
NWERC 2023

Solutions presentation

The NWERC 2023 jury
November 26, 2023

The NWERC 2023 Jury

• Doan-Dai Nguyen
École normale supérieure -
Université Paris Sciences & Lettres

• Jeroen Bransen
Chordify

• Maarten Sijm
CHipCie (Delft University of Technology)

• Michael Zündorf
Karlsruhe Institute of Technology

• Nils Gustafsson
KTH Royal Institute of Technology

• Paul Wild
FAU Erlangen-Nürnberg

• Ragnar Groot Koerkamp
ETH Zurich

• Reinier Schmiermann
Utrecht University

• Wendy Yi
Karlsruhe Institute of Technology

Big thanks to our proofreaders and test solvers

• Dany Sluijk
Delft University of Technology

• Mees de Vries
BAPC Jury

• Oleksandr Kulkov
ETH Zurich

• Pavel Kunyavskiy
JetBrains, Amsterdam

• Robin Lee
Google

• Vitaly Aksenov
City, University of London

K: Klompendans
Problem Author: Maarten Sijm

Problem
Find all reachable squares on an n × n grid that can be reached starting from the corner while
alternating between knight moves of type (a, b) and (c, d).

Solution

• Create two copies of the grid, one for “the last move was of type (a, b)” and one for “the last
move was of type (c, d).

• Starting from the two top left corners, run BFS or DFS to find the reachable states. After each
move, transfer over to the other grid.

• Count all cells that are reachable in at least one of the grids.
• Total time: O(n2).

Statistics: 195 submissions, 120 accepted, 19 unknown

K: Klompendans
Problem Author: Maarten Sijm

Problem
Find all reachable squares on an n × n grid that can be reached starting from the corner while
alternating between knight moves of type (a, b) and (c, d).

Solution

• Create two copies of the grid, one for “the last move was of type (a, b)” and one for “the last
move was of type (c, d).

• Starting from the two top left corners, run BFS or DFS to find the reachable states. After each
move, transfer over to the other grid.

• Count all cells that are reachable in at least one of the grids.
• Total time: O(n2).

Statistics: 195 submissions, 120 accepted, 19 unknown

K: Klompendans
Problem Author: Maarten Sijm

Problem
Find all reachable squares on an n × n grid that can be reached starting from the corner while
alternating between knight moves of type (a, b) and (c, d).

Solution

• Create two copies of the grid, one for “the last move was of type (a, b)” and one for “the last
move was of type (c, d).

• Starting from the two top left corners, run BFS or DFS to find the reachable states. After each
move, transfer over to the other grid.

• Count all cells that are reachable in at least one of the grids.
• Total time: O(n2).

Statistics: 195 submissions, 120 accepted, 19 unknown

K: Klompendans
Problem Author: Maarten Sijm

K: Klompendans
Problem Author: Maarten Sijm

K: Klompendans
Problem Author: Maarten Sijm

D: Date Picker
Problem Author: Jeroen Bransen

Problem
Given your availability for every hour in a week, pick at least 1 ≤ d ≤ 7 days in the first poll and at
least 1 ≤ h ≤ 24 hours in the second poll to get the highest probability that you will be available.
Fun fact: based on a true story, while the jury was planning their first meeting!

Observation
Selecting more than d days/h hours is never more efficient than selecting exactly d days/h hours.

Brute-force solution
For every combination of (a subset of d days) and (a subset of h hours), calculate the number of free
timeslots, take the maximum, and divide by d · h. Too slow: in the worst case where d = 3 and
h = 12, this requires checking

(7
3
)
·
(24

12
)
· 3 · 12 ≈ 3 · 109 timeslots. (Unless you write very efficient C++)

D: Date Picker
Problem Author: Jeroen Bransen

Problem
Given your availability for every hour in a week, pick at least 1 ≤ d ≤ 7 days in the first poll and at
least 1 ≤ h ≤ 24 hours in the second poll to get the highest probability that you will be available.
Fun fact: based on a true story, while the jury was planning their first meeting!

Observation
Selecting more than d days/h hours is never more efficient than selecting exactly d days/h hours.

Brute-force solution
For every combination of (a subset of d days) and (a subset of h hours), calculate the number of free
timeslots, take the maximum, and divide by d · h. Too slow: in the worst case where d = 3 and
h = 12, this requires checking

(7
3
)
·
(24

12
)
· 3 · 12 ≈ 3 · 109 timeslots. (Unless you write very efficient C++)

D: Date Picker
Problem Author: Jeroen Bransen

Problem
Given your availability for every hour in a week, pick at least 1 ≤ d ≤ 7 days in the first poll and at
least 1 ≤ h ≤ 24 hours in the second poll to get the highest probability that you will be available.
Fun fact: based on a true story, while the jury was planning their first meeting!

Observation
Selecting more than d days/h hours is never more efficient than selecting exactly d days/h hours.

Brute-force solution
For every combination of (a subset of d days) and (a subset of h hours), calculate the number of free
timeslots, take the maximum, and divide by d · h.

Too slow: in the worst case where d = 3 and
h = 12, this requires checking

(7
3
)
·
(24

12
)
· 3 · 12 ≈ 3 · 109 timeslots. (Unless you write very efficient C++)

D: Date Picker
Problem Author: Jeroen Bransen

Problem
Given your availability for every hour in a week, pick at least 1 ≤ d ≤ 7 days in the first poll and at
least 1 ≤ h ≤ 24 hours in the second poll to get the highest probability that you will be available.
Fun fact: based on a true story, while the jury was planning their first meeting!

Observation
Selecting more than d days/h hours is never more efficient than selecting exactly d days/h hours.

Brute-force solution
For every combination of (a subset of d days) and (a subset of h hours), calculate the number of free
timeslots, take the maximum, and divide by d · h. Too slow: in the worst case where d = 3 and
h = 12, this requires checking

(7
3
)
·
(24

12
)
· 3 · 12 ≈ 3 · 109 timeslots.

(Unless you write very efficient C++)

D: Date Picker
Problem Author: Jeroen Bransen

Problem
Given your availability for every hour in a week, pick at least 1 ≤ d ≤ 7 days in the first poll and at
least 1 ≤ h ≤ 24 hours in the second poll to get the highest probability that you will be available.
Fun fact: based on a true story, while the jury was planning their first meeting!

Observation
Selecting more than d days/h hours is never more efficient than selecting exactly d days/h hours.

Brute-force solution
For every combination of (a subset of d days) and (a subset of h hours), calculate the number of free
timeslots, take the maximum, and divide by d · h. Too slow: in the worst case where d = 3 and
h = 12, this requires checking

(7
3
)
·
(24

12
)
· 3 · 12 ≈ 3 · 109 timeslots. (Unless you write very efficient C++)

D: Date Picker
Problem Author: Jeroen Bransen

Problem
Given your availability for every hour in a week, pick at least 1 ≤ d ≤ 7 days in the first poll and at
least 1 ≤ h ≤ 24 hours in the second poll to get the highest probability that you will be available.
Fun fact: based on a true story, while the jury was planning their first meeting!

Greedy Solution
To avoid having to check all combinations, only check all combinations of d days.

For every combination of d days:

• For every hour, count the number of cells with ‘.’.
• Sort this list and select the h hours with the most open timeslots.
• Calculate the number of free timeslots, take the maximum, and divide by d · h.

Statistics: 150 submissions, 118 accepted, 12 unknown

D: Date Picker
Problem Author: Jeroen Bransen

Problem
Given your availability for every hour in a week, pick at least 1 ≤ d ≤ 7 days in the first poll and at
least 1 ≤ h ≤ 24 hours in the second poll to get the highest probability that you will be available.
Fun fact: based on a true story, while the jury was planning their first meeting!

