
DAPC 2024
Delft Algorithm Programming Contest 2024

Problems
A Awkward Auction
B Battle of Nieuwpoort
C Chaotic Cables
D Dialling Digits
E Expected Error
F Fractal Area
G Giganotosaurus Game
H Human Pyramid
I Investment Investigation
J Joppiesaus Jailbreak
K Kitchens of Königsberg
L Lawful Limits

Copyright © 2024 by The BAPC 2024 jury. This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

Problem A: Awkward Auction 3

A Awkward Auction Time limit: 1s

The coveted BAPC cup.
© GEWIS on 2022.bapc.eu,

used with permission

Your local warehouse’s marketing department has thought of a
new way of extracting money from their consumers: organizing
the Battle in Assessing Precisely Costs (BAPC).

A battle is played against an auctioneer. The auctioneer has an
unlimited number of identical gems available, which all have the
same fixed secret worth. This secret worth is an integer between
1 and n (inclusive, in euros). In each round, you have to bid an
integer amount of euros on such a gem, and your goal is to bid
exactly the secret worth. If you bid at least the secret worth, you have to buy the gem for the
amount of your bid. On the other hand, if you bid less than the secret worth, you do not get
the gem and keep your bid. However, if you bid less than the worth, the auctioneer will give
an endless speech why the gem is clearly worth more than the bid. To stop this speech and
be able to make a new bid, you have to bribe the auctioneer with b euros each time. Finally,
if you bid exactly the secret worth, then in addition to buying the gem, you get a nice cup
showing that you won the battle, and the battle immediately ends.

Since the BAPC is your favourite competition, you of course want this cup! Therefore, you
keep bidding until you bid the right amount and get the cup. You wonder how much this will
cost you in the worst case, assuming that you make optimal decisions for the amounts to bid.

Input

The input consists of:

• One line with two integers n and b (1 ≤ n ≤ 400, 1 ≤ b ≤ 10 000), the given maximum
worth of the gem and the bribe you need to pay when bidding too low.

Output

Output the maximum cost in euros that you have to pay in the worst case if you bid optimally.

Sample Input 1 Sample Output 1
4 2 6

Sample Input 2 Sample Output 2
8 3 16

https://2022.bapc.eu/

This page is intentionally left blank.

Problem B: Battle of Nieuwpoort 5

B Battle of Nieuwpoort Time limit: 1s

Prince Maurice at the Battle of
Nieuwpoort, 2 July 1600,

Pauwels van Hillegaert (1596–1640),
Oil on panel, circa 1632–1640.
Public domain, Rijksmuseum

Amsterdam and Wikimedia Commons

The battle of Nieuwpoort occurred in the year 1600. This is
famously easy to remember, because it ends in two zeros. Alas,
not all historical events have been so obliging!

You suspect that the problem is with the fixation of historians
on the decimal system. Maybe, given the year of another battle,
there exists a small base (at most 16) in which this year would
also be easy to remember?

Input

The input consists of:

• One line with 4 tokens:

– One integer y (1 ≤ y ≤ 2024, in base-10), the year of the battle.

– Three words w (2 ≤ |w| ≤ 20), naming the battle.
The words only consist of English letters (A-Z and a-z).

Output

If it is possible to rewrite the year to make it easier to remember, output this base b (2 ≤ b ≤ 16,
in base-10) and the year written in base-b. Otherwise, output “impossible”.

The year in base-b must end with “00” and must not start with ‘0’.

Use letters ‘a’, ‘b’, ‘c’, etc. for the digits following ‘9’ in bases higher than 10.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1
1600 Battle of Nieuwpoort 10 1600

Sample Input 2 Sample Output 2
625 Battle of Sarus 5 10000

Sample Input 3 Sample Output 3
1600 Battle of Sekigahara 8 3100

Sample Input 4 Sample Output 4
1815 Battle of Waterloo 11 1400

https://commons.wikimedia.org/wiki/File:Prins_Maurits_in_de_Slag_bij_Nieuwpoort,_2_juli_1600,_SK-A-664.jpg

6 Problem B: Battle of Nieuwpoort

Sample Input 5 Sample Output 5
1859 Battle of Solferino 13 b00

Sample Input 6 Sample Output 6
1848 Battle of Bov 2 11100111000

Sample Input 7 Sample Output 7
1453 Fall of Constantinople impossible

Problem C: Chaotic Cables 7

C Chaotic Cables Time limit: 1s

Visualization of a possible BAPC network.
CC0 by David Lohner on Flickr

Your friend Claas is in charge of designing the network for
the newly constructed computer lab. Aware of the critical
importance of efficiency in network design, Claas opted
for the sophisticated Binary Access Point Configuration
(BAPC) network topology.

