y] in increasing order of the length y − x of the interval.

• Then dp[x][x] = x (since we have to guess x), dp[x][y] = 0 if x > y and

dp[x][y] = min

 min
x≤g<y

[
max

{
g +dp[x][g −1]︸ ︷︷ ︸

guess too high

, b+dp[g +1][y]︸ ︷︷ ︸
guess too low

}]
, y + dp[x][y −1]︸ ︷︷ ︸

guess too high

 .

Guessing right is always cheaper than guessing too high, so we can leave it out.
• The answer is dp[1][n].

Run time: O(n3).

Statistics: 54 submissions, 18 accepted, 13 unknown

A: Awkward Auction
Problem author: Mees de Vries

Problem: Consider guessing a secret number m between 1 and n with feedback ‘lower’, ‘higher’,
or ‘correct’. Guessing g < m has cost b, while guessing g ≥ m has cost g . Find the
worst-case cost until guessing m, assuming you play optimally.

Solution: Dynamic Programming.
• For all 1 ≤ x ≤ y ≤ n, find the optimal worst-case cost dp[x][y] of guessing a

number in the interval [x , y].
• Compute the dp[x][y] in increasing order of the length y − x of the interval.
• Then dp[x][x] = x (since we have to guess x), dp[x][y] = 0 if x > y and

dp[x][y] = min

 min
x≤g<y

[
max

{
g +dp[x][g −1]︸ ︷︷ ︸

guess too high

, b+dp[g +1][y]︸ ︷︷ ︸
guess too low

}]
, y + dp[x][y −1]︸ ︷︷ ︸

guess too high

 .

Guessing right is always cheaper than guessing too high, so we can leave it out.

• The answer is dp[1][n].
Run time: O(n3).

Statistics: 54 submissions, 18 accepted, 13 unknown

A: Awkward Auction
Problem author: Mees de Vries

Problem: Consider guessing a secret number m between 1 and n with feedback ‘lower’, ‘higher’,
or ‘correct’. Guessing g < m has cost b, while guessing g ≥ m has cost g . Find the
worst-case cost until guessing m, assuming you play optimally.

Solution: Dynamic Programming.
• For all 1 ≤ x ≤ y ≤ n, find the optimal worst-case cost dp[x][y] of guessing a

number in the interval [x , y].
• Compute the dp[x][y] in increasing order of the length y − x of the interval.
• Then dp[x][x] = x (since we have to guess x), dp[x][y] = 0 if x > y and

dp[x][y] = min

 min
x≤g<y

[
max

{
g +dp[x][g −1]︸ ︷︷ ︸

guess too high

, b+dp[g +1][y]︸ ︷︷ ︸
guess too low

}]
, y + dp[x][y −1]︸ ︷︷ ︸

guess too high

 .

Guessing right is always cheaper than guessing too high, so we can leave it out.
• The answer is dp[1][n].

Run time: O(n3).

Statistics: 54 submissions, 18 accepted, 13 unknown

A: Awkward Auction
Problem author: Mees de Vries

Problem: Consider guessing a secret number m between 1 and n with feedback ‘lower’, ‘higher’,
or ‘correct’. Guessing g < m has cost b, while guessing g ≥ m has cost g . Find the
worst-case cost until guessing m, assuming you play optimally.

Solution: Dynamic Programming.
• For all 1 ≤ x ≤ y ≤ n, find the optimal worst-case cost dp[x][y] of guessing a

number in the interval [x , y].
• Compute the dp[x][y] in increasing order of the length y − x of the interval.
• Then dp[x][x] = x (since we have to guess x), dp[x][y] = 0 if x > y and

dp[x][y] = min

 min
x≤g<y

[
max

{
g +dp[x][g −1]︸ ︷︷ ︸

guess too high

, b+dp[g +1][y]︸ ︷︷ ︸
guess too low

}]
, y + dp[x][y −1]︸ ︷︷ ︸

guess too high

 .

Guessing right is always cheaper than guessing too high, so we can leave it out.
• The answer is dp[1][n].

Run time: O(n3).

Statistics: 54 submissions, 18 accepted, 13 unknown

A: Awkward Auction
Problem author: Mees de Vries

Problem: Consider guessing a secret number m between 1 and n with feedback ‘lower’, ‘higher’,
or ‘correct’. Guessing g < m has cost b, while guessing g ≥ m has cost g . Find the
worst-case cost until guessing m, assuming you play optimally.

Solution: Dynamic Programming.
• For all 1 ≤ x ≤ y ≤ n, find the optimal worst-case cost dp[x][y] of guessing a

number in the interval [x , y].
• Compute the dp[x][y] in increasing order of the length y − x of the interval.
• Then dp[x][x] = x (since we have to guess x), dp[x][y] = 0 if x > y and

dp[x][y] = min

 min
x≤g<y

[
max

{
g +dp[x][g −1]︸ ︷︷ ︸

guess too high

, b+dp[g +1][y]︸ ︷︷ ︸
guess too low

}]
, y + dp[x][y −1]︸ ︷︷ ︸

guess too high

 .

Guessing right is always cheaper than guessing too high, so we can leave it out.
• The answer is dp[1][n].

Run time: O(n3).

Statistics: 54 submissions, 18 accepted, 13 unknown

F: Fractal Area
Problem author: Lammert Westerdijk

Problem: Determine the area of a triangle, where the edges are a fractal defined by a polyline.

Solution base: The area of the equilateral triangle with sides of length 1 is
√

3/4.
One step: The area below the polyline can be calculated using the trapezoidal rule:

n−1∑
i=1

(xi+1 − xi) · 1
2(yi + yi+1)

Next step: If the area of level k of the fractal is Ak , the area of the next level is multiplied by the
square of lengths of the line segments:

Ak+1 =
n−1∑
i=1

d(i , i + 1)2Ak
(
d(i , j) ≡ distance between points i and j

)
Final answer: Sum areas of all levels and multiply by the 3 sides:

√
3

4 + 3
∞∑

k=0

Ak

But summing to ∞ is difficult. . . [citation needed]

F: Fractal Area
Problem author: Lammert Westerdijk

Problem: Determine the area of a triangle, where the edges are a fractal defined by a polyline.
Solution base: The area of the equilateral triangle with sides of length 1 is

√
3/4.