Greedy Solution
To avoid having to check all combinations, only check all combinations of d days.

For every combination of d days:

• For every hour, count the number of cells with ‘.’.
• Sort this list and select the h hours with the most open timeslots.
• Calculate the number of free timeslots, take the maximum, and divide by d · h.

Statistics: 150 submissions, 118 accepted, 12 unknown

D: Date Picker
Problem Author: Jeroen Bransen

Problem
Given your availability for every hour in a week, pick at least 1 ≤ d ≤ 7 days in the first poll and at
least 1 ≤ h ≤ 24 hours in the second poll to get the highest probability that you will be available.
Fun fact: based on a true story, while the jury was planning their first meeting!

Greedy Solution
To avoid having to check all combinations, only check all combinations of d days.

For every combination of d days:

• For every hour, count the number of cells with ‘.’.
• Sort this list and select the h hours with the most open timeslots.
• Calculate the number of free timeslots, take the maximum, and divide by d · h.

Statistics: 150 submissions, 118 accepted, 12 unknown

L: Lateral Damage
Problem Author: Paul Wild

Problem
Play Battleships with a 100× 100 grid where you need to sink up to 10 aircraft carriers in at most
2500 shots, and your opponent is potentially cheating (adaptive).

Observation
Shooting every fifth position in a straight line prevents your opponent from placing ships in between
them.

Solution

• Generalizing this observation over two dimensions:
shoot every position on every fifth diagonal line.

• For every hit, shoot the four positions left, right, above, and below to sink the full ship.

Statistics: 363 submissions, 111 accepted, 71 unknown

L: Lateral Damage
Problem Author: Paul Wild

Problem
Play Battleships with a 100× 100 grid where you need to sink up to 10 aircraft carriers in at most
2500 shots, and your opponent is potentially cheating (adaptive).

Observation
Shooting every fifth position in a straight line prevents your opponent from placing ships in between
them.

Solution

• Generalizing this observation over two dimensions:
shoot every position on every fifth diagonal line.

• For every hit, shoot the four positions left, right, above, and below to sink the full ship.

Statistics: 363 submissions, 111 accepted, 71 unknown

L: Lateral Damage
Problem Author: Paul Wild

Problem
Play Battleships with a 100× 100 grid where you need to sink up to 10 aircraft carriers in at most
2500 shots, and your opponent is potentially cheating (adaptive).

Observation
Shooting every fifth position in a straight line prevents your opponent from placing ships in between
them.

Solution

• Generalizing this observation over two dimensions:
shoot every position on every fifth diagonal line.

• For every hit, shoot the four positions left, right, above, and below to sink the full ship.

Statistics: 363 submissions, 111 accepted, 71 unknown

L: Lateral Damage
Problem Author: Paul Wild

Problem
Play Battleships with a 100× 100 grid where you need to sink up to 10 aircraft carriers in at most
2500 shots, and your opponent is potentially cheating (adaptive).

Observation
Shooting every fifth position in a straight line prevents your opponent from placing ships in between
them.

Solution

• Generalizing this observation over two dimensions:
shoot every position on every fifth diagonal line.

• For every hit, shoot the four positions left, right, above, and below to sink the full ship.

Statistics: 363 submissions, 111 accepted, 71 unknown

H: Higher Arithmetic
Problem Author: Paul Wild

Problem
Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that
the value is maximal.

Solution

• Idea: A maximal expression always is the product of sums.
• All numbers are > 1: Multiply all numbers.
• With 1s and 2s, some numbers need to be combined into sums.

Cases:
• Only one 1: Add to second smallest number.
• No 2s: Repeatedly combine three 1s.

• Special case: If two 1s or four 1s, combine two 1s.

• At least one 1 and one 2: Repeatedly combine one 1 and one 2.

• Special case: If two 1s and one 2, combine those.

Statistics: 467 submissions, 67 accepted, 119 unknown

H: Higher Arithmetic
Problem Author: Paul Wild

Problem
Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that
the value is maximal.

Solution

• Idea: A maximal expression always is the product of sums.

• All numbers are > 1: Multiply all numbers.
• With 1s and 2s, some numbers need to be combined into sums.

Cases:
• Only one 1: Add to second smallest number.
• No 2s: Repeatedly combine three 1s.

• Special case: If two 1s or four 1s, combine two 1s.

• At least one 1 and one 2: Repeatedly combine one 1 and one 2.

• Special case: If two 1s and one 2, combine those.

Statistics: 467 submissions, 67 accepted, 119 unknown

H: Higher Arithmetic
Problem Author: Paul Wild

Problem
Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that
the value is maximal.

Solution

• Idea: A maximal expression always is the product of sums.
• All numbers are > 1: Multiply all numbers.

• With 1s and 2s, some numbers need to be combined into sums.
Cases:
• Only one 1: Add to second smallest number.
• No 2s: Repeatedly combine three 1s.

• Special case: If two 1s or four 1s, combine two 1s.

• At least one 1 and one 2: Repeatedly combine one 1 and one 2.

• Special case: If two 1s and one 2, combine those.

Statistics: 467 submissions, 67 accepted, 119 unknown

H: Higher Arithmetic
Problem Author: Paul Wild

Problem
Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that
the value is maximal.

Solution

• Idea: A maximal expression always is the product of sums.
• All numbers are > 1: Multiply all numbers.
• With 1s and 2s, some numbers need to be combined into sums.

Cases:
• Only one 1: Add to second smallest number.
• No 2s: Repeatedly combine three 1s.

• Special case: If two 1s or four 1s, combine two 1s.

• At least one 1 and one 2: Repeatedly combine one 1 and one 2.

• Special case: If two 1s and one 2, combine those.

Statistics: 467 submissions, 67 accepted, 119 unknown

H: Higher Arithmetic
Problem Author: Paul Wild

Problem
Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that
the value is maximal.

Solution

• Idea: A maximal expression always is the product of sums.
• All numbers are > 1: Multiply all numbers.
• With 1s and 2s, some numbers need to be combined into sums.

Cases:

• Only one 1: Add to second smallest number.
• No 2s: Repeatedly combine three 1s.

• Special case: If two 1s or four 1s, combine two 1s.

• At least one 1 and one 2: Repeatedly combine one 1 and one 2.

• Special case: If two 1s and one 2, combine those.

Statistics: 467 submissions, 67 accepted, 119 unknown

H: Higher Arithmetic
Problem Author: Paul Wild

Problem
Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that
the value is maximal.

Solution

• Idea: A maximal expression always is the product of sums.
• All numbers are > 1: Multiply all numbers.
• With 1s and 2s, some numbers need to be combined into sums.

Cases:
• Only one 1: Add to second smallest number.

• No 2s: Repeatedly combine three 1s.

• Special case: If two 1s or four 1s, combine two 1s.

• At least one 1 and one 2: Repeatedly combine one 1 and one 2.

• Special case: If two 1s and one 2, combine those.

Statistics: 467 submissions, 67 accepted, 119 unknown

H: Higher Arithmetic
Problem Author: Paul Wild

Problem
Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that
the value is maximal.

Solution

• Idea: A maximal expression always is the product of sums.
• All numbers are > 1: Multiply all numbers.
• With 1s and 2s, some numbers need to be combined into sums.

Cases:
• Only one 1: Add to second smallest number.
• No 2s: Repeatedly combine three 1s.

• Special case: If two 1s or four 1s, combine two 1s.
• At least one 1 and one 2: Repeatedly combine one 1 and one 2.

• Special case: If two 1s and one 2, combine those.

