Freshmen Programming Contest 2023

Solutions presentation

May 27, 2023

- Problem: Given list of dice and the number of faces of each one of them, calculate the expected value of throwing all of them at once.
- Problem: Given list of dice and the number of faces of each one of them, calculate the expected value of throwing all of them at once.
- Naive solution: Calculate all possible throws, sum them and then divide them by the number of possible outcomes.
- Problem: Given list of dice and the number of faces of each one of them, calculate the expected value of throwing all of them at once.
- Naive solution: Calculate all possible throws, sum them and then divide them by the number of possible outcomes.
- Complexity: $\mathcal{O}\left(x_{\max }{ }^{n}\right)$. Gets accepted!
- Problem: Given list of dice and the number of faces of each one of them, calculate the expected value of throwing all of them at once.
- Naive solution: Calculate all possible throws, sum them and then divide them by the number of possible outcomes.
- Complexity: $\mathcal{O}\left(x_{\max }{ }^{n}\right)$. Gets accepted!
- Observation:
- $E[X+Y]=E[X]+E[Y]$, for any independent X and Y
- $E[$ dice with k faces $]=\frac{1}{k} \sum_{x=1}^{k} X=\frac{k+1}{2}$
- Problem: Given list of dice and the number of faces of each one of them, calculate the expected value of throwing all of them at once.
- Naive solution: Calculate all possible throws, sum them and then divide them by the number of possible outcomes.
- Complexity: $\mathcal{O}\left(x_{\max }{ }^{n}\right)$. Gets accepted!
- Observation:
- $E[X+Y]=E[X]+E[Y]$, for any independent X and Y
- $E[$ dice with k faces $]=\frac{1}{k} \sum_{x=1}^{k} X=\frac{k+1}{2}$
- Fast solution: Calculate the expected value of every dice, then sum them up.
- Problem: Given list of dice and the number of faces of each one of them, calculate the expected value of throwing all of them at once.
- Naive solution: Calculate all possible throws, sum them and then divide them by the number of possible outcomes.
- Complexity: $\mathcal{O}\left(x_{\max }{ }^{n}\right)$. Gets accepted!
- Observation:
- $E[X+Y]=E[X]+E[Y]$, for any independent X and Y
- $E[$ dice with k faces $]=\frac{1}{k} \sum_{x=1}^{k} X=\frac{k+1}{2}$
- Fast solution: Calculate the expected value of every dice, then sum them up.
- Complexity: $\mathcal{O}(n)$.
- Problem: Given list of dice and the number of faces of each one of them, calculate the expected value of throwing all of them at once.
- Naive solution: Calculate all possible throws, sum them and then divide them by the number of possible outcomes.
- Complexity: $\mathcal{O}\left(x_{\max }{ }^{n}\right)$. Gets accepted!
- Observation:
- $E[X+Y]=E[X]+E[Y]$, for any independent X and Y
- $E[$ dice with k faces $]=\frac{1}{k} \sum_{x=1}^{k} X=\frac{k+1}{2}$
- Fast solution: Calculate the expected value of every dice, then sum them up.
- Complexity: $\mathcal{O}(n)$.

Statistics: 48 submissions, 44 accepted, 1 unknown

A: Admiring Droplets

Problem Author: Davina van Meer and Maarten Sijm

- Problem: Calculate the time that it takes for the fully coalesced droplet to reach the bottom of the window.

A: Admiring Droplets

Problem Author: Davina van Meer and Maarten Sijm

- Problem: Calculate the time that it takes for the fully coalesced droplet to reach the bottom of the window.
- Solution: Perform a simulation of the droplets rolling down the window, one by one.

A: Admiring Droplets

Problem Author: Davina van Meer and Maarten Sijm

- Problem: Calculate the time that it takes for the fully coalesced droplet to reach the bottom of the window.
- Solution: Perform a simulation of the droplets rolling down the window, one by one.
- Pitfalls:
- Check your unit conversions: $1 \mathrm{~m}=1000 \mathrm{~mm}, 1 \mathrm{~m}^{3}=10^{9} \mathrm{~mm}^{3}$.

A: Admiring Droplets

Problem Author: Davina van Meer and Maarten Sijm

- Problem: Calculate the time that it takes for the fully coalesced droplet to reach the bottom of the window.
- Solution: Perform a simulation of the droplets rolling down the window, one by one.
- Pitfalls:
- Check your unit conversions: $1 \mathrm{~m}=1000 \mathrm{~mm}, 1 \mathrm{~m}^{3}=10^{9} \mathrm{~mm}^{3}$.
- Off-by-one errors are easy to make.