One step: The area below the polyline can be calculated using the trapezoidal rule:
n−1∑
i=1

(xi+1 − xi) · 1
2(yi + yi+1)

Next step: If the area of level k of the fractal is Ak , the area of the next level is multiplied by the
square of lengths of the line segments:

Ak+1 =
n−1∑
i=1

d(i , i + 1)2Ak
(
d(i , j) ≡ distance between points i and j

)
Final answer: Sum areas of all levels and multiply by the 3 sides:

√
3

4 + 3
∞∑

k=0

Ak

But summing to ∞ is difficult. . . [citation needed]

F: Fractal Area
Problem author: Lammert Westerdijk

Problem: Determine the area of a triangle, where the edges are a fractal defined by a polyline.
Solution base: The area of the equilateral triangle with sides of length 1 is

√
3/4.

One step: The area below the polyline can be calculated using the trapezoidal rule:
n−1∑
i=1

(xi+1 − xi) · 1
2(yi + yi+1)

Next step: If the area of level k of the fractal is Ak , the area of the next level is multiplied by the
square of lengths of the line segments:

Ak+1 =
n−1∑
i=1

d(i , i + 1)2Ak
(
d(i , j) ≡ distance between points i and j

)
Final answer: Sum areas of all levels and multiply by the 3 sides:

√
3

4 + 3
∞∑

k=0

Ak

But summing to ∞ is difficult. . . [citation needed]

F: Fractal Area
Problem author: Lammert Westerdijk

Problem: Determine the area of a triangle, where the edges are a fractal defined by a polyline.
Solution base: The area of the equilateral triangle with sides of length 1 is

√
3/4.

One step: The area below the polyline can be calculated using the trapezoidal rule:
n−1∑
i=1

(xi+1 − xi) · 1
2(yi + yi+1)

Next step: If the area of level k of the fractal is Ak , the area of the next level is multiplied by the
square of lengths of the line segments:

Ak+1 =
n−1∑
i=1

d(i , i + 1)2Ak
(
d(i , j) ≡ distance between points i and j

)

Final answer: Sum areas of all levels and multiply by the 3 sides:
√

3
4 + 3

∞∑
k=0

Ak

But summing to ∞ is difficult. . . [citation needed]

F: Fractal Area
Problem author: Lammert Westerdijk

Problem: Determine the area of a triangle, where the edges are a fractal defined by a polyline.
Solution base: The area of the equilateral triangle with sides of length 1 is

√
3/4.

One step: The area below the polyline can be calculated using the trapezoidal rule:
n−1∑
i=1

(xi+1 − xi) · 1
2(yi + yi+1)

Next step: If the area of level k of the fractal is Ak , the area of the next level is multiplied by the
square of lengths of the line segments:

Ak+1 =
n−1∑
i=1

d(i , i + 1)2Ak
(
d(i , j) ≡ distance between points i and j

)
Final answer: Sum areas of all levels and multiply by the 3 sides:

√
3

4 + 3
∞∑

k=0

Ak

But summing to ∞ is difficult. . . [citation needed]

F: Fractal Area
Problem author: Lammert Westerdijk

Problem: Determine the area of a triangle, where the edges are a fractal defined by a polyline.
Solution base: The area of the equilateral triangle with sides of length 1 is

√
3/4.

One step: The area below the polyline can be calculated using the trapezoidal rule:
n−1∑
i=1

(xi+1 − xi) · 1
2(yi + yi+1)

Next step: If the area of level k of the fractal is Ak , the area of the next level is multiplied by the
square of lengths of the line segments:

Ak+1 =
n−1∑
i=1

d(i , i + 1)2Ak
(
d(i , j) ≡ distance between points i and j

)
Final answer: Sum areas of all levels and multiply by the 3 sides:

√
3

4 + 3
∞∑

k=0

Ak

But summing to ∞ is difficult. . . [citation needed]

F: Fractal Area
Problem author: Lammert Westerdijk

Problem: Determine the area of a triangle, where the edges are a fractal defined by a polyline.

Problem 2: Calculate
√

3
4 + 3

∞∑
k=0

Ak without actually summing to ∞.

Solve recurrence: Write Ak as r k · A0 (r is the constant ratio of areas between two levels).
The sum of a geometric series is

∑∞
k=0 r k · A0 = A0

1−r .
Final answer v2.0: √

3
4 + 3 · A0

1 − r
Run time: O(n) to calculate A0 (area below polyline) and r (sum of squares of segment lengths).

But. . . : A 64-bit double is not infinite! Looping and summing until the answer does not
change anymore is possible, this terminates after a few million iterations.

Statistics: 106 submissions, 11 accepted, 45 unknown

F: Fractal Area
Problem author: Lammert Westerdijk

Problem: Determine the area of a triangle, where the edges are a fractal defined by a polyline.

Problem 2: Calculate
√

3
4 + 3

∞∑
k=0

Ak without actually summing to ∞.

Solve recurrence: Write Ak as r k · A0 (r is the constant ratio of areas between two levels).
The sum of a geometric series is

∑∞
k=0 r k · A0 = A0

1−r .

Final answer v2.0: √
3

4 + 3 · A0

1 − r
Run time: O(n) to calculate A0 (area below polyline) and r (sum of squares of segment lengths).

But. . . : A 64-bit double is not infinite! Looping and summing until the answer does not
change anymore is possible, this terminates after a few million iterations.

Statistics: 106 submissions, 11 accepted, 45 unknown

F: Fractal Area
Problem author: Lammert Westerdijk

Problem: Determine the area of a triangle, where the edges are a fractal defined by a polyline.

Problem 2: Calculate
√

3
4 + 3

∞∑
k=0

Ak without actually summing to ∞.

Solve recurrence: Write Ak as r k · A0 (r is the constant ratio of areas between two levels).
The sum of a geometric series is

∑∞
k=0 r k · A0 = A0

1−r .
Final answer v2.0: √

3
4 + 3 · A0

1 − r

Run time: O(n) to calculate A0 (area below polyline) and r (sum of squares of segment lengths).
But. . . : A 64-bit double is not infinite! Looping and summing until the answer does not

change anymore is possible, this terminates after a few million iterations.