Statistics: 467 submissions, 67 accepted, 119 unknown

H: Higher Arithmetic
Problem Author: Paul Wild

Problem
Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that
the value is maximal.

Solution

• Idea: A maximal expression always is the product of sums.
• All numbers are > 1: Multiply all numbers.
• With 1s and 2s, some numbers need to be combined into sums.

Cases:
• Only one 1: Add to second smallest number.
• No 2s: Repeatedly combine three 1s.

• Special case: If two 1s or four 1s, combine two 1s.

• At least one 1 and one 2: Repeatedly combine one 1 and one 2.

• Special case: If two 1s and one 2, combine those.

Statistics: 467 submissions, 67 accepted, 119 unknown

H: Higher Arithmetic
Problem Author: Paul Wild

Problem
Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that
the value is maximal.

Solution

• Idea: A maximal expression always is the product of sums.
• All numbers are > 1: Multiply all numbers.
• With 1s and 2s, some numbers need to be combined into sums.

Cases:
• Only one 1: Add to second smallest number.
• No 2s: Repeatedly combine three 1s.

• Special case: If two 1s or four 1s, combine two 1s.
• At least one 1 and one 2: Repeatedly combine one 1 and one 2.

• Special case: If two 1s and one 2, combine those.

Statistics: 467 submissions, 67 accepted, 119 unknown

H: Higher Arithmetic
Problem Author: Paul Wild

Problem
Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that
the value is maximal.

Solution

• Idea: A maximal expression always is the product of sums.
• All numbers are > 1: Multiply all numbers.
• With 1s and 2s, some numbers need to be combined into sums.

Cases:
• Only one 1: Add to second smallest number.
• No 2s: Repeatedly combine three 1s.

• Special case: If two 1s or four 1s, combine two 1s.
• At least one 1 and one 2: Repeatedly combine one 1 and one 2.

• Special case: If two 1s and one 2, combine those.

Statistics: 467 submissions, 67 accepted, 119 unknown

H: Higher Arithmetic
Problem Author: Paul Wild

Problem
Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that
the value is maximal.

Solution

• Idea: A maximal expression always is the product of sums.
• All numbers are > 1: Multiply all numbers.
• With 1s and 2s, some numbers need to be combined into sums.

Cases:
• Only one 1: Add to second smallest number.
• No 2s: Repeatedly combine three 1s.

• Special case: If two 1s or four 1s, combine two 1s.
• At least one 1 and one 2: Repeatedly combine one 1 and one 2.

• Special case: If two 1s and one 2, combine those.

Statistics: 467 submissions, 67 accepted, 119 unknown

A: Arranging Adapters
Problem Author: Michael Zündorf

Problem
Given 1 ≤ n ≤ 2 · 105 chargers, each 3 ≤ w ≤ 109 cm wide, how many fit into a powerstrip
comprising a row of 1 ≤ s ≤ 105 sockets, each of width 3 cm?

Solution

• First, greedily put the two largest chargers on the outside.
• If the answer is k, we can use the k smallest chargers.
• To test if the smallest k chargers fit:

• Start with those of length 0 mod 3.
• Then pair up 1 mod 3 and 2 mod 3 chargers, filling the gaps.
• Then pair up remaining 1 mod 3, leaving a gap of 1 in between.
• Lastly put the remaining chargers, and check the total length used.

• Binary search over k. Runtime O(n log n).
• Edge case: when there is only a single socket.
• Linear time is also possible, trying to add one charger at a time.

Statistics: 333 submissions, 59 accepted, 110 unknown

A: Arranging Adapters
Problem Author: Michael Zündorf

Problem
Given 1 ≤ n ≤ 2 · 105 chargers, each 3 ≤ w ≤ 109 cm wide, how many fit into a powerstrip
comprising a row of 1 ≤ s ≤ 105 sockets, each of width 3 cm?

Solution

• First, greedily put the two largest chargers on the outside.

• If the answer is k, we can use the k smallest chargers.
• To test if the smallest k chargers fit:

• Start with those of length 0 mod 3.
• Then pair up 1 mod 3 and 2 mod 3 chargers, filling the gaps.
• Then pair up remaining 1 mod 3, leaving a gap of 1 in between.
• Lastly put the remaining chargers, and check the total length used.

• Binary search over k. Runtime O(n log n).
• Edge case: when there is only a single socket.
• Linear time is also possible, trying to add one charger at a time.

Statistics: 333 submissions, 59 accepted, 110 unknown

A: Arranging Adapters
Problem Author: Michael Zündorf

Problem
Given 1 ≤ n ≤ 2 · 105 chargers, each 3 ≤ w ≤ 109 cm wide, how many fit into a powerstrip
comprising a row of 1 ≤ s ≤ 105 sockets, each of width 3 cm?

Solution

• First, greedily put the two largest chargers on the outside.
• If the answer is k, we can use the k smallest chargers.

• To test if the smallest k chargers fit:
• Start with those of length 0 mod 3.
• Then pair up 1 mod 3 and 2 mod 3 chargers, filling the gaps.
• Then pair up remaining 1 mod 3, leaving a gap of 1 in between.
• Lastly put the remaining chargers, and check the total length used.

• Binary search over k. Runtime O(n log n).
• Edge case: when there is only a single socket.
• Linear time is also possible, trying to add one charger at a time.

Statistics: 333 submissions, 59 accepted, 110 unknown

A: Arranging Adapters
Problem Author: Michael Zündorf

Problem
Given 1 ≤ n ≤ 2 · 105 chargers, each 3 ≤ w ≤ 109 cm wide, how many fit into a powerstrip
comprising a row of 1 ≤ s ≤ 105 sockets, each of width 3 cm?

Solution

• First, greedily put the two largest chargers on the outside.
• If the answer is k, we can use the k smallest chargers.
• To test if the smallest k chargers fit:

• Start with those of length 0 mod 3.
• Then pair up 1 mod 3 and 2 mod 3 chargers, filling the gaps.
• Then pair up remaining 1 mod 3, leaving a gap of 1 in between.
• Lastly put the remaining chargers, and check the total length used.

• Binary search over k. Runtime O(n log n).
• Edge case: when there is only a single socket.
• Linear time is also possible, trying to add one charger at a time.

Statistics: 333 submissions, 59 accepted, 110 unknown

A: Arranging Adapters
Problem Author: Michael Zündorf

Problem
Given 1 ≤ n ≤ 2 · 105 chargers, each 3 ≤ w ≤ 109 cm wide, how many fit into a powerstrip
comprising a row of 1 ≤ s ≤ 105 sockets, each of width 3 cm?

Solution

• First, greedily put the two largest chargers on the outside.
• If the answer is k, we can use the k smallest chargers.
• To test if the smallest k chargers fit:

• Start with those of length 0 mod 3.
• Then pair up 1 mod 3 and 2 mod 3 chargers, filling the gaps.
• Then pair up remaining 1 mod 3, leaving a gap of 1 in between.
• Lastly put the remaining chargers, and check the total length used.

• Binary search over k. Runtime O(n log n).

• Edge case: when there is only a single socket.
• Linear time is also possible, trying to add one charger at a time.

Statistics: 333 submissions, 59 accepted, 110 unknown

A: Arranging Adapters
Problem Author: Michael Zündorf

Problem
Given 1 ≤ n ≤ 2 · 105 chargers, each 3 ≤ w ≤ 109 cm wide, how many fit into a powerstrip
comprising a row of 1 ≤ s ≤ 105 sockets, each of width 3 cm?

Solution

• First, greedily put the two largest chargers on the outside.
• If the answer is k, we can use the k smallest chargers.
• To test if the smallest k chargers fit:

• Start with those of length 0 mod 3.
• Then pair up 1 mod 3 and 2 mod 3 chargers, filling the gaps.
• Then pair up remaining 1 mod 3, leaving a gap of 1 in between.
• Lastly put the remaining chargers, and check the total length used.