A: Admiring Droplets

Problem Author: Davina van Meer and Maarten Sijm

- Problem: Calculate the time that it takes for the fully coalesced droplet to reach the bottom of the window.
- Solution: Perform a simulation of the droplets rolling down the window, one by one.
- Pitfalls:
- Check your unit conversions: $1 \mathrm{~m}=1000 \mathrm{~mm}, 1 \mathrm{~m}^{3}=10^{9} \mathrm{~mm}^{3}$.
- Off-by-one errors are easy to make.

Statistics: 61 submissions, 38 accepted, 15 unknown

Problem Author: Jeroen Op de Beek

- Problem: Generate a palindrome with exactly $n \leq 10^{9}$ palindrome substrings.

B: Beaking Spackwards

Problem Author: Jeroen Op de Beek

- Problem: Generate a palindrome with exactly $n \leq 10^{9}$ palindrome substrings.
- Observation: A string of length ℓ with identical characters has $\frac{\ell(\ell+1)}{2}$ palindromes.
- Thus, the length of the palindrome-esque word is $\mathcal{O}(\sqrt{n})$.
- Problem: Generate a palindrome with exactly $n \leq 10^{9}$ palindrome substrings.
- Observation: A string of length ℓ with identical characters has $\frac{\ell(\ell+1)}{2}$ palindromes.
- Thus, the length of the palindrome-esque word is $\mathcal{O}(\sqrt{n})$.
- Solution: Find an ℓ such that $\frac{\ell(\ell+1)}{2} \leq n$, generate "a" $\times \ell$, and fill up the remainder with either:
- non-palindromes (e.g., "bcdbcd...").
- recursively applying the same strategy until the remaining length is 0 .
- Problem: Generate a palindrome with exactly $n \leq 10^{9}$ palindrome substrings.
- Observation: A string of length ℓ with identical characters has $\frac{\ell(\ell+1)}{2}$ palindromes.
- Thus, the length of the palindrome-esque word is $\mathcal{O}(\sqrt{n})$.
- Solution: Find an ℓ such that $\frac{\ell(\ell+1)}{2} \leq n$, generate "a" $\times \ell$, and fill up the remainder with either:
- non-palindromes (e.g., "bcdbcd...").
- recursively applying the same strategy until the remaining length is 0 .
- ℓ can be found using (linear or binary) search, or exactly:

$$
\ell=\left\lfloor\frac{\sqrt{8 n+1}-1}{2}\right\rfloor
$$

- Problem: Generate a palindrome with exactly $n \leq 10^{9}$ palindrome substrings.
- Observation: A string of length ℓ with identical characters has $\frac{\ell(\ell+1)}{2}$ palindromes.
- Thus, the length of the palindrome-esque word is $\mathcal{O}(\sqrt{n})$.
- Solution: Find an ℓ such that $\frac{\ell(\ell+1)}{2} \leq n$, generate "a" $\times \ell$, and fill up the remainder with either:
- non-palindromes (e.g., "bcdbcd...").
- recursively applying the same strategy until the remaining length is 0 .
- ℓ can be found using (linear or binary) search, or exactly:

$$
\ell=\left\lfloor\frac{\sqrt{8 n+1}-1}{2}\right\rfloor
$$

Statistics: 50 submissions, 22 accepted, 12 unknown

C: Catchy Tunes

Problem Author: Red Kaleb

- Problem: Shuffle the playlist such that no two songs from the same artist are played in a row.

Problem Author: Red Kaleb

- Problem: Shuffle the playlist such that no two songs from the same artist are played in a row.
- Guarantee: At least half of the songs are from a unique artist.

Problem Author: Red Kaleb

- Problem: Shuffle the playlist such that no two songs from the same artist are played in a row.
- Guarantee: At least half of the songs are from a unique artist.
- Solution: Interleave the songs that have a unique artist with other songs.

Problem Author: Red Kaleb

- Problem: Shuffle the playlist such that no two songs from the same artist are played in a row.
- Guarantee: At least half of the songs are from a unique artist.
- Solution: Interleave the songs that have a unique artist with other songs.
- Many other fancy strategies are possible, but not required.

Problem Author: Red Kaleb

- Problem: Shuffle the playlist such that no two songs from the same artist are played in a row.
- Guarantee: At least half of the songs are from a unique artist.
- Solution: Interleave the songs that have a unique artist with other songs.
- Many other fancy strategies are possible, but not required.