Statistics: 106 submissions, 11 accepted, 45 unknown

F: Fractal Area
Problem author: Lammert Westerdijk

Problem: Determine the area of a triangle, where the edges are a fractal defined by a polyline.

Problem 2: Calculate
√

3
4 + 3

∞∑
k=0

Ak without actually summing to ∞.

Solve recurrence: Write Ak as r k · A0 (r is the constant ratio of areas between two levels).
The sum of a geometric series is

∑∞
k=0 r k · A0 = A0

1−r .
Final answer v2.0: √

3
4 + 3 · A0

1 − r
Run time: O(n) to calculate A0 (area below polyline) and r (sum of squares of segment lengths).

But. . . : A 64-bit double is not infinite! Looping and summing until the answer does not
change anymore is possible, this terminates after a few million iterations.

Statistics: 106 submissions, 11 accepted, 45 unknown

F: Fractal Area
Problem author: Lammert Westerdijk

Problem: Determine the area of a triangle, where the edges are a fractal defined by a polyline.

Problem 2: Calculate
√

3
4 + 3

∞∑
k=0

Ak without actually summing to ∞.

Solve recurrence: Write Ak as r k · A0 (r is the constant ratio of areas between two levels).
The sum of a geometric series is

∑∞
k=0 r k · A0 = A0

1−r .
Final answer v2.0: √

3
4 + 3 · A0

1 − r
Run time: O(n) to calculate A0 (area below polyline) and r (sum of squares of segment lengths).

But. . . : A 64-bit double is not infinite! Looping and summing until the answer does not
change anymore is possible, this terminates after a few million iterations.

Statistics: 106 submissions, 11 accepted, 45 unknown

F: Fractal Area
Problem author: Lammert Westerdijk

Problem: Determine the area of a triangle, where the edges are a fractal defined by a polyline.

Problem 2: Calculate
√

3
4 + 3

∞∑
k=0

Ak without actually summing to ∞.

Solve recurrence: Write Ak as r k · A0 (r is the constant ratio of areas between two levels).
The sum of a geometric series is

∑∞
k=0 r k · A0 = A0

1−r .
Final answer v2.0: √

3
4 + 3 · A0

1 − r
Run time: O(n) to calculate A0 (area below polyline) and r (sum of squares of segment lengths).

But. . . : A 64-bit double is not infinite! Looping and summing until the answer does not
change anymore is possible, this terminates after a few million iterations.

Statistics: 106 submissions, 11 accepted, 45 unknown

C: Chaotic Cables
Problem author: Mees de Vries

Problem: Recognize a hypercube.

Observation: There are 2d vertices in an d-dimensional hypercube and each vertex is connected to
exactly d other vertices.

Solution: • Pick an arbitrary vertex v and label it as 0.
• Label all neighbours of v with distinct powers of 2.
• Do a breadth-first search from v . For each unvisited neighbour u of v , label u

with the bitwise OR of its current label and the label of v .
• Check for each edge if the labels of its endpoints differ in exactly one bit.

Pitfall: Missing checks or checking the number of edges instead of each vertex degree may
lead to wrong answers.

Run time: O(n + m).

Statistics: 98 submissions, 6 accepted, 32 unknown

C: Chaotic Cables
Problem author: Mees de Vries

Problem: Recognize a hypercube.
Observation: There are 2d vertices in an d-dimensional hypercube and each vertex is connected to

exactly d other vertices.

Solution: • Pick an arbitrary vertex v and label it as 0.
• Label all neighbours of v with distinct powers of 2.
• Do a breadth-first search from v . For each unvisited neighbour u of v , label u

with the bitwise OR of its current label and the label of v .
• Check for each edge if the labels of its endpoints differ in exactly one bit.

Pitfall: Missing checks or checking the number of edges instead of each vertex degree may
lead to wrong answers.

Run time: O(n + m).

Statistics: 98 submissions, 6 accepted, 32 unknown

C: Chaotic Cables
Problem author: Mees de Vries

Problem: Recognize a hypercube.
Observation: There are 2d vertices in an d-dimensional hypercube and each vertex is connected to

exactly d other vertices.
Solution: • Pick an arbitrary vertex v and label it as 0.

• Label all neighbours of v with distinct powers of 2.
• Do a breadth-first search from v . For each unvisited neighbour u of v , label u

with the bitwise OR of its current label and the label of v .
• Check for each edge if the labels of its endpoints differ in exactly one bit.

Pitfall: Missing checks or checking the number of edges instead of each vertex degree may
lead to wrong answers.

Run time: O(n + m).

Statistics: 98 submissions, 6 accepted, 32 unknown

C: Chaotic Cables
Problem author: Mees de Vries

Problem: Recognize a hypercube.
Observation: There are 2d vertices in an d-dimensional hypercube and each vertex is connected to

exactly d other vertices.
Solution: • Pick an arbitrary vertex v and label it as 0.

• Label all neighbours of v with distinct powers of 2.
• Do a breadth-first search from v . For each unvisited neighbour u of v , label u

with the bitwise OR of its current label and the label of v .
• Check for each edge if the labels of its endpoints differ in exactly one bit.

Pitfall: Missing checks or checking the number of edges instead of each vertex degree may
lead to wrong answers.

Run time: O(n + m).

Statistics: 98 submissions, 6 accepted, 32 unknown

C: Chaotic Cables
Problem author: Mees de Vries

Problem: Recognize a hypercube.
Observation: There are 2d vertices in an d-dimensional hypercube and each vertex is connected to

exactly d other vertices.
Solution: • Pick an arbitrary vertex v and label it as 0.

• Label all neighbours of v with distinct powers of 2.
• Do a breadth-first search from v . For each unvisited neighbour u of v , label u

with the bitwise OR of its current label and the label of v .
• Check for each edge if the labels of its endpoints differ in exactly one bit.

Pitfall: Missing checks or checking the number of edges instead of each vertex degree may
lead to wrong answers.

Run time: O(n + m).

Statistics: 98 submissions, 6 accepted, 32 unknown

C: Chaotic Cables
Problem author: Mees de Vries

Problem: Recognize a hypercube.
Observation: There are 2d vertices in an d-dimensional hypercube and each vertex is connected to

exactly d other vertices.
Solution: • Pick an arbitrary vertex v and label it as 0.