• Binary search over k. Runtime O(n log n).
• Edge case: when there is only a single socket.

• Linear time is also possible, trying to add one charger at a time.

Statistics: 333 submissions, 59 accepted, 110 unknown

A: Arranging Adapters
Problem Author: Michael Zündorf

Problem
Given 1 ≤ n ≤ 2 · 105 chargers, each 3 ≤ w ≤ 109 cm wide, how many fit into a powerstrip
comprising a row of 1 ≤ s ≤ 105 sockets, each of width 3 cm?

Solution

• First, greedily put the two largest chargers on the outside.
• If the answer is k, we can use the k smallest chargers.
• To test if the smallest k chargers fit:

• Start with those of length 0 mod 3.
• Then pair up 1 mod 3 and 2 mod 3 chargers, filling the gaps.
• Then pair up remaining 1 mod 3, leaving a gap of 1 in between.
• Lastly put the remaining chargers, and check the total length used.

• Binary search over k. Runtime O(n log n).
• Edge case: when there is only a single socket.
• Linear time is also possible, trying to add one charger at a time.

Statistics: 333 submissions, 59 accepted, 110 unknown

A: Arranging Adapters
Problem Author: Michael Zündorf

Problem
Given 1 ≤ n ≤ 2 · 105 chargers, each 3 ≤ w ≤ 109 cm wide, how many fit into a powerstrip
comprising a row of 1 ≤ s ≤ 105 sockets, each of width 3 cm?

Solution

• First, greedily put the two largest chargers on the outside.
• If the answer is k, we can use the k smallest chargers.
• To test if the smallest k chargers fit:

• Start with those of length 0 mod 3.
• Then pair up 1 mod 3 and 2 mod 3 chargers, filling the gaps.
• Then pair up remaining 1 mod 3, leaving a gap of 1 in between.
• Lastly put the remaining chargers, and check the total length used.

• Binary search over k. Runtime O(n log n).
• Edge case: when there is only a single socket.
• Linear time is also possible, trying to add one charger at a time.

Statistics: 333 submissions, 59 accepted, 110 unknown

F: Fixing Fractions
Problem Author: Michael Zündorf

Problem
Given a fraction a

b , try to make it equal to c
d by cancelling some digits in a and b

Solution

• Try all possible O(2|a|) subsets of a
• Given a′, c and d , we know b′ = a′·d

c must hold
• Check if b can be made into b′ by removing the same digits

Pitfalls

• a′ · d not divisible by c
• Leading zeroes
• 64-bit integer overflow: take GCD first, do operations modulo some prime, use bigger integers

Statistics: 347 submissions, 51 accepted, 125 unknown

F: Fixing Fractions
Problem Author: Michael Zündorf

Problem
Given a fraction a

b , try to make it equal to c
d by cancelling some digits in a and b

Solution

• Try all possible O(2|a|) subsets of a
• Given a′, c and d , we know b′ = a′·d

c must hold
• Check if b can be made into b′ by removing the same digits

Pitfalls

• a′ · d not divisible by c
• Leading zeroes
• 64-bit integer overflow: take GCD first, do operations modulo some prime, use bigger integers

Statistics: 347 submissions, 51 accepted, 125 unknown

F: Fixing Fractions
Problem Author: Michael Zündorf

Problem
Given a fraction a

b , try to make it equal to c
d by cancelling some digits in a and b

Solution

• Try all possible O(2|a|) subsets of a
• Given a′, c and d , we know b′ = a′·d

c must hold
• Check if b can be made into b′ by removing the same digits

Pitfalls

• a′ · d not divisible by c
• Leading zeroes
• 64-bit integer overflow: take GCD first, do operations modulo some prime, use bigger integers

Statistics: 347 submissions, 51 accepted, 125 unknown

F: Fixing Fractions
Problem Author: Michael Zündorf

Problem
Given a fraction a

b , try to make it equal to c
d by cancelling some digits in a and b

Solution

• Try all possible O(2|a|) subsets of a
• Given a′, c and d , we know b′ = a′·d

c must hold
• Check if b can be made into b′ by removing the same digits

Pitfalls

• a′ · d not divisible by c
• Leading zeroes
• 64-bit integer overflow: take GCD first, do operations modulo some prime, use bigger integers

Statistics: 347 submissions, 51 accepted, 125 unknown

J: Jogging Tour
Problem Author: Paul Wild

Problem
Find the optimal grid angle to make a tour through n ≤ 12 points.

Subtask: assume we know the angle

• All possible O(n!) routes, too slow!
• DP with (current location, locations still todo)
• This runs in O(n2 · 2n)

Complete solution

• Insight: in the optimal solution, there is a straight line between two consecutive locations
• Consider all n2 angles between pairs of locations
• Total complexity O(n4 · 2n)

Statistics: 72 submissions, 25 accepted, 44 unknown

J: Jogging Tour
Problem Author: Paul Wild

Problem
Find the optimal grid angle to make a tour through n ≤ 12 points.

Subtask: assume we know the angle

• All possible O(n!) routes, too slow!
• DP with (current location, locations still todo)
• This runs in O(n2 · 2n)

Complete solution

• Insight: in the optimal solution, there is a straight line between two consecutive locations
• Consider all n2 angles between pairs of locations
• Total complexity O(n4 · 2n)

Statistics: 72 submissions, 25 accepted, 44 unknown

J: Jogging Tour
Problem Author: Paul Wild

Problem
Find the optimal grid angle to make a tour through n ≤ 12 points.

Subtask: assume we know the angle

• All possible O(n!) routes, too slow!
• DP with (current location, locations still todo)
• This runs in O(n2 · 2n)

Complete solution

• Insight: in the optimal solution, there is a straight line between two consecutive locations
• Consider all n2 angles between pairs of locations
• Total complexity O(n4 · 2n)

Statistics: 72 submissions, 25 accepted, 44 unknown

J: Jogging Tour
Problem Author: Paul Wild

Problem
Find the optimal grid angle to make a tour through n ≤ 12 points.

Subtask: assume we know the angle

• All possible O(n!) routes, too slow!
• DP with (current location, locations still todo)
• This runs in O(n2 · 2n)

Complete solution

• Insight: in the optimal solution, there is a straight line between two consecutive locations
• Consider all n2 angles between pairs of locations
• Total complexity O(n4 · 2n)

Statistics: 72 submissions, 25 accepted, 44 unknown

J: Jogging Tour
Problem Author: Paul Wild

C: Chair Dance
Problem Author: Michael Zündorf

Problem
Given are n ≤ 105 players playing a deterministic version of musical chairs. Player i starts on chair i .
Apply up to 105 commands:

• Rotate by +r : the person on chair i moves clockwise to chair i + r .
• Multiply by ∗m, the person on chair i moves to i ·m, where the person walking the least gets it.
• On ?q, print who sits on chair q.

Naive solution
Store who sits on each chair, and apply each command. O(n2)

C: Chair Dance
Problem Author: Michael Zündorf

Problem
Given are n ≤ 105 players playing a deterministic version of musical chairs. Player i starts on chair i .
Apply up to 105 commands:

• Rotate by +r : the person on chair i moves clockwise to chair i + r .
• Multiply by ∗m, the person on chair i moves to i ·m, where the person walking the least gets it.
• On ?q, print who sits on chair q.

Naive solution
Store who sits on each chair, and apply each command. O(n2)

C: Chair Dance
Problem Author: Michael Zündorf

Solution
Be lazy! Initialize p[i] = i , the person on chair i .

