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H: Human Pyramid
Problem author: Mees de Vries

Problem: Find the highest possible pyramid you can build with n ≤ 1012 people.

Note: A human pyramid of height h consists of p(h) = h · (h + 1)
2 people.

Solution 1: Iterate over increasing values of h until you hit n. O(√n).
Solution 2: Binary search the height of the pyramid. O(log n).

Solution 3: Invert the function p: p−1(n) =
⌊√

8n + 1 − 1
2

⌋
. O(1).

Statistics: 143 submissions, 75 accepted
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This could give floating-point errors, but with these input limits and using doubles, it does not.
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B: Battle of Nieuwpoort
Problem author: Timon Knigge

Problem: Given a year y in decimal, with 2 ≤ y ≤ 2024, if possible, find base b with 2 ≤ b ≤ 16
such that when y is written in base-b, it ends with “00”.

Equivalently: Determine b such that b2 divides y without remainder. So, just check for all
b ∈ {2, . . . , 16} if b2 | y . In fact, suffices to check the primes b ∈ {2, 3, 5, 7, 11, 13}.

Solution (math): Check if b2 | y using integer modulus:

y % (b * b) == 0

Solution (string): Check if y written in base-b ends with “00”. Some programming languages support this
natively, such as Java’s Integer.toString(y, b). You can also do this digit by digit:

letters = “0123456789abcdef”
s = “”
while y > 0:

s += letters[y % b]
y = y/b (integer division)

return reversed(s)

Statistics: 142 submissions, 71 accepted, 4 unknown
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E: Expected Error
Problem author: Mike de Vries

Problem: You are typing your password, but your finger slipped and you are not sure whether you
pressed a wrong key. Determine whether to continue typing, press backspace and
continue typing or restart typing from scratch.

Solution: Let us measure time in deciseconds to avoid decimals.
• If the password is wrong, this adds 4 + n deciseconds to your total time.
• We find continue yields an expected time of 1 + n − k + (4 + n)p/100

deciseconds.
• We find backspace yields an expected time of 2 + n − k + (4 + n)(1 − p/100)

deciseconds.
• We find restart yields an expected time of 4 + n deciseconds.
• To avoid decimals again, compare 100(1 + n − k) + (4 + n)p with

100(2 + n − k) + (4 + n)(100 − p) and 100(4 + n).
• The guarantee of a unique optimal strategy means one of these integers will be

the smallest.

Statistics: 165 submissions, 67 accepted, 16 unknown



E: Expected Error
Problem author: Mike de Vries

Problem: You are typing your password, but your finger slipped and you are not sure whether you
pressed a wrong key. Determine whether to continue typing, press backspace and
continue typing or restart typing from scratch.

Solution: Let us measure time in deciseconds to avoid decimals.
• If the password is wrong, this adds 4 + n deciseconds to your total time.
• We find continue yields an expected time of 1 + n − k + (4 + n)p/100

deciseconds.
• We find backspace yields an expected time of 2 + n − k + (4 + n)(1 − p/100)

deciseconds.
• We find restart yields an expected time of 4 + n deciseconds.
• To avoid decimals again, compare 100(1 + n − k) + (4 + n)p with

100(2 + n − k) + (4 + n)(100 − p) and 100(4 + n).
• The guarantee of a unique optimal strategy means one of these integers will be

the smallest.

Statistics: 165 submissions, 67 accepted, 16 unknown



E: Expected Error
Problem author: Mike de Vries

Problem: You are typing your password, but your finger slipped and you are not sure whether you
pressed a wrong key. Determine whether to continue typing, press backspace and
continue typing or restart typing from scratch.

Solution: Let us measure time in deciseconds to avoid decimals.
• If the password is wrong, this adds 4 + n deciseconds to your total time.
• We find continue yields an expected time of 1 + n − k + (4 + n)p/100

deciseconds.
• We find backspace yields an expected time of 2 + n − k + (4 + n)(1 − p/100)

deciseconds.
• We find restart yields an expected time of 4 + n deciseconds.
• To avoid decimals again, compare 100(1 + n − k) + (4 + n)p with

100(2 + n − k) + (4 + n)(100 − p) and 100(4 + n).
• The guarantee of a unique optimal strategy means one of these integers will be

the smallest.

Statistics: 165 submissions, 67 accepted, 16 unknown



D: Dialling Digits
Problem author: Ragnar Groot Koerkamp

Problem: For each phone number, output the matching words.

Observation: n · m ≤ 105, so run-time complexity of O(nm) is fine.
Solution: For each phone number p, for each word w :

• Let wd be the letters in w converted to digits using the keypad.
• Add w the output of p if wd = p.