• Label all neighbours of v with distinct powers of 2.
• Do a breadth-first search from v . For each unvisited neighbour u of v , label u

with the bitwise OR of its current label and the label of v .
• Check for each edge if the labels of its endpoints differ in exactly one bit.

Pitfall: Missing checks or checking the number of edges instead of each vertex degree may
lead to wrong answers.

Run time: O(n + m).

Statistics: 98 submissions, 6 accepted, 32 unknown

I: Investment Investigation
Problem author: Ivan Fefer

Problem: Given a list of all orders made on a stock market, generate a list of all transactions
made. Normal orders can be fulfilled after being placed, while FoK orders need to be
fulfilled instantaneously or not at all.

Observation: Every transaction completes at least one order, so the number of transactions is O(n).
Observation: Normal orders can be handled with a priority queue.

• Run time: O(#transactions · log n) per order.
Naive solution: Try handling a FoK order the same as a normal order, undoing transactions if it is not

fulfilled.
Problem: Can take O(n log n) time per FoK order!

Observation: Need to quickly check whether a FoK order can be fulfilled.

I: Investment Investigation
Problem author: Ivan Fefer

Problem: Given a list of all orders made on a stock market, generate a list of all transactions
made. Normal orders can be fulfilled after being placed, while FoK orders need to be
fulfilled instantaneously or not at all.

Observation: Every transaction completes at least one order, so the number of transactions is O(n).

Observation: Normal orders can be handled with a priority queue.
• Run time: O(#transactions · log n) per order.

Naive solution: Try handling a FoK order the same as a normal order, undoing transactions if it is not
fulfilled.

Problem: Can take O(n log n) time per FoK order!
Observation: Need to quickly check whether a FoK order can be fulfilled.

I: Investment Investigation
Problem author: Ivan Fefer

Problem: Given a list of all orders made on a stock market, generate a list of all transactions
made. Normal orders can be fulfilled after being placed, while FoK orders need to be
fulfilled instantaneously or not at all.

Observation: Every transaction completes at least one order, so the number of transactions is O(n).
Observation: Normal orders can be handled with a priority queue.

• Run time: O(#transactions · log n) per order.

Naive solution: Try handling a FoK order the same as a normal order, undoing transactions if it is not
fulfilled.

Problem: Can take O(n log n) time per FoK order!
Observation: Need to quickly check whether a FoK order can be fulfilled.

I: Investment Investigation
Problem author: Ivan Fefer

Problem: Given a list of all orders made on a stock market, generate a list of all transactions
made. Normal orders can be fulfilled after being placed, while FoK orders need to be
fulfilled instantaneously or not at all.

Observation: Every transaction completes at least one order, so the number of transactions is O(n).
Observation: Normal orders can be handled with a priority queue.

• Run time: O(#transactions · log n) per order.
Naive solution: Try handling a FoK order the same as a normal order, undoing transactions if it is not

fulfilled.

Problem: Can take O(n log n) time per FoK order!
Observation: Need to quickly check whether a FoK order can be fulfilled.

I: Investment Investigation
Problem author: Ivan Fefer

Problem: Given a list of all orders made on a stock market, generate a list of all transactions
made. Normal orders can be fulfilled after being placed, while FoK orders need to be
fulfilled instantaneously or not at all.

Observation: Every transaction completes at least one order, so the number of transactions is O(n).
Observation: Normal orders can be handled with a priority queue.

• Run time: O(#transactions · log n) per order.
Naive solution: Try handling a FoK order the same as a normal order, undoing transactions if it is not

fulfilled.
Problem: Can take O(n log n) time per FoK order!

Observation: Need to quickly check whether a FoK order can be fulfilled.

I: Investment Investigation
Problem author: Ivan Fefer

Problem: Given a list of all orders made on a stock market, generate a list of all transactions
made. Normal orders can be fulfilled after being placed, while FoK orders need to be
fulfilled instantaneously or not at all.

Observation: Every transaction completes at least one order, so the number of transactions is O(n).
Observation: Normal orders can be handled with a priority queue.

• Run time: O(#transactions · log n) per order.
Naive solution: Try handling a FoK order the same as a normal order, undoing transactions if it is not

fulfilled.
Problem: Can take O(n log n) time per FoK order!

Observation: Need to quickly check whether a FoK order can be fulfilled.

I: Investment Investigation
Problem author: Ivan Fefer

Problem: Given a list of all orders made on a stock market, generate a list of all transactions
made. Normal orders can be fulfilled after being placed, while FoK orders need to be
fulfilled instantaneously or not at all.

Observation: Normal orders can be handled with a priority queue.
Observation: Need to quickly check whether a FoK order can be fulfilled.

Online Solution: Use augmented binary search tree or implicit segment tree to compute total volume of
outstanding orders above a buy price / below a sell price in O(log n).

• An augmented binary search tree can be difficult to implement.

Offline Solution: Use a normal segment tree or binary indexed tree.

• Need to convert prices to values between 1 and n.

Run time: O(n log n).

Statistics: 46 submissions, 5 accepted, 24 unknown

I: Investment Investigation
Problem author: Ivan Fefer

Problem: Given a list of all orders made on a stock market, generate a list of all transactions
made. Normal orders can be fulfilled after being placed, while FoK orders need to be
fulfilled instantaneously or not at all.

Observation: Normal orders can be handled with a priority queue.
Observation: Need to quickly check whether a FoK order can be fulfilled.

Online Solution: Use augmented binary search tree or implicit segment tree to compute total volume of
outstanding orders above a buy price / below a sell price in O(log n).

• An augmented binary search tree can be difficult to implement.
Offline Solution: Use a normal segment tree or binary indexed tree.

• Need to convert prices to values between 1 and n.

Run time: O(n log n).

Statistics: 46 submissions, 5 accepted, 24 unknown

I: Investment Investigation
Problem author: Ivan Fefer

Problem: Given a list of all orders made on a stock market, generate a list of all transactions
made. Normal orders can be fulfilled after being placed, while FoK orders need to be
fulfilled instantaneously or not at all.