• Instead of rotating by +r , increment the total rotation R. p[i] is now at i + R, so query p[q − R].

• For collision-free multiplications: store total multiplication M, so p[i] is now at M · i + R. When
multiplying by m, update M ← m ·M and R ← m · R. Query p[(q − R) ·M−1].

• Collisions occur when gcd(m, k) > 1 (k = #leftover people).
Simulate these fully, set k ← k/ gcd(m, k), and reset R and M.

• Be careful about queries to empty chairs.
• Each collision at least halves k, so at most lg n collisions.
• Runtime: O(n log n).

Statistics: 77 submissions, 5 accepted, 60 unknown

C: Chair Dance
Problem Author: Michael Zündorf

Solution
Be lazy! Initialize p[i] = i , the person on chair i .

• Instead of rotating by +r , increment the total rotation R. p[i] is now at i + R, so query p[q − R].
• For collision-free multiplications: store total multiplication M, so p[i] is now at M · i + R. When

multiplying by m, update M ← m ·M and R ← m · R. Query p[(q − R) ·M−1].

• Collisions occur when gcd(m, k) > 1 (k = #leftover people).
Simulate these fully, set k ← k/ gcd(m, k), and reset R and M.

• Be careful about queries to empty chairs.
• Each collision at least halves k, so at most lg n collisions.
• Runtime: O(n log n).

Statistics: 77 submissions, 5 accepted, 60 unknown

C: Chair Dance
Problem Author: Michael Zündorf

Solution
Be lazy! Initialize p[i] = i , the person on chair i .

• Instead of rotating by +r , increment the total rotation R. p[i] is now at i + R, so query p[q − R].
• For collision-free multiplications: store total multiplication M, so p[i] is now at M · i + R. When

multiplying by m, update M ← m ·M and R ← m · R. Query p[(q − R) ·M−1].
• Collisions occur when gcd(m, k) > 1 (k = #leftover people).

Simulate these fully, set k ← k/ gcd(m, k), and reset R and M.

• Be careful about queries to empty chairs.
• Each collision at least halves k, so at most lg n collisions.
• Runtime: O(n log n).

Statistics: 77 submissions, 5 accepted, 60 unknown

C: Chair Dance
Problem Author: Michael Zündorf

Solution
Be lazy! Initialize p[i] = i , the person on chair i .

• Instead of rotating by +r , increment the total rotation R. p[i] is now at i + R, so query p[q − R].
• For collision-free multiplications: store total multiplication M, so p[i] is now at M · i + R. When

multiplying by m, update M ← m ·M and R ← m · R. Query p[(q − R) ·M−1].
• Collisions occur when gcd(m, k) > 1 (k = #leftover people).

Simulate these fully, set k ← k/ gcd(m, k), and reset R and M.
• Be careful about queries to empty chairs.

• Each collision at least halves k, so at most lg n collisions.
• Runtime: O(n log n).

Statistics: 77 submissions, 5 accepted, 60 unknown

C: Chair Dance
Problem Author: Michael Zündorf

Solution
Be lazy! Initialize p[i] = i , the person on chair i .

• Instead of rotating by +r , increment the total rotation R. p[i] is now at i + R, so query p[q − R].
• For collision-free multiplications: store total multiplication M, so p[i] is now at M · i + R. When

multiplying by m, update M ← m ·M and R ← m · R. Query p[(q − R) ·M−1].
• Collisions occur when gcd(m, k) > 1 (k = #leftover people).

Simulate these fully, set k ← k/ gcd(m, k), and reset R and M.
• Be careful about queries to empty chairs.
• Each collision at least halves k, so at most lg n collisions.

• Runtime: O(n log n).

Statistics: 77 submissions, 5 accepted, 60 unknown

C: Chair Dance
Problem Author: Michael Zündorf

Solution
Be lazy! Initialize p[i] = i , the person on chair i .

• Instead of rotating by +r , increment the total rotation R. p[i] is now at i + R, so query p[q − R].
• For collision-free multiplications: store total multiplication M, so p[i] is now at M · i + R. When

multiplying by m, update M ← m ·M and R ← m · R. Query p[(q − R) ·M−1].
• Collisions occur when gcd(m, k) > 1 (k = #leftover people).

Simulate these fully, set k ← k/ gcd(m, k), and reset R and M.
• Be careful about queries to empty chairs.
• Each collision at least halves k, so at most lg n collisions.
• Runtime: O(n log n).

Statistics: 77 submissions, 5 accepted, 60 unknown

C: Chair Dance
Problem Author: Michael Zündorf

Solution
Be lazy! Initialize p[i] = i , the person on chair i .

• Instead of rotating by +r , increment the total rotation R. p[i] is now at i + R, so query p[q − R].
• For collision-free multiplications: store total multiplication M, so p[i] is now at M · i + R. When

multiplying by m, update M ← m ·M and R ← m · R. Query p[(q − R) ·M−1].
• Collisions occur when gcd(m, k) > 1 (k = #leftover people).

Simulate these fully, set k ← k/ gcd(m, k), and reset R and M.
• Be careful about queries to empty chairs.
• Each collision at least halves k, so at most lg n collisions.
• Runtime: O(n log n).

Statistics: 77 submissions, 5 accepted, 60 unknown

E: Exponentiation
Problem Author: Reinier Schmiermann

Problem
There are n variables x1, x2, . . . , xn, initially set to 2023. You are given m queries that either assigns
xi to x xj

i , or asks you to compare xi and xj .

Observation

• To make the numbers slightly less huge, take the logarithm twice. Let yi = log log(xi).
• xi = x xj

i ⇐⇒ yi = yi + 2023yj .
• Consider these numbers in base 2023. Each operation, one of the digits will increase by one. But

no carry will ever happen since there are fewer than 2023 operations.
• When a variable gets updated, it is much easier to create a new variable y ′ = yi + 2023yj .

E: Exponentiation
Problem Author: Reinier Schmiermann

Problem
There are n variables x1, x2, . . . , xn, initially set to 2023. You are given m queries that either assigns
xi to x xj

i , or asks you to compare xi and xj .

Observation

• To make the numbers slightly less huge, take the logarithm twice. Let yi = log log(xi).

• xi = x xj
i ⇐⇒ yi = yi + 2023yj .

• Consider these numbers in base 2023. Each operation, one of the digits will increase by one. But
no carry will ever happen since there are fewer than 2023 operations.

• When a variable gets updated, it is much easier to create a new variable y ′ = yi + 2023yj .

E: Exponentiation
Problem Author: Reinier Schmiermann

Problem
There are n variables x1, x2, . . . , xn, initially set to 2023. You are given m queries that either assigns
xi to x xj

i , or asks you to compare xi and xj .

Observation

• To make the numbers slightly less huge, take the logarithm twice. Let yi = log log(xi).
• xi = x xj

i ⇐⇒ yi = yi + 2023yj .

• Consider these numbers in base 2023. Each operation, one of the digits will increase by one. But
no carry will ever happen since there are fewer than 2023 operations.

• When a variable gets updated, it is much easier to create a new variable y ′ = yi + 2023yj .

E: Exponentiation
Problem Author: Reinier Schmiermann

Problem
There are n variables x1, x2, . . . , xn, initially set to 2023. You are given m queries that either assigns
xi to x xj

i , or asks you to compare xi and xj .

Observation

• To make the numbers slightly less huge, take the logarithm twice. Let yi = log log(xi).
• xi = x xj

i ⇐⇒ yi = yi + 2023yj .
• Consider these numbers in base 2023. Each operation, one of the digits will increase by one. But

no carry will ever happen since there are fewer than 2023 operations.