Note: Can also be done in O(n + m) by precalculating the digits for each word.

Statistics: 176 submissions, 63 accepted, 22 unknown
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G: Giganotosaurus Game
Problem author: Tobias Roehr

Problem: A game where you jump over cactuses, trying to reach the end of the world. Each
jump is one cell longer than the last. How many different winning paths exist?

Observation: If you jump k times, you move past 1 + 2 + . . . + k ∈ O(k2) cells. Hence, you can
jump at most O(√n) times.

Solution: Let A[x ][k] denote the number of paths to cell x with exactly k jumps. You can reach
this state by either jumping or not, so

A[x ][k] =

{
0 if there is a cactus at x
A[x − k − 1][k − 1] + A[x − 1][k] otherwise

So we use dynamic programming. The answer is the sum of all values in A past n.
Pitfall: Bounds checking in the recurrence. It is easier to use a bottom-up approach.

Run time: O(n√
n), due to the size of the table.

Statistics: 232 submissions, 23 accepted, 90 unknown
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L: Lawful Limits
Problem author: Dirk van Bree

Problem: Find the length of the shortest path through a graph where the maximum speed of all
edges increases at some time t.

Possible pitfall: If the speed limit increases when you are on a road, you can drive at that higher
velocity instead.

Remark: The time it takes to drive down a road of length ℓ with speeds v1 < v2 changing at
time t is given by

time =


ℓ/v2 T ≥ t
ℓ/v1 (t − T ) · v1 > ℓ

t − T + (ℓ − (t − T ) · v1)/v2 else.

when the current time is T .
Solution: Apply Dijkstra to the time it takes to get to a vertex.

Run time: O(m + n log n).

Statistics: 90 submissions, 23 accepted, 35 unknown
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A: Awkward Auction
Problem author: Mees de Vries

Problem: Consider guessing a secret number m between 1 and n with feedback ‘lower’, ‘higher’,
or ‘correct’. Guessing g < m has cost b, while guessing g ≥ m has cost g . Find the
worst-case cost until guessing m, assuming you play optimally.

Solution: Dynamic Programming.

• For all 1 ≤ x ≤ y ≤ n, find the optimal worst-case cost dp[x ][y ] of guessing a
number in the interval [x , y ].

• Compute the dp[x ][y ] in increasing order of the length y − x of the interval.
• Then dp[x ][x ] = x (since we have to guess x), dp[x ][y ] = 0 if x > y and

dp[x ][y ] = min

 min
x≤g<y

[
max

{
g +dp[x ][g −1]︸ ︷︷ ︸

guess too high

, b+dp[g +1][y ]︸ ︷︷ ︸
guess too low

}]
, y + dp[x ][y −1]︸ ︷︷ ︸

guess too high

 .

Guessing right is always cheaper than guessing too high, so we can leave it out.
• The answer is dp[1][n].

Run time: O(n3).

Statistics: 54 submissions, 18 accepted, 13 unknown
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F: Fractal Area
Problem author: Lammert Westerdijk

Problem: Determine the area of a triangle, where the edges are a fractal defined by a polyline.

Solution base: The area of the equilateral triangle with sides of length 1 is
√

3/4.
One step: The area below the polyline can be calculated using the trapezoidal rule:

n−1∑
i=1

(xi+1 − xi) · 1
2(yi + yi+1)

Next step: If the area of level k of the fractal is Ak , the area of the next level is multiplied by the
square of lengths of the line segments:

Ak+1 =
n−1∑
i=1

d(i , i + 1)2Ak
(
d(i , j) ≡ distance between points i and j

)
Final answer: Sum areas of all levels and multiply by the 3 sides:

√
3

4 + 3
∞∑

k=0

Ak

But summing to ∞ is difficult. . . [citation needed]
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F: Fractal Area
Problem author: Lammert Westerdijk

Problem: Determine the area of a triangle, where the edges are a fractal defined by a polyline.

Problem 2: Calculate
√

3
4 + 3

∞∑
k=0

Ak without actually summing to ∞.

Solve recurrence: Write Ak as r k · A0 (r is the constant ratio of areas between two levels).
The sum of a geometric series is

∑∞
k=0 r k · A0 = A0

1−r .
Final answer v2.0: √

3
4 + 3 · A0

1 − r
Run time: O(n) to calculate A0 (area below polyline) and r (sum of squares of segment lengths).

But. . . : A 64-bit double is not infinite! Looping and summing until the answer does not
change anymore is possible, this terminates after a few million iterations.