A network is classified as a BAPC network precisely if we
can assign a binary address of a fixed length to each device
within the network, ensuring that:

1. Devices are connected if and only if their addresses
differ in exactly one bit.

2. Each possible address is assigned to exactly one device.

Claas started out wiring devices together, but as the intricate web of connections began to
take shape, doubt crept into his mind. Was the network he painstakingly constructed truly a
BAPC network?

Help Claas determine if the network is a BAPC network.

Input

The input consists of:

• One line with two integers n and m (2 ≤ n ≤ 2 · 105, 1 ≤ m ≤ 2 · 105) the number of
devices and the number of wires in the network.

• m lines with integers a and b (1 ≤ a, b ≤ n, a ̸= b), indicating that there is a wire
between devices a and b.

It is guaranteed that each pair of devices is connected by at most one wire.

Output

Output “yes” if the network is a BAPC network. Otherwise, output “no”.

Sample Input 1 Sample Output 1
4 3
1 2
2 3
1 4

no

https://flickr.com/photos/davidlohner/32808143587/

8 Problem C: Chaotic Cables

Sample Input 2 Sample Output 2
8 12
1 2
6 2
8 2
3 1
1 7
3 6
6 5
3 4
8 7
8 5
7 4
5 4

yes

Problem D: Dialling Digits 9

D Dialling Digits Time limit: 2s

CC BY 2.0 by Elliot Brown on Flickr,
modified

Disaster struck at the Billboards And Phone-numbers Company!
Due to a bug in their database system, they lost the
corresponding mnemonic phrases for each of the registered
phone numbers. These mnemonic phrases are typically used
on billboards, to make a phone number for an advertisement
easier to remember by people who read them. To dial the
phone number from a mnemonic phrase, you simply have to
press the number keys corresponding to each letter, as shown
in Figure D.1. For example, the phone number “1-800-BAPC”
would be dialled as “1-800-2272”.

Using this information and a given list of valid words, reconstruct the possible mnemonic
phrases for each registered phone number. Each mnemonic phrase consists of exactly one
word from the word list. In the input, you will only receive the part of the phone number that
should be exactly linked to possible mnemonic phrases, so it does not include the “1-800-”
prefix (or any other prefix).

Figure D.1: The keypad of a telephone, where some numbers are assigned several letters.
Public Domain by Sakurambo on Wikimedia Commons, modified

Input

The input consists of:

• One line with two integers n and m (1 ≤ n, m ≤ 105, n · m ≤ 105), the number of words
and the number of phone numbers.

• n lines, each with a word w (1 ≤ |w| ≤ 10), consisting only of English lowercase letters
(a-z). The words are unique and given in alphabetical order.

• m lines, each with a phone number p (1 ≤ |p| ≤ 10), consisting only of digits that
correspond to letters in a mnemonic phrase (2-9).

https://www.flickr.com/photos/39415781@N06/9549527964
https://commons.wikimedia.org/wiki/File:Telephone-keypad2.svg

10 Problem D: Dialling Digits

Output

For each phone number, output the number of words that are a valid mnemonic phrase for
this phone number, followed by these words in alphabetical order.

Sample Input 1 Sample Output 1
5 3
algorithm
bapc
benelux
contest
progaming
2272
424242
2363589

1 bapc
0
1 benelux

Sample Input 2 Sample Output 2
3 1
peer
reds
refs
7337

3 peer reds refs

Sample Input 3 Sample Output 3
7 3
black
judge
my
of
quartz
sphinx
vow
25225
782789
774466

1 black
1 quartz
0

Sample Input 4 Sample Output 4
5 1
and
bland
e
land
of
63

1 of

Problem E: Expected Error 11

E Expected Error Time limit: 1s

You are typing your password at a sudo prompt, but
suddenly, one of your fingers slipped onto a wrong key.
Because the terminal hides the characters that you
type, you are uncertain whether you have typed an
extra character. To finish typing your password, you
consider three possible strategies.