• When a variable gets updated, it is much easier to create a new variable y ′ = yi + 2023yj .

E: Exponentiation
Problem Author: Reinier Schmiermann

Problem
There are n variables x1, x2, . . . , xn, initially set to 2023. You are given m queries that either assigns
xi to x xj

i , or asks you to compare xi and xj .

Observation

• To make the numbers slightly less huge, take the logarithm twice. Let yi = log log(xi).
• xi = x xj

i ⇐⇒ yi = yi + 2023yj .
• Consider these numbers in base 2023. Each operation, one of the digits will increase by one. But

no carry will ever happen since there are fewer than 2023 operations.
• When a variable gets updated, it is much easier to create a new variable y ′ = yi + 2023yj .

E: Exponentiation
Problem Author: Reinier Schmiermann

Solution

• Keep all variables ordered by size at all times. Answering queries becomes easy. But how to
maintain the order?

• For every variable y , let d(y) be a list containing the positions of its non-zero digits (in base
2023). These positions will be other variables, that we know the order of. Two variables can be
compared by lexicographically comparing their lists.

• When a new variable y ′ = yi + 2023yj is created, let d(y ′) = d(yi) ∪ {yj}. Insert this new variable
y ′ into the ordering.

• To keep track of the order of variables, a trie or a sorted list can be used. This can be done in
O(n2) or O(n2 log(n)).

• Challenge: Can you solve the problem faster than quadratic time?

Statistics: 74 submissions, 5 accepted, 38 unknown

E: Exponentiation
Problem Author: Reinier Schmiermann

Solution

• Keep all variables ordered by size at all times. Answering queries becomes easy. But how to
maintain the order?

• For every variable y , let d(y) be a list containing the positions of its non-zero digits (in base
2023). These positions will be other variables, that we know the order of. Two variables can be
compared by lexicographically comparing their lists.

• When a new variable y ′ = yi + 2023yj is created, let d(y ′) = d(yi) ∪ {yj}. Insert this new variable
y ′ into the ordering.

• To keep track of the order of variables, a trie or a sorted list can be used. This can be done in
O(n2) or O(n2 log(n)).

• Challenge: Can you solve the problem faster than quadratic time?

Statistics: 74 submissions, 5 accepted, 38 unknown

E: Exponentiation
Problem Author: Reinier Schmiermann

Solution

• Keep all variables ordered by size at all times. Answering queries becomes easy. But how to
maintain the order?

• For every variable y , let d(y) be a list containing the positions of its non-zero digits (in base
2023). These positions will be other variables, that we know the order of. Two variables can be
compared by lexicographically comparing their lists.

• When a new variable y ′ = yi + 2023yj is created, let d(y ′) = d(yi) ∪ {yj}. Insert this new variable
y ′ into the ordering.

• To keep track of the order of variables, a trie or a sorted list can be used. This can be done in
O(n2) or O(n2 log(n)).

• Challenge: Can you solve the problem faster than quadratic time?

Statistics: 74 submissions, 5 accepted, 38 unknown

E: Exponentiation
Problem Author: Reinier Schmiermann

Solution

• Keep all variables ordered by size at all times. Answering queries becomes easy. But how to
maintain the order?

• For every variable y , let d(y) be a list containing the positions of its non-zero digits (in base
2023). These positions will be other variables, that we know the order of. Two variables can be
compared by lexicographically comparing their lists.

• When a new variable y ′ = yi + 2023yj is created, let d(y ′) = d(yi) ∪ {yj}. Insert this new variable
y ′ into the ordering.

• To keep track of the order of variables, a trie or a sorted list can be used. This can be done in
O(n2) or O(n2 log(n)).

• Challenge: Can you solve the problem faster than quadratic time?

Statistics: 74 submissions, 5 accepted, 38 unknown

E: Exponentiation
Problem Author: Reinier Schmiermann

Solution

• Keep all variables ordered by size at all times. Answering queries becomes easy. But how to
maintain the order?

• For every variable y , let d(y) be a list containing the positions of its non-zero digits (in base
2023). These positions will be other variables, that we know the order of. Two variables can be
compared by lexicographically comparing their lists.

• When a new variable y ′ = yi + 2023yj is created, let d(y ′) = d(yi) ∪ {yj}. Insert this new variable
y ′ into the ordering.

• To keep track of the order of variables, a trie or a sorted list can be used. This can be done in
O(n2) or O(n2 log(n)).

• Challenge: Can you solve the problem faster than quadratic time?

Statistics: 74 submissions, 5 accepted, 38 unknown

E: Exponentiation
Problem Author: Reinier Schmiermann

Solution

• Keep all variables ordered by size at all times. Answering queries becomes easy. But how to
maintain the order?

• For every variable y , let d(y) be a list containing the positions of its non-zero digits (in base
2023). These positions will be other variables, that we know the order of. Two variables can be
compared by lexicographically comparing their lists.

• When a new variable y ′ = yi + 2023yj is created, let d(y ′) = d(yi) ∪ {yj}. Insert this new variable
y ′ into the ordering.

• To keep track of the order of variables, a trie or a sorted list can be used. This can be done in
O(n2) or O(n2 log(n)).

• Challenge: Can you solve the problem faster than quadratic time?

Statistics: 74 submissions, 5 accepted, 38 unknown

G: Galaxy Quest
Problem Author: Mike de Vries

Problem
You are given a graph consisting of line segments in 3D space. You travel on a ship with constant
acceleration and constant fuel consumption for the time spent accelerating. You need to come to a
standstill at each vertex. Given a target location and a time limit, find the minimum amount of fuel
needed to get there. You need to answer multiple queries, all from the same starting location.

G: Galaxy Quest
Problem Author: Mike de Vries

Solution for fixed path

• Consider a path consisting of multiple line segments.

• Suppose the ith segment is di metres long and we accelerate/decelerate for xi seconds along it.
• Then it takes xi + di

xi
seconds to traverse the ith segment.

• New problem: minimize
∑

2xi subject to
∑

xi + di
xi
≤ t.

• Key insight: optimum is reached when xi = c ·
√

di for some constant c.
• We can compute c by solving c + 1

c = t/
∑√

di . When the RHS is < 2, no solution exists.

Solution

• To keep the time limit and save fuel, find a path that minimizes
∑√

di .
• Use Dijkstra’s algorithm for this, where edges have length

√
di .

• The starting location is fixed, so queries can be answered in constant time.

Statistics: 12 submissions, 1 accepted, 9 unknown

G: Galaxy Quest
Problem Author: Mike de Vries

Solution for fixed path

• Consider a path consisting of multiple line segments.
• Suppose the ith segment is di metres long and we accelerate/decelerate for xi seconds along it.
• Then it takes xi + di

xi
seconds to traverse the ith segment.

• New problem: minimize
∑

2xi subject to
∑

xi + di
xi
≤ t.

• Key insight: optimum is reached when xi = c ·
√

di for some constant c.
• We can compute c by solving c + 1

c = t/
∑√

di . When the RHS is < 2, no solution exists.

Solution

• To keep the time limit and save fuel, find a path that minimizes
∑√

di .
• Use Dijkstra’s algorithm for this, where edges have length

√
di .

• The starting location is fixed, so queries can be answered in constant time.

Statistics: 12 submissions, 1 accepted, 9 unknown

G: Galaxy Quest
Problem Author: Mike de Vries

Solution for fixed path

• Consider a path consisting of multiple line segments.
• Suppose the ith segment is di metres long and we accelerate/decelerate for xi seconds along it.
• Then it takes xi + di

xi
seconds to traverse the ith segment.

• New problem: minimize
∑

2xi subject to
∑

xi + di
xi
≤ t.