Statistics: 103 submissions, 21 accepted, 44 unknown

Problem Author: Cristian-Alexandru Botocan

- Problem: Given a list of n boxes that need to be processed by a machine line in at most k runs, determine the minimum summed weight that the machine needs to handle in one run.
- Problem: Given a list of n boxes that need to be processed by a machine line in at most k runs, determine the minimum summed weight that the machine needs to handle in one run.
- Naive solution: Iterate through all possible capacities and simulate the machine line to see if it finishes in less than k runs. $\mathcal{O}\left(n \cdot \sum x\right)$ is too slow! Where $\sum x$ is the sum of all the weights.
- Problem: Given a list of n boxes that need to be processed by a machine line in at most k runs, determine the minimum summed weight that the machine needs to handle in one run.
- Naive solution: Iterate through all possible capacities and simulate the machine line to see if it finishes in less than k runs. $\mathcal{O}\left(n \cdot \sum x\right)$ is too slow! Where $\sum x$ is the sum of all the weights.
- Observation: If the machine line processes everything in less than k runs with a capacity of a, then it will also work for a capacity of b, where $a<b$.
- Problem: Given a list of n boxes that need to be processed by a machine line in at most k runs, determine the minimum summed weight that the machine needs to handle in one run.
- Naive solution: Iterate through all possible capacities and simulate the machine line to see if it finishes in less than k runs. $\mathcal{O}\left(n \cdot \sum x\right)$ is too slow! Where $\sum x$ is the sum of all the weights.
- Observation: If the machine line processes everything in less than k runs with a capacity of a, then it will also work for a capacity of b, where $a<b$.
- Solution: Binary search the capacity of the machine line.
- Problem: Given a list of n boxes that need to be processed by a machine line in at most k runs, determine the minimum summed weight that the machine needs to handle in one run.
- Naive solution: Iterate through all possible capacities and simulate the machine line to see if it finishes in less than k runs. $\mathcal{O}\left(n \cdot \sum x\right)$ is too slow! Where $\sum x$ is the sum of all the weights.
- Observation: If the machine line processes everything in less than k runs with a capacity of a, then it will also work for a capacity of b, where $a<b$.
- Solution: Binary search the capacity of the machine line.
- Complexity: $\mathcal{O}\left(n \log \left(\sum x\right)\right)$.
- Problem: Given a list of n boxes that need to be processed by a machine line in at most k runs, determine the minimum summed weight that the machine needs to handle in one run.
- Naive solution: Iterate through all possible capacities and simulate the machine line to see if it finishes in less than k runs. $\mathcal{O}\left(n \cdot \sum x\right)$ is too slow! Where $\sum x$ is the sum of all the weights.
- Observation: If the machine line processes everything in less than k runs with a capacity of a, then it will also work for a capacity of b, where $a<b$.
- Solution: Binary search the capacity of the machine line.
- Complexity: $\mathcal{O}\left(n \log \left(\sum x\right)\right)$.
- Pitfall: Do not start binary search at 0, because machine capacity should be larger than the largest box.
- Problem: Given a list of n boxes that need to be processed by a machine line in at most k runs, determine the minimum summed weight that the machine needs to handle in one run.
- Naive solution: Iterate through all possible capacities and simulate the machine line to see if it finishes in less than k runs. $\mathcal{O}\left(n \cdot \sum x\right)$ is too slow! Where $\sum x$ is the sum of all the weights.
- Observation: If the machine line processes everything in less than k runs with a capacity of a, then it will also work for a capacity of b, where $a<b$.
- Solution: Binary search the capacity of the machine line.
- Complexity: $\mathcal{O}\left(n \log \left(\sum x\right)\right)$.
- Pitfall: Do not start binary search at 0, because machine capacity should be larger than the largest box.

Statistics: 57 submissions, 13 accepted, 17 unknown

Problem Author: Angel Karchev

- Problem: Determine in which level to start your playthrough, so that you miss the least armour upgrades.

H: Hunting the Mavericks

Problem Author: Angel Karchev

- Problem: Determine in which level to start your playthrough, so that you miss the least armour upgrades.
- Solution:
- Calculate for each level i how many armour upgrades it contains $\left(c_{i}\right)$ and how often it is required to obtain another armour upgrade $\left(r_{i}\right)$.