Observation: Normal orders can be handled with a priority queue.
Observation: Need to quickly check whether a FoK order can be fulfilled.

Online Solution: Use augmented binary search tree or implicit segment tree to compute total volume of
outstanding orders above a buy price / below a sell price in O(log n).

• An augmented binary search tree can be difficult to implement.

Offline Solution: Use a normal segment tree or binary indexed tree.

• Need to convert prices to values between 1 and n.

Run time: O(n log n).

Statistics: 46 submissions, 5 accepted, 24 unknown

I: Investment Investigation
Problem author: Ivan Fefer

Problem: Given a list of all orders made on a stock market, generate a list of all transactions
made. Normal orders can be fulfilled after being placed, while FoK orders need to be
fulfilled instantaneously or not at all.

Observation: Normal orders can be handled with a priority queue.
Observation: Need to quickly check whether a FoK order can be fulfilled.

Online Solution: Use augmented binary search tree or implicit segment tree to compute total volume of
outstanding orders above a buy price / below a sell price in O(log n).

• An augmented binary search tree can be difficult to implement.
Offline Solution: Use a normal segment tree or binary indexed tree.

• Need to convert prices to values between 1 and n.
Run time: O(n log n).

Statistics: 46 submissions, 5 accepted, 24 unknown

I: Investment Investigation
Problem author: Ivan Fefer

Problem: Given a list of all orders made on a stock market, generate a list of all transactions
made. Normal orders can be fulfilled after being placed, while FoK orders need to be
fulfilled instantaneously or not at all.

Observation: Normal orders can be handled with a priority queue.
Observation: Need to quickly check whether a FoK order can be fulfilled.

Online Solution: Use augmented binary search tree or implicit segment tree to compute total volume of
outstanding orders above a buy price / below a sell price in O(log n).

• An augmented binary search tree can be difficult to implement.
Offline Solution: Use a normal segment tree or binary indexed tree.

• Need to convert prices to values between 1 and n.

Run time: O(n log n).

Statistics: 46 submissions, 5 accepted, 24 unknown

I: Investment Investigation
Problem author: Ivan Fefer

Problem: Given a list of all orders made on a stock market, generate a list of all transactions
made. Normal orders can be fulfilled after being placed, while FoK orders need to be
fulfilled instantaneously or not at all.

Observation: Normal orders can be handled with a priority queue.
Observation: Need to quickly check whether a FoK order can be fulfilled.

Online Solution: Use augmented binary search tree or implicit segment tree to compute total volume of
outstanding orders above a buy price / below a sell price in O(log n).

• An augmented binary search tree can be difficult to implement.
Offline Solution: Use a normal segment tree or binary indexed tree.

• Need to convert prices to values between 1 and n.
Run time: O(n log n).

Statistics: 46 submissions, 5 accepted, 24 unknown

I: Investment Investigation
Problem author: Ivan Fefer

Problem: Given a list of all orders made on a stock market, generate a list of all transactions
made. Normal orders can be fulfilled after being placed, while FoK orders need to be
fulfilled instantaneously or not at all.

Observation: Normal orders can be handled with a priority queue.
Observation: Need to quickly check whether a FoK order can be fulfilled.

Online Solution: Use augmented binary search tree or implicit segment tree to compute total volume of
outstanding orders above a buy price / below a sell price in O(log n).

• An augmented binary search tree can be difficult to implement.
Offline Solution: Use a normal segment tree or binary indexed tree.

• Need to convert prices to values between 1 and n.
Run time: O(n log n).

Statistics: 46 submissions, 5 accepted, 24 unknown

J: Joppiesaus Jailbreak
Problem author: Mike de Vries

Problem: Given the lengths x1, . . . , xn of all levels in a platformer, all of which take an integer
number of frames to finish, determine the fastest time to finish all levels if the
framerate can be set to any real in (0, f].

Reformulating: With framerate f ′, each level takes ⌈xi f ′/1000⌉ frames to finish. The total time is
(1/f ′)

∑n
i=1⌈xi f ′/1000⌉.

Observation 1: The function 1/f ′ is decreasing, so a minimum can only be attained when∑n
i=1⌈xi f ′/1000⌉ jumps, or when f′ = f. Jumps occur whenever f ′ = 1000m/xi for

some integer 0 < m ≤ xi f /1000.
Naive solution: Compute all interesting framerates, and for each compute the total time to finish the

game. This is O(nf
∑n

i=1 xi/1000), too slow!

J: Joppiesaus Jailbreak
Problem author: Mike de Vries

Problem: Given the lengths x1, . . . , xn of all levels in a platformer, all of which take an integer
number of frames to finish, determine the fastest time to finish all levels if the
framerate can be set to any real in (0, f].

Reformulating: With framerate f ′, each level takes ⌈xi f ′/1000⌉ frames to finish. The total time is
(1/f ′)

∑n
i=1⌈xi f ′/1000⌉.

Observation 1: The function 1/f ′ is decreasing, so a minimum can only be attained when∑n
i=1⌈xi f ′/1000⌉ jumps, or when f′ = f. Jumps occur whenever f ′ = 1000m/xi for

some integer 0 < m ≤ xi f /1000.
Naive solution: Compute all interesting framerates, and for each compute the total time to finish the

game. This is O(nf
∑n

i=1 xi/1000), too slow!

J: Joppiesaus Jailbreak
Problem author: Mike de Vries

Problem: Given the lengths x1, . . . , xn of all levels in a platformer, all of which take an integer
number of frames to finish, determine the fastest time to finish all levels if the
framerate can be set to any real in (0, f].

Reformulating: With framerate f ′, each level takes ⌈xi f ′/1000⌉ frames to finish. The total time is
(1/f ′)

∑n
i=1⌈xi f ′/1000⌉.

Observation 1: The function 1/f ′ is decreasing, so a minimum can only be attained when∑n
i=1⌈xi f ′/1000⌉ jumps, or when f′ = f. Jumps occur whenever f ′ = 1000m/xi for

some integer 0 < m ≤ xi f /1000.

Naive solution: Compute all interesting framerates, and for each compute the total time to finish the
game. This is O(nf

∑n
i=1 xi/1000), too slow!