1. Continue to type the rest of your password.

2. Press backspace to delete the last character and type the rest of your password.

3. Restart typing your password from scratch.

To determine the optimal strategy, make use of the following typing speed assumptions.

• Typing any character of your password takes 0.1 seconds.

• Pressing backspace or submitting your password also takes 0.1 seconds.

• To restart typing your password, you delete all characters, which takes 0.3 seconds.

• If you submit the wrong password, it takes an additional 0.3 seconds to realize and start
typing your password at a new, empty prompt.

You are given the number of characters in your password n, the number of correctly typed
characters k before your finger slipped, and a probability of p% indicating the likelihood
that you pressed a wrong key and ended up with k + 1 characters. Assuming you make no
further errors, determine which strategy yields the lowest expected time to finish typing your
password.

Input

The input consists of:

• One line with three integers n, k, and p (1 ≤ n ≤ 1000, 1 ≤ k ≤ n, 0 ≤ p ≤ 100), the
number of characters in your password, the number of characters you correctly typed
before your finger slipped, and the probability percentage that you pressed a wrong key.

Output

Output one of the strings “continue”, “backspace”, or “restart” indicating the optimal
strategy. It is guaranteed that the expected time of the optimal strategy is at least one
millisecond shorter than the other strategies.

12 Problem E: Expected Error

Sample Input 1 Sample Output 1
10 8 20 continue

Sample Input 2 Sample Output 2
10 8 80 backspace

Sample Input 3 Sample Output 3
10 2 50 restart

Sample Input 4 Sample Output 4
10 4 55 restart

Problem F: Fractal Area 13

F Fractal Area Time limit: 1s

The fractal from
the second sample.

The director of the local Mathematical Institute has decided
to brighten up the walls by adding some pictures of Bounded
Auto-similar Periodic Curves, which are geometric structures usually
known as fractals. The director has some great ideas for beautiful
fractals, but they are not sure whether these will fit on the walls of
the institute.

Since these fractals will be painted all over the walls of the institute,
the director has asked you to determine the area of these fractals,
so they know exactly how much paint they will need to use for this.

The fractals are constructed from a polyline1 between (0, 0) and
(1, 0). Starting with an equilateral triangle with side length 1, each segment of the boundary
is recursively replaced by a scaled and rotated version of the original polyline, so that the
endpoints and orientation match.

As an example, consider the first sample case, visualized in Figure F.1. The resulting fractal
in this case is called the Koch Snowflake.

Figure F.1: Visualization of the first sample case, with the given polyline on the left and the resulting
fractal on the right.

Input

The input consists of:

• One line with an integer n (2 ≤ n ≤ 1000), the number of points defining the polyline.

• n lines with two floating point numbers x and y (0 ≤ x ≤ 1, |y| < 0.5), the coordinates
of a point defining the polyline.

All floating point numbers consist of exactly 6 digits behind the decimal point. It is guaranteed
that the first point is (0, 0) and the last point is (1, 0). The resulting fractal converges and
does not overlap with itself.

1A polyline is a shape made by connecting a series of straight line segments at their endpoints.

14 Problem F: Fractal Area

Output

Output the area of the resulting fractal.

Your answer should have an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1
5
0.000000 0.000000
0.333333 0.000000
0.500000 0.288675
0.666667 0.000000
1.000000 0.000000

0.692820545

Sample Input 2 Sample Output 2
5
0.000000 0.000000
0.200000 0.000000
0.600000 -0.200000
0.500000 0.000000
1.000000 0.000000

0.237360528

Problem G: Giganotosaurus Game 15

G Giganotosaurus Game Time limit: 2s

Suffering from a poor internet connection, you are playing a casual game in your web browser
to pass the time. You, the player, control a Giganotosaurus that is running through a linear
world with obstacles (cactuses). You win the game if you reach the end of the world without
hitting any cactuses.

The world consists of n cells, which can either be empty or contain a cactus. You start at the
leftmost cell (which is always empty) and the goal is to get past the rightmost cell. At each
cell, the Giganotosaurus can either move one position to the right, or jump over some fixed
number of cells. For the first jump, you skip one cell, but with each subsequent jump, you skip
one additional cell compared to the previous jump. That is, the kth jump skips exactly k cells.