H: Hunting the Mavericks

Problem Author: Angel Karchev

- Problem: Determine in which level to start your playthrough, so that you miss the least armour upgrades.
- Solution:
- Calculate for each level i how many armour upgrades it contains $\left(c_{i}\right)$ and how often it is required to obtain another armour upgrade $\left(r_{i}\right)$.
- Determine how many upgrades you would miss by starting at level 1 and store this in a variable ans.

H: Hunting the Mavericks

Problem Author: Angel Karchev

- Problem: Determine in which level to start your playthrough, so that you miss the least armour upgrades.
- Solution:
- Calculate for each level i how many armour upgrades it contains $\left(c_{i}\right)$ and how often it is required to obtain another armour upgrade $\left(r_{i}\right)$.
- Determine how many upgrades you would miss by starting at level 1 and store this in a variable ans.
- For each level i in ascending order, determine how many you would miss by doing level i last instead of first: ans $:=$ ans $+r_{i}-c_{i}$.

H: Hunting the Mavericks

Problem Author: Angel Karchev

- Problem: Determine in which level to start your playthrough, so that you miss the least armour upgrades.
- Solution:
- Calculate for each level i how many armour upgrades it contains $\left(c_{i}\right)$ and how often it is required to obtain another armour upgrade $\left(r_{i}\right)$.
- Determine how many upgrades you would miss by starting at level 1 and store this in a variable ans.
- For each level i in ascending order, determine how many you would miss by doing level i last instead of first: ans $:=$ ans $+r_{i}-c_{i}$.
- Output the minimal value for ans over all levels.

H: Hunting the Mavericks

Problem Author: Angel Karchev

- Problem: Determine in which level to start your playthrough, so that you miss the least armour upgrades.
- Solution:
- Calculate for each level i how many armour upgrades it contains $\left(c_{i}\right)$ and how often it is required to obtain another armour upgrade $\left(r_{i}\right)$.
- Determine how many upgrades you would miss by starting at level 1 and store this in a variable ans.
- For each level i in ascending order, determine how many you would miss by doing level i last instead of first: ans $:=$ ans $+r_{i}-c_{i}$.
- Output the minimal value for ans over all levels.
- Pitfalls: Brute force quadratic solutions are too slow.

H: Hunting the Mavericks

Problem Author: Angel Karchev

- Problem: Determine in which level to start your playthrough, so that you miss the least armour upgrades.
- Solution:
- Calculate for each level i how many armour upgrades it contains $\left(c_{i}\right)$ and how often it is required to obtain another armour upgrade $\left(r_{i}\right)$.
- Determine how many upgrades you would miss by starting at level 1 and store this in a variable ans.
- For each level i in ascending order, determine how many you would miss by doing level i last instead of first: ans $:=$ ans $+r_{i}-c_{i}$.
- Output the minimal value for ans over all levels.
- Pitfalls: Brute force quadratic solutions are too slow.

Statistics: 28 submissions, 4 accepted, 20 unknown

- Problem: Get to the final room in a dungeon, where you only see the symbols of the doors leading from the current room.
- Problem: Get to the final room in a dungeon, where you only see the symbols of the doors leading from the current room.
- Solution: Use recursive DFS to delve deeper into the dungeon.
- Problem: Get to the final room in a dungeon, where you only see the symbols of the doors leading from the current room.
- Solution: Use recursive DFS to delve deeper into the dungeon.
- If you don't find the final room in a recursive call, print the symbol of the door you went through to go back.
- Problem: Get to the final room in a dungeon, where you only see the symbols of the doors leading from the current room.
- Solution: Use recursive DFS to delve deeper into the dungeon.
- If you don't find the final room in a recursive call, print the symbol of the door you went through to go back.
- Pitfall: Not being careful about when you print the symbol of a door.
- Problem: Get to the final room in a dungeon, where you only see the symbols of the doors leading from the current room.
- Solution: Use recursive DFS to delve deeper into the dungeon.
- If you don't find the final room in a recursive call, print the symbol of the door you went through to go back.
- Pitfall: Not being careful about when you print the symbol of a door.
- On that note, if you solved this problem, you're probably qualified to be in the jury for next year (the point above took the author >3 hours to debug).
- Problem: Get to the final room in a dungeon, where you only see the symbols of the doors leading from the current room.
- Solution: Use recursive DFS to delve deeper into the dungeon.
- If you don't find the final room in a recursive call, print the symbol of the door you went through to go back.
- Pitfall: Not being careful about when you print the symbol of a door.
- On that note, if you solved this problem, you're probably qualified to be in the jury for next year (the point above took the author >3 hours to debug).
"If there is a way forward, you are never lost"
-The guy two invented DFS, probably
- Problem: Get to the final room in a dungeon, where you only see the symbols of the doors leading from the current room.
- Solution: Use recursive DFS to delve deeper into the dungeon.
- If you don't find the final room in a recursive call, print the symbol of the door you went through to go back.
- Pitfall: Not being careful about when you print the symbol of a door.
- On that note, if you solved this problem, you're probably qualified to be in the jury for next year (the point above took the author >3 hours to debug).
"If there is a way forward, you are never lost"
-The guy two invented DFS, probably