J: Joppiesaus Jailbreak
Problem author: Mike de Vries

Problem: Given the lengths x1, . . . , xn of all levels in a platformer, all of which take an integer
number of frames to finish, determine the fastest time to finish all levels if the
framerate can be set to any real in (0, f].

Reformulating: With framerate f ′, each level takes ⌈xi f ′/1000⌉ frames to finish. The total time is
(1/f ′)

∑n
i=1⌈xi f ′/1000⌉.

Observation 1: The function 1/f ′ is decreasing, so a minimum can only be attained when∑n
i=1⌈xi f ′/1000⌉ jumps, or when f′ = f. Jumps occur whenever f ′ = 1000m/xi for

some integer 0 < m ≤ xi f /1000.
Naive solution: Compute all interesting framerates, and for each compute the total time to finish the

game. This is O(nf
∑n

i=1 xi/1000), too slow!

J: Joppiesaus Jailbreak
Problem author: Mike de Vries

Problem: Given the lengths x1, . . . , xn of all levels in a platformer, all of which take an integer
number of frames to finish, determine the fastest time to finish all levels if the
framerate can be set to any real in (0, f].

Observation 2: If all jumps are distinct, the total number of frames increases by exactly 1 at each
jump. If we sort the jumps, recomputing the total time takes O(1)! This also works if
the jumps are not distinct.

Solution: Compute all jumps and sort them. For the first jump, compute the total frames. For
each jump after the first, simply add a single additional frame. Finally, compute the
case f ′ = f .

Run time: O(f
∑n

i=1 xi/1000 log(f
∑n

i=1 xi/1000)).

Statistics: 47 submissions, 1 accepted, 39 unknown

J: Joppiesaus Jailbreak
Problem author: Mike de Vries

Problem: Given the lengths x1, . . . , xn of all levels in a platformer, all of which take an integer
number of frames to finish, determine the fastest time to finish all levels if the
framerate can be set to any real in (0, f].

Observation 2: If all jumps are distinct, the total number of frames increases by exactly 1 at each
jump. If we sort the jumps, recomputing the total time takes O(1)! This also works if
the jumps are not distinct.

Solution: Compute all jumps and sort them. For the first jump, compute the total frames. For
each jump after the first, simply add a single additional frame. Finally, compute the
case f ′ = f .

Run time: O(f
∑n

i=1 xi/1000 log(f
∑n

i=1 xi/1000)).

Statistics: 47 submissions, 1 accepted, 39 unknown

J: Joppiesaus Jailbreak
Problem author: Mike de Vries

Problem: Given the lengths x1, . . . , xn of all levels in a platformer, all of which take an integer
number of frames to finish, determine the fastest time to finish all levels if the
framerate can be set to any real in (0, f].

Observation 2: If all jumps are distinct, the total number of frames increases by exactly 1 at each
jump. If we sort the jumps, recomputing the total time takes O(1)! This also works if
the jumps are not distinct.

Solution: Compute all jumps and sort them. For the first jump, compute the total frames. For
each jump after the first, simply add a single additional frame. Finally, compute the
case f ′ = f .

Run time: O(f
∑n

i=1 xi/1000 log(f
∑n

i=1 xi/1000)).

Statistics: 47 submissions, 1 accepted, 39 unknown

J: Joppiesaus Jailbreak
Problem author: Mike de Vries

Problem: Given the lengths x1, . . . , xn of all levels in a platformer, all of which take an integer
number of frames to finish, determine the fastest time to finish all levels if the
framerate can be set to any real in (0, f].

Observation 2: If all jumps are distinct, the total number of frames increases by exactly 1 at each
jump. If we sort the jumps, recomputing the total time takes O(1)! This also works if
the jumps are not distinct.

Solution: Compute all jumps and sort them. For the first jump, compute the total frames. For
each jump after the first, simply add a single additional frame. Finally, compute the
case f ′ = f .

Run time: O(f
∑n

i=1 xi/1000 log(f
∑n

i=1 xi/1000)).

Statistics: 47 submissions, 1 accepted, 39 unknown

K: Kitchens of Königsberg
Problem author: Tobias Roehr

Problem: Given multigraph G , integer k. Find K ⊆ V (G) such that exactly k edges have at least
an endpoint in K . Also known as “Partial Exact Vertex Cover”.

Example: for k = 6:

Naive solution 1: Consider all 2n subsets of V (G). Running time O(2n poly(n)), way too slow.
Naive solution 2: Can assume |K | ≤ k, so it suffices to consider all

(n
1

)
+ · · · +

(n
k

)
≤ nk vertex subsets

of size at most k. Running time O(nk poly(n)), still too slow.

K: Kitchens of Königsberg
Problem author: Tobias Roehr

Problem: Given multigraph G , integer k. Find K ⊆ V (G) such that exactly k edges have at least
an endpoint in K . Also known as “Partial Exact Vertex Cover”.

Example: for k = 6:

Naive solution 1: Consider all 2n subsets of V (G). Running time O(2n poly(n)), way too slow.
Naive solution 2: Can assume |K | ≤ k, so it suffices to consider all

(n
1

)
+ · · · +

(n
k

)
≤ nk vertex subsets

of size at most k. Running time O(nk poly(n)), still too slow.

K: Kitchens of Königsberg
Problem author: Tobias Roehr

Problem: Given multigraph G , integer k. Find K ⊆ V (G) such that exactly k edges have at least
an endpoint in K . Also known as “Partial Exact Vertex Cover”.

Example: for k = 6:

Naive solution 1: Consider all 2n subsets of V (G). Running time O(2n poly(n)), way too slow.

Naive solution 2: Can assume |K | ≤ k, so it suffices to consider all
(n

1

)
+ · · · +

(n
k

)
≤ nk vertex subsets

of size at most k. Running time O(nk poly(n)), still too slow.

K: Kitchens of Königsberg
Problem author: Tobias Roehr

Problem: Given multigraph G , integer k. Find K ⊆ V (G) such that exactly k edges have at least
an endpoint in K . Also known as “Partial Exact Vertex Cover”.