You quickly master this simple game, so you pose a more interesting challenge: count how
many ways there are to win the game. As an example, consider the second sample case,
visualized in Figure G.1.

J J J J J

Figure G.1: Visualization of the second sample input, for which there are three ways to win the game.

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 105), the length of the world.

• One line with n characters, each character being either ‘#’ or ‘.’, indicating a cactus or
an empty cell, respectively.

Output

Output the number of ways to win the game, modulo 109 + 7.

Sample Input 1 Sample Output 1
4
....

8

Sample Input 2 Sample Output 2
4
.#..

3

16 Problem G: Giganotosaurus Game

Sample Input 3 Sample Output 3
7
.#...##

1

Sample Input 4 Sample Output 4
7
..#.#.#

0

Problem H: Human Pyramid 17

H Human Pyramid Time limit: 1s

An example of a non-world record
breaking pyramid. CC BY-SA 3.0 by

Amotoki on Wikimedia Commons.

As chairman of the Building A Pyramid Committee, you are
specialized in breaking one specific world record: building the
highest human pyramid. Unfortunately, you only know a limited
number of people who are willing to be in the pyramid. After
all, building human pyramids does not make much money, so
most people are volunteers.

A full human pyramid of height h consists of h layers of people.
As seen from below, it has h people on the first layer, h − 1 on
the second, h − 2 on the third, and so forth until eventually the
final layer has just a single person. To determine whether you can break the world record, you
need to know how high a pyramid you can build. Given how many people are available, how
tall is the highest possible human pyramid that these people can make?

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 1012), the number of people available to build the
pyramid.

Output

Output the height of the highest possible pyramid you can build with n people.

Sample Input 1 Sample Output 1
3 2

Sample Input 2 Sample Output 2
12 4

https://commons.wikimedia.org/wiki/File:20130707_Catalonian_pyramid.jpg

This page is intentionally left blank.

Problem I: Investment Investigation 19

I Investment Investigation Time limit: 4s

Contentedly looking at the value of
your BAPC going through the roof.

Internet meme, fair use

To make some extra money on the side, you have recently
started running your own cryptocurrency exchange, where people
can trade their Budget Amplifying Profit Coin (BAPC). It is
quickly gaining popularity, however, this has also resulted in
government regulators asking some questions. . . As part of their
investigation, they have asked for a list of all transactions that
have been made via your exchange. You have never bothered to
keep track of this, but luckily, you still have the list of all orders
that were made since the start of the exchange.

The exchange operates by keeping a list of outstanding buy and
sell orders, each with a price and an amount. Whenever a normal order comes in, it is checked
whether the new lowest sell price is less than or equal to the highest buy price. If this is the
case, a transaction is made between the sell order with the lowest price and the buy order
with the highest price, such that at least one of these orders is completely fulfilled. In case
of a tie in price, older orders are fulfilled first. This is repeated until the lowest sell price is
strictly larger than the highest buy price.

If instead a Fill-or-Kill (FoK) buy order comes in, there must currently be enough outstanding
sell orders with a price of at most the offered price to completely fulfil this order. If there
are, the order will be fulfilled in the same way as a normal order. Otherwise, the order is
completely cancelled, without any transaction taking place. Note that multiple orders may be
used to complete a FoK order, as long as it happens immediately.

FoK sell orders are processed in a similar way, but then there should be sufficient outstanding
buy orders with a price of at least the asked price.

As an example, consider the first sample case. The six orders are handled as follows:

1. The first order is added to the list of outstanding orders.

2. The second order is partially fulfilled by selling 10 BAPC to the first order. This removes
the first order from the list of outstanding orders, and adds the remainder of the second
order (consisting of 10 BAPC) to this list.

3. The third order is added to the list of outstanding orders.

4. The fourth order is a FoK buy order that cannot be immediately fulfilled, so it is ignored.
It is not added to the list of outstanding orders.

5. The fifth order can be immediately fulfilled by first buying 10 BAPC from order 2 and
then buying 50 BAPC from order 3. The resulting list of outstanding orders only consists
of the remaining 8 BAPC of order 3.

6. The sixth order is added to the list of outstanding orders.

Given a list of all orders in the order that they have been made, create a list of all transactions
that have been performed by your exchange.

https://knowyourmeme.com/memes/stonks

20 Problem I: Investment Investigation

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 105), the number of orders.

• n lines, each describing an order:

– A string s, either “buy” or “sell”, the side of the order.