Statistics: 106 submissions, 11 accepted, 45 unknown
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C: Chaotic Cables
Problem author: Mees de Vries

Problem: Recognize a hypercube.

Observation: There are 2d vertices in an d-dimensional hypercube and each vertex is connected to
exactly d other vertices.

Solution: • Pick an arbitrary vertex v and label it as 0.
• Label all neighbours of v with distinct powers of 2.
• Do a breadth-first search from v . For each unvisited neighbour u of v , label u

with the bitwise OR of its current label and the label of v .
• Check for each edge if the labels of its endpoints differ in exactly one bit.

Pitfall: Missing checks or checking the number of edges instead of each vertex degree may
lead to wrong answers.

Run time: O(n + m).

Statistics: 98 submissions, 6 accepted, 32 unknown



C: Chaotic Cables
Problem author: Mees de Vries

Problem: Recognize a hypercube.
Observation: There are 2d vertices in an d-dimensional hypercube and each vertex is connected to

exactly d other vertices.

Solution: • Pick an arbitrary vertex v and label it as 0.
• Label all neighbours of v with distinct powers of 2.
• Do a breadth-first search from v . For each unvisited neighbour u of v , label u

with the bitwise OR of its current label and the label of v .
• Check for each edge if the labels of its endpoints differ in exactly one bit.

Pitfall: Missing checks or checking the number of edges instead of each vertex degree may
lead to wrong answers.

Run time: O(n + m).

Statistics: 98 submissions, 6 accepted, 32 unknown



C: Chaotic Cables
Problem author: Mees de Vries

Problem: Recognize a hypercube.
Observation: There are 2d vertices in an d-dimensional hypercube and each vertex is connected to

exactly d other vertices.
Solution: • Pick an arbitrary vertex v and label it as 0.

• Label all neighbours of v with distinct powers of 2.
• Do a breadth-first search from v . For each unvisited neighbour u of v , label u

with the bitwise OR of its current label and the label of v .
• Check for each edge if the labels of its endpoints differ in exactly one bit.

Pitfall: Missing checks or checking the number of edges instead of each vertex degree may
lead to wrong answers.

Run time: O(n + m).

Statistics: 98 submissions, 6 accepted, 32 unknown



C: Chaotic Cables
Problem author: Mees de Vries

Problem: Recognize a hypercube.
Observation: There are 2d vertices in an d-dimensional hypercube and each vertex is connected to

exactly d other vertices.
Solution: • Pick an arbitrary vertex v and label it as 0.

• Label all neighbours of v with distinct powers of 2.
• Do a breadth-first search from v . For each unvisited neighbour u of v , label u

with the bitwise OR of its current label and the label of v .
• Check for each edge if the labels of its endpoints differ in exactly one bit.

Pitfall: Missing checks or checking the number of edges instead of each vertex degree may
lead to wrong answers.

Run time: O(n + m).

Statistics: 98 submissions, 6 accepted, 32 unknown



C: Chaotic Cables
Problem author: Mees de Vries

Problem: Recognize a hypercube.
Observation: There are 2d vertices in an d-dimensional hypercube and each vertex is connected to

exactly d other vertices.
Solution: • Pick an arbitrary vertex v and label it as 0.

• Label all neighbours of v with distinct powers of 2.
• Do a breadth-first search from v . For each unvisited neighbour u of v , label u

with the bitwise OR of its current label and the label of v .
• Check for each edge if the labels of its endpoints differ in exactly one bit.

Pitfall: Missing checks or checking the number of edges instead of each vertex degree may
lead to wrong answers.

Run time: O(n + m).

Statistics: 98 submissions, 6 accepted, 32 unknown



C: Chaotic Cables
Problem author: Mees de Vries

Problem: Recognize a hypercube.
Observation: There are 2d vertices in an d-dimensional hypercube and each vertex is connected to

exactly d other vertices.
Solution: • Pick an arbitrary vertex v and label it as 0.

• Label all neighbours of v with distinct powers of 2.
• Do a breadth-first search from v . For each unvisited neighbour u of v , label u

with the bitwise OR of its current label and the label of v .
• Check for each edge if the labels of its endpoints differ in exactly one bit.

Pitfall: Missing checks or checking the number of edges instead of each vertex degree may
lead to wrong answers.

Run time: O(n + m).

Statistics: 98 submissions, 6 accepted, 32 unknown



I: Investment Investigation
Problem author: Ivan Fefer

Problem: Given a list of all orders made on a stock market, generate a list of all transactions
made. Normal orders can be fulfilled after being placed, while FoK orders need to be
fulfilled instantaneously or not at all.

