
Freshmen Programming Contest 2023

Solutions presentation

May 27, 2023

FPC 2023



A: Admiring Droplets
Problem Author: Davina van Meer and Maarten Sijm

• Problem: Calculate the time that it takes for the fully coalesced droplet to reach the bottom of
the window.

• Solution: Perform a simulation of the droplets rolling down the window, one by one.
• Pitfalls:

• Check your unit conversions: 1 m = 1000 mm, 1 m3 = 109 mm3.
• Off-by-one errors are easy to make.

Statistics: . . . submissions, . . . accepted, . . . unknown



B: Beaking Spackwards
Problem Author: Jeroen Op de Beek

• Problem: Generate a palindrome with exactly n ≤ 109 palindrome substrings.
• Observation: A string of length ℓ with identical characters has ℓ(ℓ+1)

2 palindromes.
• Thus, the length of the palindrome-esque word is O(√n).

• Solution: Find an ℓ such that ℓ(ℓ+1)
2 ≤ n, generate “a” × ℓ, and fill up the remainder with either:

• non-palindromes (e.g., “bcdbcd. . . ”).
• recursively applying the same strategy until the remaining length is 0.

• ℓ can be found using (linear or binary) search, or exactly:

ℓ =
⌊√

8n + 1 − 1
2

⌋

Statistics: . . . submissions, . . . accepted, . . . unknown



C: Catchy Tunes
Problem Author: Red Kaleb

• Problem: Shuffle the playlist such that no two songs from the same artist are played in a row.
• Guarantee: At least half of the songs are from a unique artist.
• Solution: Interleave the songs that have a unique artist with other songs.
• Many other fancy strategies are possible, but not required.

Statistics: . . . submissions, . . . accepted, . . . unknown



D: Dungeon of Darkness
Problem Author: Maarten Sijm and Angel Karchev

• Problem: Get to the final room in a dungeon, where you only see the symbols of the doors
leading from the current room.

• Solution: Use recursive DFS to delve deeper into the dungeon.
• If you don’t find the final room in a recursive call, print the symbol of the door you went through

to go back.
• Pitfall: Not being careful about when you print the symbol of a door.
• On that note, if you solved this problem, you’re probably qualified to be in the jury for next year

(the point above took the author > 3 hours to debug).

Statistics: . . . submissions, . . . accepted, . . . unknown



E: Expected Eyes
Problem Author: Maarten Sijm and Leon van der Waal

• Problem: Given list of dice and the number of faces of each one of them, calculate the expected
value of throwing all of them at once.

• Naive solution: Calculate all possible throws, sum them and then divide them by the number of
possible outcomes.

• Complexity: O(xmax
n). Gets accepted!

• Observation:
• E [X + Y ] = E [X ] + E [Y ], for any independent X and Y
• E [dice with k faces] = 1

k
∑k

x=1 x = k+1
2

• Fast solution: Calculate the expected value of every dice, then sum them up.
• Complexity: O(n).

Statistics: . . . submissions, . . . accepted, . . . unknown



F: Feline Friendship
Problem Author: Jeroen Op de Beek

• Problem: Given a special functional graph,
change the least number of edges such that
there is a maximal path of length k.

• Observation 1: The array in the input is a
permutation → the favourite cat relations
form disjoint cycles.

• Observation 2: If there is a cycle of length k,
0 operations suffice.

• Observation 3: Else if there is a cycle of
length > k, 1 operation is enough.

• Observation 4: If you can make teams of
length a and b, can make team of length
a + 1, a + 2, . . . , a + b in 1 operation.

• Solution: Greedily merge largest cycles in this
way, until sum becomes ≥ k.

• Complexity: O(n) for finding the disjoint
cycles and O(n log n) or O(n) for sorting the
cycle sizes.

Cats are visualised as circles, with arrows being the
favourite playing cat relations

Take whole cycle as team.

Make cycle into a path, and then choose where to
start.

Merge two cycles.

Repeatedly connect cycles together.
Statistics: . . . submissions, . . . accepted, . . . unknown



G: Gridlock
Problem Author: Matei Tinca

• Problem: Given a grid full of arrows, remove them one by one. When removing an arrow, it must
not point to another arrow in the grid.

• Observation: If we want to remove an arrow, all of the other arrows that it points to must be
removed first.

• This means that the arrow that we want to remove has a bunch of dependencies.

• Naive Solution: We can build a graph with all the dependencies, then compute the topological
sorting.

• If one such sorting exists, we have a solution.
• If one does not exist, then it is impossible to solve the puzzle.



G: Gridlock
Problem Author: Matei Tinca

• Naive Solution: We can build a graph with all the dependencies, then compute the topological
sorting.

• Complexity:
• Since an arrow points to an entire row or column of arrows, a cell has O(h) or O(w)

dependencies, therefore, we have O(hw) nodes and O(hw(h + w)) edges.
• Since the topological sorting has O(V + E) complexity, then this solution yields

O(hw(h + w)) complexity, which is not enough to pass the time limit.



G: Gridlock
Problem Author: Matei Tinca

• Observation: Maybe we can try to solve this
in the opposite way.