– A string t, either “normal” or “fok”, the type of the order.

– An integer p (1 ≤ p ≤ 109), the offered or asked price per BAPC.

– An integer a (1 ≤ a ≤ 109), the amount of BAPC being asked or offered.

Output

The output consists of the number of performed transactions, and then for each transaction,
in the order that they have been performed:

• The index of the corresponding “sell” order.

• The index of the corresponding “buy” order.

• The amount of BAPC being traded.

Here, the index of an order is its position in the input, where the first order has index 1.

Sample Input 1 Sample Output 1
6
buy normal 700 10
sell normal 500 20
sell normal 800 58
buy fok 600 30
buy fok 900 60
sell normal 300 42

3
2 1 10
2 5 10
3 5 50

Sample Input 2 Sample Output 2
3
buy normal 19 10
buy normal 19 20
sell fok 19 17

2
3 1 10
3 2 7

Problem J: Joppiesaus Jailbreak 21

J Joppiesaus Jailbreak Time limit: 2s

You have recently decided to pick up speedrunning the video
game Bario: A Plumber’s Cousin. In this 2D platforming console
classic, you play as Bario, an Italian electrician travelling the
world to find his long lost cousin. The game consists of a number
of side-scrolling levels with a bus at the end that takes Bario
to the next level. Unfortunately, years of optimizations have
led to a world record that is currently tied between hundreds
of speedrunners and you feel like matching the world record at
this point is no longer that big of an achievement. Instead, you
try to beat the tied world record by any means necessary.

At first, this seems impossible: Bario has a maximum right speed
of 1000 pixels per second, and the current strategies already
hold this speed through the entire level. However, completing a
level always takes an integer number of frames. If Bario reaches
the bus halfway through a frame, the game still has to wait for the frame to complete before
starting the next level. Normally, this does not influence speedrunning, as each console runs
the game at the same, constant frame rate f . That is, unless you apply a specific condiment
mix to the game disk. You would prefer not to go into detail as to how you know this, but
applying a specific mix of mayonnaise and curry spices (more commonly known as the Dutch
specialty Joppiesaus) to the game disk allows you to set the frame rate of the game to any
positive real number. This new frame rate cannot exceed the original frame rate f and remains
constant for the entire game. Using your new strategy, what is the fastest time in which you
can finish the game? The timing stops when the final frame ends.

For example, consider the third sample input. By modifying the game to run at 3000
1249 frames

per second, both levels complete in 15 frames, or 6.245 seconds. The total time of 12.49
seconds beats the current world record of 12.6 seconds at the original 10 frames per second.

Input

The input consists of:

• One line with two integers n and f (1 ≤ n ≤ 105, 1 ≤ f ≤ 103), the number of levels
and the original frame rate of the game in frames per second.

• One line with n integers ℓ (1 ≤ ℓ ≤ 106), the length of each level in pixels. The total
length of all levels does not exceed 106 pixels.

Output

Output the fastest time, in seconds, in which you can finish the game.

Your answer should have an absolute or relative error of at most 10−6.

22 Problem J: Joppiesaus Jailbreak

Sample Input 1 Sample Output 1
1 10
1234

1.234

Sample Input 2 Sample Output 2
1 10
12

0.1

Sample Input 3 Sample Output 3
2 10
6245 6212

12.49

Sample Input 4 Sample Output 4
2 20
6245 6212

12.47409677

Sample Input 5 Sample Output 5
3 50
7146 2657 8164

17.96910941

Problem K: Kitchens of Königsberg 23

K Kitchens of Königsberg Time limit: 8s

The year is 1764 (or 900 in base-14). During the past few decades, the bridges of Königsberg
have become a major attraction for combinatorics tourism from all over the world. In a
recent travel brochure, your predecessor on the Königsberg Board of Tourism has promised
the existence of k Bridges Alongside Palatable Cuisine, where hungry graph theorists can
combine their intellectual and culinary pursuits by finishing their pilgrimage with a delicious
bowl of traditional meatballs from a charming street kitchen. Alas, none of these kitchens
have actually been built, so this will be your first task!

Naturally, you begin by modelling Königsberg as an undirected multigraph. Rivers divide the
city into areas, which you model as vertices, and the bridges become the edges. With this
abstraction, you start to investigate whether it is possible to select areas to place kitchens
in, so that exactly k bridges end in an area with a kitchen. As an example, consider the first
sample case, shown in Figure K.1.