• Key insight: optimum is reached when xi = c ·
√

di for some constant c.
• We can compute c by solving c + 1

c = t/
∑√

di . When the RHS is < 2, no solution exists.

Solution

• To keep the time limit and save fuel, find a path that minimizes
∑√

di .

• Use Dijkstra’s algorithm for this, where edges have length
√

di .
• The starting location is fixed, so queries can be answered in constant time.

Statistics: 12 submissions, 1 accepted, 9 unknown

G: Galaxy Quest
Problem Author: Mike de Vries

Solution for fixed path

• Consider a path consisting of multiple line segments.
• Suppose the ith segment is di metres long and we accelerate/decelerate for xi seconds along it.
• Then it takes xi + di

xi
seconds to traverse the ith segment.

• New problem: minimize
∑

2xi subject to
∑

xi + di
xi
≤ t.

• Key insight: optimum is reached when xi = c ·
√

di for some constant c.
• We can compute c by solving c + 1

c = t/
∑√

di . When the RHS is < 2, no solution exists.

Solution

• To keep the time limit and save fuel, find a path that minimizes
∑√

di .
• Use Dijkstra’s algorithm for this, where edges have length

√
di .

• The starting location is fixed, so queries can be answered in constant time.

Statistics: 12 submissions, 1 accepted, 9 unknown

G: Galaxy Quest
Problem Author: Mike de Vries

Solution for fixed path

• Consider a path consisting of multiple line segments.
• Suppose the ith segment is di metres long and we accelerate/decelerate for xi seconds along it.
• Then it takes xi + di

xi
seconds to traverse the ith segment.

• New problem: minimize
∑

2xi subject to
∑

xi + di
xi
≤ t.

• Key insight: optimum is reached when xi = c ·
√

di for some constant c.
• We can compute c by solving c + 1

c = t/
∑√

di . When the RHS is < 2, no solution exists.

Solution

• To keep the time limit and save fuel, find a path that minimizes
∑√

di .
• Use Dijkstra’s algorithm for this, where edges have length

√
di .

• The starting location is fixed, so queries can be answered in constant time.

Statistics: 12 submissions, 1 accepted, 9 unknown

G: Galaxy Quest
Problem Author: Mike de Vries

Solution for fixed path

• Consider a path consisting of multiple line segments.
• Suppose the ith segment is di metres long and we accelerate/decelerate for xi seconds along it.
• Then it takes xi + di

xi
seconds to traverse the ith segment.

• New problem: minimize
∑

2xi subject to
∑

xi + di
xi
≤ t.

• Key insight: optimum is reached when xi = c ·
√

di for some constant c.
• We can compute c by solving c + 1

c = t/
∑√

di . When the RHS is < 2, no solution exists.

Solution

• To keep the time limit and save fuel, find a path that minimizes
∑√

di .
• Use Dijkstra’s algorithm for this, where edges have length

√
di .

• The starting location is fixed, so queries can be answered in constant time.

Statistics: 12 submissions, 1 accepted, 9 unknown

B: Brickwork
Problem Author: Michael Zündorf

Problem
Given n types of bricks b1, . . . , bn, can you build a wall of width w where no two gaps appear above
each other?

B: Brickwork
Problem Author: Michael Zündorf

Subtask
Can at least one row be built?

Solution
This is known as the coin change problem and can be solved like this:

• O(w2

64) with dp + bitsets
• O(w log(w)2) with fft (faster is possible)

• Bitsets are much faster

B: Brickwork
Problem Author: Michael Zündorf

Subtask
Can at least one row be built?

Solution
This is known as the coin change problem and can be solved like this:

• O(w2

64) with dp + bitsets
• O(w log(w)2) with fft (faster is possible)

• Bitsets are much faster

B: Brickwork
Problem Author: Michael Zündorf

Subtask
Can at least one row be built?

Solution
This is known as the coin change problem and can be solved like this:

• O(w2

64) with dp + bitsets
• O(w log(w)2) with fft (faster is possible)

• Bitsets are much faster

B: Brickwork
Problem Author: Michael Zündorf

Case 1

• w ∈ {b1, . . . , bn}

Case 2

• There is a row that uses two bricks bx ,by

• WLOG:
• Let bx be the shortest
• Let by be the second shortest
• there are as few bx as possible

(still at least one)

Case 2.1

• Sum of bx can be replace by some by

Case 2.2

• Else

B: Brickwork
Problem Author: Michael Zündorf

Case 1

• w ∈ {b1, . . . , bn}

Case 2

• There is a row that uses two bricks bx ,by

• WLOG:
• Let bx be the shortest
• Let by be the second shortest
• there are as few bx as possible

(still at least one)

Case 2.1

• Sum of bx can be replace by some by

Case 2.2

• Else

B: Brickwork
Problem Author: Michael Zündorf

Case 1

• w ∈ {b1, . . . , bn}

Case 2

• There is a row that uses two bricks bx ,by

• WLOG:
• Let bx be the shortest
• Let by be the second shortest
• there are as few bx as possible

(still at least one)

Case 2.1

• Sum of bx can be replace by some by

Case 2.2

• Else

B: Brickwork
Problem Author: Michael Zündorf

Case 1

• w ∈ {b1, . . . , bn}

Case 2

• There is a row that uses two bricks bx ,by

• WLOG:
• Let bx be the shortest
• Let by be the second shortest
• there are as few bx as possible

(still at least one)

Case 2.1

• Sum of bx can be replace by some by

Case 2.2

• Else

B: Brickwork
Problem Author: Michael Zündorf

Case 1

• w ∈ {b1, . . . , bn}

Case 2

• There is a row that uses two bricks bx ,by

• WLOG:
• Let bx be the shortest
• Let by be the second shortest
• there are as few bx as possible

(still at least one)

Case 2.1

• Sum of bx can be replace by some by

Case 2.2

• Else

B: Brickwork
Problem Author: Michael Zündorf

Case 3

• There are two bricks bx ,by that divide w

• Case 2 implies that lcm(bx , by) = w

Case 4

• Impossible

Conclusion
The solution exists in two cases:

• Trivial: w ∈ {b1, . . . , bn}

• There exist two bricks that both can be part of a solution

Statistics: 14 submissions, 0 accepted, 11 unknown

B: Brickwork
Problem Author: Michael Zündorf

Case 3

• There are two bricks bx ,by that divide w
• Case 2 implies that lcm(bx , by) = w

Case 4

• Impossible

Conclusion
The solution exists in two cases:

• Trivial: w ∈ {b1, . . . , bn}

• There exist two bricks that both can be part of a solution

Statistics: 14 submissions, 0 accepted, 11 unknown

B: Brickwork
Problem Author: Michael Zündorf

Case 3

• There are two bricks bx ,by that divide w
• Case 2 implies that lcm(bx , by) = w

Case 4

• Impossible

Conclusion
The solution exists in two cases:

• Trivial: w ∈ {b1, . . . , bn}

• There exist two bricks that both can be part of a solution

Statistics: 14 submissions, 0 accepted, 11 unknown

B: Brickwork
Problem Author: Michael Zündorf

Case 3

• There are two bricks bx ,by that divide w
• Case 2 implies that lcm(bx , by) = w

Case 4

• Impossible

Conclusion
The solution exists in two cases:

• Trivial: w ∈ {b1, . . . , bn}

• There exist two bricks that both can be part of a solution

Statistics: 14 submissions, 0 accepted, 11 unknown

I: Isolated Island
Problem Author: Michael Zündorf

Problem
Given 2n points, is there a point that occurs an odd number of times?