• Instead of starting from a cell and recursively
solving all of its dependencies, we can instead
start from the trivial nodes, with no
dependencies and then solve the nodes with
more dependencies.

• Solution: Start from the margins of the
puzzle and remove the cells one by one.

• When removing a cell, we can then attempt to
remove all of its remaining neighbours.

• To find the neighbours of a cell quickly, we can
maintain for each cell a link to its neighbours.

• When removing a cell, we must link its left
and right neighbours between each other. The
same goes for the neighbours from above and
below.



G: Gridlock
Problem Author: Matei Tinca

• Solution: Start from the margins of the puzzle and remove the cells one by one.
• When removing a cell, we can then attempt to remove all of its remaining neighbours.
• Complexity:

• We remove O(h · w) cells.
• Whenever we remove a cell, we check for at most 4 neighbours (up, down, left, right).
• Changing the links of neighbouring cells takes O(1) time.
• In total, the solution takes O(h · w) time, which is enough to pass the time limit.

Statistics: . . . submissions, . . . accepted, . . . unknown



G: Gridlock
Problem Author: Matei Tinca

Magenta: Left Red: Up Green: Right Blue: Down (impossible)



H: Hunting the Mavericks
Problem Author: Angel Karchev

• Problem: Determine in which level to start your playthrough, so that you miss the least armour
upgrades.

• Solution:
• Calculate for each level i how many armour upgrades it contains (ci) and how often it is

required to obtain another armour upgrade (ri).
• Determine how many upgrades you would miss by starting at level 1 and store this in a

variable ans.
• For each level i in ascending order, determine how many you would miss by doing level i last

instead of first: ans := ans + ri − ci .
• Output the minimal value for ans over all levels.

• Pitfalls: Brute force quadratic solutions are too slow.

Statistics: . . . submissions, . . . accepted, . . . unknown



I: Industry Improvements
Problem Author: Cristian-Alexandru Botocan

• Problem: Given a list of n boxes that need to be processed by a machine line in at most k runs,
determine the minimum summed weight that the machine needs to handle in one run.

• Naive solution: Iterate through all possible capacities and simulate the machine line to see if it
finishes in less than k runs.
O

(
n ·

∑
x
)

is too slow! Where
∑

x is the sum of all the weights.
• Observation: If the machine line processes everything in less than k runs with a capacity of a,

then it will also work for a capacity of b, where a < b.
• Solution: Binary search the capacity of the machine line.
• Complexity: O

(
n log

(∑
x
))

.

Statistics: . . . submissions, . . . accepted, . . . unknown



J: Jurassic Park
Problem Author: Leon van der Waal

• Problem: Given a set of uniform random
points in a square, find the smallest perimeter
among all triangles.

• Naive solution: Calculate the perimeter of all
possible triangles, and take the minimum.

• Complexity: This solution runs in O
(
n3)

time, too slow!
• Observation: The points are randomly

distributed, so there are no nasty testcases.
• How can we make use of this fact?
• Solution: Divide the bounding box into a⌊√ n

3
⌋

×
⌊√ n

3
⌋

grid, with sidelengths ℓ.
• Observation: By the pigeonhole principle, at

least one of the tiles contains 3 points.
• Observation: The smallest perimeter is hence

at most
(
2 +

√
2
)

ℓ.
• Observation: This means that the distance

between two points of the smallest triangle
can at most be

(
1 + 1

2
√

2
)

ℓ < 2ℓ.
• Solution: Calculate the perimeter of the

triangles contained in all blocks of 3 × 3 tiles.
• Solution: Because the points are uniformly

distributed, the number of points inside the
blocks is small with high probability.

• Complexity: O(n), with high probability.
• Solution: Many other solutions work using the

randomness, as long as you somehow do not
check all possible triangles.

• Challenge: Try to make an algorithm that
does not use randomness, and runs in
O(n log(n)) time.

Statistics: . . . submissions, . . . accepted, . . . unknown



Random facts

Jury work

• 360 commits (last year: 371)
• 339 secret test cases (last year: 252)
• 96 accepted jury/proofreader solutions (last year: 59)
• The minimum1 number of lines the jury needed to solve all problems is

4 + 6 + 5 + 9 + 1 + 22 + 24 + 5 + 3 + 5 = 84

On average 8.4 lines per problem, down from 10.4 last year

1After codegolfing



Thanks to:

The Proofreaders
• Andrei Botocan (Bucharest, Romania)
• Davina van Meer (Delft)
• Michael Vasseur (VU Amsterdam)
• Michal Tešnar (RU Groningen)
• Nadyne Aretz (TU Delft)
• Thomas Verwoerd (TU Delft)
• Wietze Koops (RU Groningen)

The Jury for FPC (TU Delft)
and AAPJE (VU Amsterdam)

• Alexandru Bolfa (TU Delft)
• Angel Karchev (TU Delft)
• Jeroen Op de Beek (TU Delft)
• Leon van der Waal (TU Delft)
• Maarten Sijm (TU Delft)
• Matei Tinca (VU Amsterdam)
• Red Kalab (VU Amsterdam)