Example: for k = 6:

Naive solution 1: Consider all 2n subsets of V (G). Running time O(2n poly(n)), way too slow.
Naive solution 2: Can assume |K | ≤ k, so it suffices to consider all

(n
1

)
+ · · · +

(n
k

)
≤ nk vertex subsets

of size at most k. Running time O(nk poly(n)), still too slow.

K: Kitchens of Königsberg
Problem author: Tobias Roehr

Problem: Given multigraph G , integer k. Find K ⊆ V (G) such that exactly k edges have at least
an endpoint in K . Also known as “Partial Exact Vertex Cover”.

Hacky solution: The solution is very small (|K | ≤ k ≤ 6), so we can use preprocessing, exhaustive
search, and local optimisation to solve what is otherwise an NP-hard problem even on
large instances. Note that it must run in O(n2).
Here are some ideas:

Remove large degree vertices: No vertex of degree > k can contribute to the solution (it would cover
> k edges), so we can remove those from vertices under consideration
for the vertex cover.

Check all singletons and pairs: The vertex set is small enough (n ≤ 5000) that we can exhaustively
check all K ⊆ V (G) with |K | ≤ 2.

Remove leaves: For any leaf v , we can consider the instance (G − {v}, k − 1) to detect
every solution containing a leaf.

Recursion: For any v , the graph (G , k) is a yes-instance if and only if
(G − {v}, k − deg(v)) is.

Fancy solution: Random orientation algorithm, see next slide.

Statistics: 15 submissions, 1 accepted, 14 unknown

K: Kitchens of Königsberg
Problem author: Tobias Roehr

Problem: Given multigraph G , integer k. Find K ⊆ V (G) such that exactly k edges have at least
an endpoint in K . Also known as “Partial Exact Vertex Cover”.

Hacky solution: The solution is very small (|K | ≤ k ≤ 6), so we can use preprocessing, exhaustive
search, and local optimisation to solve what is otherwise an NP-hard problem even on
large instances. Note that it must run in O(n2).
Here are some ideas:

Remove large degree vertices: No vertex of degree > k can contribute to the solution (it would cover
> k edges), so we can remove those from vertices under consideration
for the vertex cover.

Check all singletons and pairs: The vertex set is small enough (n ≤ 5000) that we can exhaustively
check all K ⊆ V (G) with |K | ≤ 2.

Remove leaves: For any leaf v , we can consider the instance (G − {v}, k − 1) to detect
every solution containing a leaf.

Recursion: For any v , the graph (G , k) is a yes-instance if and only if
(G − {v}, k − deg(v)) is.

Fancy solution: Random orientation algorithm, see next slide.

Statistics: 15 submissions, 1 accepted, 14 unknown

K: Kitchens of Königsberg
Problem author: Tobias Roehr

Problem: Given multigraph G , integer k. Find K ⊆ V (G) such that exactly k edges have at least
an endpoint in K . Also known as “Partial Exact Vertex Cover”.

Hacky solution: The solution is very small (|K | ≤ k ≤ 6), so we can use preprocessing, exhaustive
search, and local optimisation to solve what is otherwise an NP-hard problem even on
large instances. Note that it must run in O(n2).
Here are some ideas:

Remove large degree vertices: No vertex of degree > k can contribute to the solution (it would cover
> k edges), so we can remove those from vertices under consideration
for the vertex cover.

Check all singletons and pairs: The vertex set is small enough (n ≤ 5000) that we can exhaustively
check all K ⊆ V (G) with |K | ≤ 2.

Remove leaves: For any leaf v , we can consider the instance (G − {v}, k − 1) to detect
every solution containing a leaf.

Recursion: For any v , the graph (G , k) is a yes-instance if and only if
(G − {v}, k − deg(v)) is.

Fancy solution: Random orientation algorithm, see next slide.

Statistics: 15 submissions, 1 accepted, 14 unknown

K: Kitchens of Königsberg
Problem author: Tobias Roehr

Problem: Given multigraph G , integer k. Find K ⊆ V (G) such that exactly k edges have at least
an endpoint in K . Also known as “Partial Exact Vertex Cover”.

Hacky solution: The solution is very small (|K | ≤ k ≤ 6), so we can use preprocessing, exhaustive
search, and local optimisation to solve what is otherwise an NP-hard problem even on
large instances. Note that it must run in O(n2).
Here are some ideas:

Remove large degree vertices: No vertex of degree > k can contribute to the solution (it would cover
> k edges), so we can remove those from vertices under consideration
for the vertex cover.

Check all singletons and pairs: The vertex set is small enough (n ≤ 5000) that we can exhaustively
check all K ⊆ V (G) with |K | ≤ 2.

Remove leaves: For any leaf v , we can consider the instance (G − {v}, k − 1) to detect
every solution containing a leaf.

Recursion: For any v , the graph (G , k) is a yes-instance if and only if
(G − {v}, k − deg(v)) is.

Fancy solution: Random orientation algorithm, see next slide.

Statistics: 15 submissions, 1 accepted, 14 unknown

K: Kitchens of Königsberg
Problem author: Tobias Roehr

Problem: Given multigraph G , integer k. Find K ⊆ V (G) such that exactly k edges have at least
an endpoint in K . Also known as “Partial Exact Vertex Cover”.

Hacky solution: The solution is very small (|K | ≤ k ≤ 6), so we can use preprocessing, exhaustive
search, and local optimisation to solve what is otherwise an NP-hard problem even on
large instances. Note that it must run in O(n2).
Here are some ideas:

Remove large degree vertices: No vertex of degree > k can contribute to the solution (it would cover
> k edges), so we can remove those from vertices under consideration
for the vertex cover.

Check all singletons and pairs: The vertex set is small enough (n ≤ 5000) that we can exhaustively
check all K ⊆ V (G) with |K | ≤ 2.

Remove leaves: For any leaf v , we can consider the instance (G − {v}, k − 1) to detect
every solution containing a leaf.

Recursion: For any v , the graph (G , k) is a yes-instance if and only if
(G − {v}, k − deg(v)) is.

Fancy solution: Random orientation algorithm, see next slide.

Statistics: 15 submissions, 1 accepted, 14 unknown

K: Kitchens of Königsberg
Problem author: Tobias Roehr

Problem: Given multigraph G , integer k. Find K ⊆ V (G) such that exactly k edges have at least
an endpoint in K . Also known as “Partial Exact Vertex Cover”.