A

B

C

D

a

b

c d

e

f

g

Figure K.1: Visualization of the first sample case. If kitchens are placed at areas A and B, then the 6
bridges a, b, c, d, e, and f are serviced. Another solution would be to place kitchens at B and C.

Modified from Solutio problematis ad geometriam situs pertinentis by Leonhard Euler

Input

The input consists of:

• One line with three integers n, m, and k (1 ≤ n ≤ 5000, 0 ≤ m ≤ 50 000, 1 ≤ k ≤ 6),
the number of areas, the number of bridges, and the number of bridges that must end in
an area with a kitchen.

• m lines, each with two integers a and b (1 ≤ a < b ≤ n), indicating a bridge between
areas a and b. Note that there can be multiple bridges between the same pair of areas.

Output

If there is a subset of areas in which kitchens can be placed, so that exactly k bridges end in
an area with a kitchen, output the number of areas in this subset, followed by these areas.
Otherwise, output “impossible”.

If there are multiple valid solutions, you may output any one of them.

https://archive.org/details/commentariiacade08impe/page/n185/mode/2up

24 Problem K: Kitchens of Königsberg

Sample Input 1 Sample Output 1
4 7 6
1 2
1 2
1 3
1 3
1 4
2 4
3 4

2
1 2

Sample Input 2 Sample Output 2
7 9 5
1 2
2 3
1 3
1 4
4 5
1 5
1 6
6 7
1 7

3
4 2 3

Sample Input 3 Sample Output 3
8 7 6
1 2
1 3
1 4
1 5
1 6
1 7
1 8

6
8 7 6 4 3 2

Sample Input 4 Sample Output 4
5000 0 1 impossible

Sample Input 5 Sample Output 5
4 6 2
1 2
1 3
1 4
2 3
2 4
3 4

impossible

Problem L: Lawful Limits 25

L Lawful Limits Time limit: 2s

In this road network, the speed limit
increases at 19:00.

One late afternoon you are driving to get home in your Big And
Pricey Car. You have had a long day and are eager to get home
as soon as possible. Your country’s road network has many
roads with varying speed limits, and has one strange quirk: at
some time t, the maximum speed on each road is raised. Because
you want to get home as soon as possible, you instantly increase
your speed to the new maximum speed of the road you are on
at time t.

You start driving at time 0 at junction 1 and are going to n. What is the earliest time you can
reach your destination? As an example, consider the first sample case, visualized in Figure L.1.

1

2

3

1 1

3

Figure L.1: Visualization of the first sample input. The edges are marked with their lengths. On all
roads, the maximum speed is 1 before time t and 2 from time t onwards.

Input

The input consists of:

• One line with three integers n, m, and t (2 ≤ n ≤ 105, 1 ≤ m ≤ 105, 0 ≤ t ≤ 109), the
number of junctions, the number of roads, and the time the speed limit increases.

• m lines, each with five integers x, y, ℓ, v, and w (1 ≤ x, y ≤ n, 1 ≤ ℓ ≤ 109, 1 ≤ v <

w ≤ 109), the start and end junction of a road, length of this road, and the speed limits
on this road before time t and from time t onwards.

There is at most one road between any two junctions, and one can travel in both directions on
any road. No road leads from one junction to that same junction. It is guaranteed that there
is always a path between any two junctions.

Output

Output the minimum amount of time it takes to get from the start to your destination.

Your answer should have an absolute or relative error of at most 10−6.

26 Problem L: Lawful Limits

Sample Input 1 Sample Output 1
3 3 1
1 2 1 1 2
2 3 1 1 2
1 3 3 1 2

1.5

Sample Input 2 Sample Output 2
2 1 1
1 2 3 1 2

2.0

Sample Input 3 Sample Output 3
4 4 6
1 2 30 4 6
1 3 12 6 8
2 4 16 4 8
3 4 30 5 10

7.0

	Problems
	Awkward Auction
	Battle of Nieuwpoort
	Chaotic Cables
	Dialling Digits
	Expected Error
	Fractal Area
	Giganotosaurus Game
	Human Pyramid
	Investment Investigation
	Joppiesaus Jailbreak
	Kitchens of Königsberg
	Lawful Limits