Observation: Every transaction completes at least one order, so the number of transactions is O(n).
Observation: Normal orders can be handled with a priority queue.

• Run time: O(#transactions · log n) per order.
Naive solution: Try handling a FoK order the same as a normal order, undoing transactions if it is not

fulfilled.
Problem: Can take O(n log n) time per FoK order!

Observation: Need to quickly check whether a FoK order can be fulfilled.
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Online Solution: Use augmented binary search tree or implicit segment tree to compute total volume of
outstanding orders above a buy price / below a sell price in O(log n).

• An augmented binary search tree can be difficult to implement.

Offline Solution: Use a normal segment tree or binary indexed tree.

• Need to convert prices to values between 1 and n.

Run time: O(n log n).

Statistics: 46 submissions, 5 accepted, 24 unknown
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J: Joppiesaus Jailbreak
Problem author: Mike de Vries

Problem: Given the lengths x1, . . . , xn of all levels in a platformer, all of which take an integer
number of frames to finish, determine the fastest time to finish all levels if the
framerate can be set to any real in (0, f ].

Reformulating: With framerate f ′, each level takes ⌈xi f ′/1000⌉ frames to finish. The total time is
(1/f ′)

∑n
i=1⌈xi f ′/1000⌉.

Observation 1: The function 1/f ′ is decreasing, so a minimum can only be attained when∑n
i=1⌈xi f ′/1000⌉ jumps, or when f′ = f. Jumps occur whenever f ′ = 1000m/xi for

some integer 0 < m ≤ xi f /1000.
Naive solution: Compute all interesting framerates, and for each compute the total time to finish the

game. This is O(nf
∑n

i=1 xi/1000), too slow!



J: Joppiesaus Jailbreak
Problem author: Mike de Vries

Problem: Given the lengths x1, . . . , xn of all levels in a platformer, all of which take an integer
number of frames to finish, determine the fastest time to finish all levels if the
framerate can be set to any real in (0, f ].

Reformulating: With framerate f ′, each level takes ⌈xi f ′/1000⌉ frames to finish. The total time is
(1/f ′)

∑n
i=1⌈xi f ′/1000⌉.

Observation 1: The function 1/f ′ is decreasing, so a minimum can only be attained when∑n
i=1⌈xi f ′/1000⌉ jumps, or when f′ = f. Jumps occur whenever f ′ = 1000m/xi for

some integer 0 < m ≤ xi f /1000.
Naive solution: Compute all interesting framerates, and for each compute the total time to finish the

game. This is O(nf
∑n

i=1 xi/1000), too slow!



J: Joppiesaus Jailbreak
Problem author: Mike de Vries

Problem: Given the lengths x1, . . . , xn of all levels in a platformer, all of which take an integer
number of frames to finish, determine the fastest time to finish all levels if the
framerate can be set to any real in (0, f ].

Reformulating: With framerate f ′, each level takes ⌈xi f ′/1000⌉ frames to finish. The total time is
(1/f ′)

∑n
i=1⌈xi f ′/1000⌉.

Observation 1: The function 1/f ′ is decreasing, so a minimum can only be attained when∑n
i=1⌈xi f ′/1000⌉ jumps, or when f′ = f. Jumps occur whenever f ′ = 1000m/xi for

some integer 0 < m ≤ xi f /1000.

Naive solution: Compute all interesting framerates, and for each compute the total time to finish the
game. This is O(nf

∑n
i=1 xi/1000), too slow!



J: Joppiesaus Jailbreak
Problem author: Mike de Vries

Problem: Given the lengths x1, . . . , xn of all levels in a platformer, all of which take an integer
number of frames to finish, determine the fastest time to finish all levels if the
framerate can be set to any real in (0, f ].

Reformulating: With framerate f ′, each level takes ⌈xi f ′/1000⌉ frames to finish. The total time is
(1/f ′)

∑n
i=1⌈xi f ′/1000⌉.

Observation 1: The function 1/f ′ is decreasing, so a minimum can only be attained when∑n
i=1⌈xi f ′/1000⌉ jumps, or when f′ = f. Jumps occur whenever f ′ = 1000m/xi for

some integer 0 < m ≤ xi f /1000.
Naive solution: Compute all interesting framerates, and for each compute the total time to finish the

game. This is O(nf
∑n

i=1 xi/1000), too slow!



J: Joppiesaus Jailbreak
Problem author: Mike de Vries

Problem: Given the lengths x1, . . . , xn of all levels in a platformer, all of which take an integer
number of frames to finish, determine the fastest time to finish all levels if the
framerate can be set to any real in (0, f ].