Hacky solution: The solution is very small (|K | ≤ k ≤ 6), so we can use preprocessing, exhaustive
search, and local optimisation to solve what is otherwise an NP-hard problem even on
large instances. Note that it must run in O(n2).
Here are some ideas:

Remove large degree vertices: No vertex of degree > k can contribute to the solution (it would cover
> k edges), so we can remove those from vertices under consideration
for the vertex cover.

Check all singletons and pairs: The vertex set is small enough (n ≤ 5000) that we can exhaustively
check all K ⊆ V (G) with |K | ≤ 2.

Remove leaves: For any leaf v , we can consider the instance (G − {v}, k − 1) to detect
every solution containing a leaf.

Recursion: For any v , the graph (G , k) is a yes-instance if and only if
(G − {v}, k − deg(v)) is.

Fancy solution: Random orientation algorithm, see next slide.

Statistics: 15 submissions, 1 accepted, 14 unknown

K: Kitchens of Königsberg
Problem author: Tobias Roehr

Problem: Given multigraph G , integer k. Find K ⊆ V (G) such that exactly k edges have at least
an endpoint in K . Also known as “Partial Exact Vertex Cover”.

Hacky solution: The solution is very small (|K | ≤ k ≤ 6), so we can use preprocessing, exhaustive
search, and local optimisation to solve what is otherwise an NP-hard problem even on
large instances. Note that it must run in O(n2).
Here are some ideas:

Remove large degree vertices: No vertex of degree > k can contribute to the solution (it would cover
> k edges), so we can remove those from vertices under consideration
for the vertex cover.

Check all singletons and pairs: The vertex set is small enough (n ≤ 5000) that we can exhaustively
check all K ⊆ V (G) with |K | ≤ 2.

Remove leaves: For any leaf v , we can consider the instance (G − {v}, k − 1) to detect
every solution containing a leaf.

Recursion: For any v , the graph (G , k) is a yes-instance if and only if
(G − {v}, k − deg(v)) is.

Fancy solution: Random orientation algorithm, see next slide.

Statistics: 15 submissions, 1 accepted, 14 unknown

K: Kitchens of Königsberg
Problem author: Tobias Roehr

Problem: Given multigraph G , integer k. Find K ⊆ V (G) such that exactly k edges have at least
an endpoint in K . Also known as “Partial Exact Vertex Cover”.

Random orientation algorithm. Randomly orient each edge uv as
either (u, v), (v , u), or leave it undirected, each with probability 1

3 .
Compute components C1, . . . , Cr such that each Ci only contains
arcs pointing into Ci . (Say, using BFS.)
Assemble solution from these Ci . (“Subset Sum” the indegrees of
components to make k.)
Correctness Every internal edge in K must remain undirected (probability 1

3) and every edge incident
on K must be directed towards (probability 1

3). (Orientation of remaining edges unimportant.) Total
success probability = 1

3
k . Do t = 3k ln n independent repetitions; all fail with probability(

1 − 1
3

k)t ≤ (exp(− 1
3

k))t ≤ 1/n .

Run time O(3k poly(n)), known as “fixed parameter tractable (FPT) in k”.

[Kneis, J., Langer, A., Rossmanith, P. Improved Upper Bounds for Partial Vertex Cover.
Graph-Theoretic Concepts in Computer Science. WG 2008. Springer LNCS 5344.]

Language stats

C C++ Java Kotlin Python 3
0

25

50

75

100

125

150

175 correct
wrong answer
timelimit
run error
pending

Random facts

Jury work

• 505 commits (last year: 492)

• 1228 secret test cases (last year: 1050) (≈ 102 1
3 per problem!)

• 236 jury + proofreader solutions (last year: 195)
• The minimum1 number of lines the jury needed to solve all problems is

4 + 3 + 7 + 3 + 2 + 3 + 21 + 1 + 60 + 21 + 61 + 9 = 195

On average 16 1
4 lines per problem, up from 13.9 in last year’s preliminaries

Random facts

Jury work

• 505 commits (last year: 492)
• 1228 secret test cases (last year: 1050) (≈ 102 1

3 per problem!)

• 236 jury + proofreader solutions (last year: 195)
• The minimum1 number of lines the jury needed to solve all problems is

4 + 3 + 7 + 3 + 2 + 3 + 21 + 1 + 60 + 21 + 61 + 9 = 195

On average 16 1
4 lines per problem, up from 13.9 in last year’s preliminaries

Random facts

Jury work

• 505 commits (last year: 492)
• 1228 secret test cases (last year: 1050) (≈ 102 1

3 per problem!)
• 236 jury + proofreader solutions (last year: 195)

• The minimum1 number of lines the jury needed to solve all problems is

4 + 3 + 7 + 3 + 2 + 3 + 21 + 1 + 60 + 21 + 61 + 9 = 195

On average 16 1
4 lines per problem, up from 13.9 in last year’s preliminaries

Random facts

Jury work

• 505 commits (last year: 492)
• 1228 secret test cases (last year: 1050) (≈ 102 1

3 per problem!)
• 236 jury + proofreader solutions (last year: 195)
• The minimum1 number of lines the jury needed to solve all problems is

4 + 3 + 7 + 3 + 2 + 3 + 21 + 1 + 60 + 21 + 61 + 9 = 195

On average 16 1
4 lines per problem, up from 13.9 in last year’s preliminaries

1With some code golfing

Thanks to:

The proofreaders
Angel Karchev
Arnoud van der Leer
Jaap Eldering
Jeroen Bransen (Hero)
Kevin Verbeek
Pavel Kunyavskiy (Hero)
Thomas Verwoerd (Hero)
Wendy Yi

The jury
Gijs Pennings
Jonas van der Schaaf
Jorke de Vlas
Lammert Westerdijk
Maarten Sijm
Mees de Vries
Mike de Vries
Ragnar Groot Koerkamp
Reinier Schmiermann
Thore Husfeldt
Tobias Roehr
Wietze Koops

Want to join the jury? Submit to the Call for Problems of BAPC 2025 at:

https://jury.bapc.eu/

https://jury.bapc.eu/