Solutions

• Sort the points, check whether point 2i − 1 equals point 2i in O(n log n)
• XOR hashes of all points in O(n)

I: Isolated Island
Problem Author: Michael Zündorf

Problem
Given 2n points, is there a point that occurs an odd number of times?

Solutions

• Sort the points, check whether point 2i − 1 equals point 2i in O(n log n)
• XOR hashes of all points in O(n)

I: Isolated Island
Problem Author: Michael Zündorf

Problem
Given n ≤ 1000 line segments that partition the plane in small regions. Are there two regions the
same distance from the ocean?

Geometry solution
Find all intersections and construct the dual graph on faces:
Costs O

(
n2 log n

)
and your sanity (256 lines of C++).

I: Isolated Island
Problem Author: Michael Zündorf

Problem
Given n ≤ 1000 line segments that partition the plane in small regions. Are there two regions the
same distance from the ocean?

Geometry solution
Find all intersections and construct the dual graph on faces:
Costs O

(
n2 log n

)
and your sanity (256 lines of C++).

I: Isolated Island
Problem Author: Michael Zündorf

Problem
Given n ≤ 1000 line segments that partition the plane in small regions. Are there two regions the
same distance from the ocean?

Intended solution

• Consider the dual graph, with one vertex per
region.

• The answer is yes if there are adjacent regions
with equal distance to the ocean.

• The difference between adjacent distances is
at most 1, so we can work modulo 2 instead.

• The answer is no iff all pairs of adjacent faces
have opposite values.

1

1

2

1

0

I: Isolated Island
Problem Author: Michael Zündorf

Problem
Given n ≤ 1000 line segments that partition the plane in small regions. Are there two regions the
same distance from the ocean?

Intended solution

• Consider the dual graph, with one vertex per
region.

• The answer is yes if there are adjacent regions
with equal distance to the ocean.

• The difference between adjacent distances is
at most 1, so we can work modulo 2 instead.

• The answer is no iff all pairs of adjacent faces
have opposite values.

1

1

2

1

0

I: Isolated Island
Problem Author: Michael Zündorf

Problem
Given n ≤ 1000 line segments that partition the plane in small regions. Are there two regions the
same distance from the ocean?

Intended solution

• Consider the dual graph, with one vertex per
region.

• The answer is yes if there are adjacent regions
with equal distance to the ocean.

• The difference between adjacent distances is
at most 1, so we can work modulo 2 instead.

• The answer is no iff all pairs of adjacent faces
have opposite values.

1

1

0

1

0

I: Isolated Island
Problem Author: Michael Zündorf

Problem
Given n ≤ 1000 line segments that partition the plane in small regions. Are there two regions the
same distance from the ocean?

Intended solution

• Consider the dual graph, with one vertex per
region.

• The answer is yes if there are adjacent regions
with equal distance to the ocean.

• The difference between adjacent distances is
at most 1, so we can work modulo 2 instead.

• The answer is no iff all pairs of adjacent faces
have opposite values.

1

1

0

1

0

I: Isolated Island
Problem Author: Michael Zündorf

Problem
Given n ≤ 1000 line segments that partition the plane in small regions. Are there two regions the
same distance from the ocean?

Intended solution

• The answer is no iff all pairs of adjacent faces
have opposite values.

• I.e.: the dual graph must be bipartite.
• That’s true iff in each intersection point an

even number of lines meet.
• Solution: check if each segment endpoint

appears an even number of times in the input.

1

1

0

1

0

Statistics: 25 submissions, 0 accepted, 21 unknown

I: Isolated Island
Problem Author: Michael Zündorf

Problem
Given n ≤ 1000 line segments that partition the plane in small regions. Are there two regions the
same distance from the ocean?

Intended solution

• The answer is no iff all pairs of adjacent faces
have opposite values.

• I.e.: the dual graph must be bipartite.

• That’s true iff in each intersection point an
even number of lines meet.

• Solution: check if each segment endpoint
appears an even number of times in the input.

1

1

0

1

0

Statistics: 25 submissions, 0 accepted, 21 unknown

I: Isolated Island
Problem Author: Michael Zündorf

Problem
Given n ≤ 1000 line segments that partition the plane in small regions. Are there two regions the
same distance from the ocean?

Intended solution

• The answer is no iff all pairs of adjacent faces
have opposite values.

• I.e.: the dual graph must be bipartite.
• That’s true iff in each intersection point an

even number of lines meet.

• Solution: check if each segment endpoint
appears an even number of times in the input.

1

1

0

1

0

Statistics: 25 submissions, 0 accepted, 21 unknown

I: Isolated Island
Problem Author: Michael Zündorf

Problem
Given n ≤ 1000 line segments that partition the plane in small regions. Are there two regions the
same distance from the ocean?

Intended solution

• The answer is no iff all pairs of adjacent faces
have opposite values.

• I.e.: the dual graph must be bipartite.
• That’s true iff in each intersection point an

even number of lines meet.
• Solution: check if each segment endpoint

appears an even number of times in the input.

1

1

0

1

0

Statistics: 25 submissions, 0 accepted, 21 unknown

I: Isolated Island
Problem Author: Michael Zündorf

Problem
Given n ≤ 1000 line segments that partition the plane in small regions. Are there two regions the
same distance from the ocean?

Intended solution

• The answer is no iff all pairs of adjacent faces
have opposite values.

• I.e.: the dual graph must be bipartite.
• That’s true iff in each intersection point an

even number of lines meet.
• Solution: check if each segment endpoint

appears an even number of times in the input.

1

1

0

1

0

Statistics: 25 submissions, 0 accepted, 21 unknown

I: Isolated Island
Problem Author: Michael Zündorf

I: Isolated Island
Problem Author: Michael Zündorf

I: Isolated Island
Problem Author: Michael Zündorf

Language stats

C C++ Java Kotlin Python 3
0

100

200

300

400

500 correct
wrong answer
timelimit
run error
pending

Random facts

Jury work

• 723 commits (including test session) (last year: 720)

• 1148 secret test cases (last year: 1424) (95 2
3 per problem!)

• 284 jury solutions (last year: 239)
• The minimum number of lines the jury needed to solve all problems is1

18 + 83 + 41 + 3 + 43 + 23 + 32 + 21 + 1 + 29 + 17 + 5 = 316

On average 26.3 lines per problem, up from 13.6 last year

Random facts

Jury work

• 723 commits (including test session) (last year: 720)
• 1148 secret test cases (last year: 1424) (95 2

3 per problem!)

• 284 jury solutions (last year: 239)
• The minimum number of lines the jury needed to solve all problems is1

18 + 83 + 41 + 3 + 43 + 23 + 32 + 21 + 1 + 29 + 17 + 5 = 316

On average 26.3 lines per problem, up from 13.6 last year

Random facts

Jury work

• 723 commits (including test session) (last year: 720)
• 1148 secret test cases (last year: 1424) (95 2

3 per problem!)
• 284 jury solutions (last year: 239)

• The minimum number of lines the jury needed to solve all problems is1

18 + 83 + 41 + 3 + 43 + 23 + 32 + 21 + 1 + 29 + 17 + 5 = 316

On average 26.3 lines per problem, up from 13.6 last year

Random facts

Jury work

• 723 commits (including test session) (last year: 720)
• 1148 secret test cases (last year: 1424) (95 2

3 per problem!)
• 284 jury solutions (last year: 239)
• The minimum number of lines the jury needed to solve all problems is1

18 + 83 + 41 + 3 + 43 + 23 + 32 + 21 + 1 + 29 + 17 + 5 = 316

On average 26.3 lines per problem, up from 13.6 last year

1But last year, we did more code golfing

Our final commits

Our final commits

Our final commits