Observation 2: If all jumps are distinct, the total number of frames increases by exactly 1 at each
jump. If we sort the jumps, recomputing the total time takes O(1)! This also works if
the jumps are not distinct.

Solution: Compute all jumps and sort them. For the first jump, compute the total frames. For
each jump after the first, simply add a single additional frame. Finally, compute the
case f ′ = f .

Run time: O(f
∑n

i=1 xi/1000 log(f
∑n

i=1 xi/1000)).

Statistics: 47 submissions, 1 accepted, 39 unknown
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K: Kitchens of Königsberg
Problem author: Tobias Roehr

Problem: Given multigraph G , integer k. Find K ⊆ V (G) such that exactly k edges have at least
an endpoint in K . Also known as “Partial Exact Vertex Cover”.

Example: for k = 6:

Naive solution 1: Consider all 2n subsets of V (G). Running time O(2n poly(n)), way too slow.
Naive solution 2: Can assume |K | ≤ k, so it suffices to consider all

(n
1

)
+ · · · +

(n
k

)
≤ nk vertex subsets

of size at most k. Running time O(nk poly(n)), still too slow.
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K: Kitchens of Königsberg
Problem author: Tobias Roehr

Problem: Given multigraph G , integer k. Find K ⊆ V (G) such that exactly k edges have at least
an endpoint in K . Also known as “Partial Exact Vertex Cover”.

Hacky solution: The solution is very small (|K | ≤ k ≤ 6), so we can use preprocessing, exhaustive
search, and local optimisation to solve what is otherwise an NP-hard problem even on
large instances. Note that it must run in O(n2).
Here are some ideas:

Remove large degree vertices: No vertex of degree > k can contribute to the solution (it would cover
> k edges), so we can remove those from vertices under consideration
for the vertex cover.

Check all singletons and pairs: The vertex set is small enough (n ≤ 5000) that we can exhaustively
check all K ⊆ V (G) with |K | ≤ 2.

Remove leaves: For any leaf v , we can consider the instance (G − {v}, k − 1) to detect
every solution containing a leaf.

Recursion: For any v , the graph (G , k) is a yes-instance if and only if
(G − {v}, k − deg(v)) is.

Fancy solution: Random orientation algorithm, see next slide.

Statistics: 15 submissions, 1 accepted, 14 unknown
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K: Kitchens of Königsberg
Problem author: Tobias Roehr

Problem: Given multigraph G , integer k. Find K ⊆ V (G) such that exactly k edges have at least
an endpoint in K . Also known as “Partial Exact Vertex Cover”.

Random orientation algorithm. Randomly orient each edge uv as
either (u, v), (v , u), or leave it undirected, each with probability 1

3 .
Compute components C1, . . . , Cr such that each Ci only contains
arcs pointing into Ci . (Say, using BFS.)
Assemble solution from these Ci . (“Subset Sum” the indegrees of
components to make k.)
Correctness Every internal edge in K must remain undirected (probability 1

3 ) and every edge incident
on K must be directed towards (probability 1

3 ). (Orientation of remaining edges unimportant.) Total
success probability = 1

3
k . Do t = 3k ln n independent repetitions; all fail with probability(

1 − 1
3

k)t ≤ (exp(− 1
3

k))t ≤ 1/n .

Run time O(3k poly(n)), known as “fixed parameter tractable (FPT) in k”.

[Kneis, J., Langer, A., Rossmanith, P. Improved Upper Bounds for Partial Vertex Cover.
Graph-Theoretic Concepts in Computer Science. WG 2008. Springer LNCS 5344.]
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Random facts

Jury work

• 505 commits (last year: 492)

• 1228 secret test cases (last year: 1050) (≈ 102 1
3 per problem!)

• 236 jury + proofreader solutions (last year: 195)
• The minimum1 number of lines the jury needed to solve all problems is

4 + 3 + 7 + 3 + 2 + 3 + 21 + 1 + 60 + 21 + 61 + 9 = 195

On average 16 1
4 lines per problem, up from 13.9 in last year’s preliminaries
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Jury work

• 505 commits (last year: 492)
• 1228 secret test cases (last year: 1050) (≈ 102 1

3 per problem!)
• 236 jury + proofreader solutions (last year: 195)
• The minimum1 number of lines the jury needed to solve all problems is

4 + 3 + 7 + 3 + 2 + 3 + 21 + 1 + 60 + 21 + 61 + 9 = 195

On average 16 1
4 lines per problem, up from 13.9 in last year’s preliminaries

1With some code golfing
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