Statistics: 31 submissions, 5 accepted, 19 unknown

F: Feline Friendship

Problem Author: Jeroen Op de Beek

- Problem: Given a special functional graph, change the least number of edges such that there is a maximal path of length k.
- Observation 1: The array in the input is a permutation \rightarrow the favourite cat relations form disjoint cycles.

Cats are visualised as circles, with arrows being the favourite playing cat relations

F: Feline Friendship

Problem Author: Jeroen Op de Beek

- Problem: Given a special functional graph, change the least number of edges such that there is a maximal path of length k.
- Observation 2: If there is a cycle of length k, 0 operations suffice.

Take whole cycle as team.

F: Feline Friendship

Problem Author: Jeroen Op de Beek

- Problem: Given a special functional graph, change the least number of edges such that there is a maximal path of length k.
- Observation 3: Else if there is a cycle of length $>k$, 1 operation is enough.

Make cycle into a path, and then choose where to start.

F: Feline Friendship

Problem Author: Jeroen Op de Beek

- Problem: Given a special functional graph, change the least number of edges such that there is a maximal path of length k.
- Observation 4: If you can make teams of length a and b, can make team of length $a+1, a+2, \ldots, a+b$ in 1 operation.

Merge two cycles.

F: Feline Friendship

Problem Author: Jeroen Op de Beek

- Problem: Given a special functional graph, change the least number of edges such that there is a maximal path of length k.
- Solution: Greedily merge largest cycles in this way, until sum becomes $\geq k$.
- Complexity: $\mathcal{O}(n)$ for finding the disjoint cycles and $\mathcal{O}(n \log n)$ or $\mathcal{O}(n)$ for sorting the cycle sizes.

Repeatedly connect cycles together.

F: Feline Friendship

Problem Author: Jeroen Op de Beek

- Problem: Given a special functional graph, change the least number of edges such that there is a maximal path of length k.
- Solution: Greedily merge largest cycles in this way, until sum becomes $\geq k$.
- Complexity: $\mathcal{O}(n)$ for finding the disjoint cycles and $\mathcal{O}(n \log n)$ or $\mathcal{O}(n)$ for sorting the cycle sizes.

Repeatedly connect cycles together.

G: Gridlock

Problem Author: Matei Tinca

- Problem: Given a grid full of arrows, remove them one by one. When removing an arrow, it must not point to another arrow in the grid.

G: Gridlock

Problem Author: Matei Tinca

- Problem: Given a grid full of arrows, remove them one by one. When removing an arrow, it must not point to another arrow in the grid.
- Observation: If we want to remove an arrow, all of the other arrows that it points to must be removed first.

G: Gridlock

Problem Author: Matei Tinca

- Problem: Given a grid full of arrows, remove them one by one. When removing an arrow, it must not point to another arrow in the grid.
- Observation: If we want to remove an arrow, all of the other arrows that it points to must be removed first.
- This means that the arrow that we want to remove has a bunch of dependencies.

G: Gridlock

Problem Author: Matei Tinca

- Problem: Given a grid full of arrows, remove them one by one. When removing an arrow, it must not point to another arrow in the grid.
- Observation: If we want to remove an arrow, all of the other arrows that it points to must be removed first.
- This means that the arrow that we want to remove has a bunch of dependencies.

- Naive Solution: We can build a graph with all the dependencies, then compute the topological sorting.

G: Gridlock

Problem Author: Matei Tinca

- Problem: Given a grid full of arrows, remove them one by one. When removing an arrow, it must not point to another arrow in the grid.
- Observation: If we want to remove an arrow, all of the other arrows that it points to must be removed first.
- This means that the arrow that we want to remove has a bunch of dependencies.

- Naive Solution: We can build a graph with all the dependencies, then compute the topological sorting.
- If one such sorting exists, we have a solution.
- If one does not exist, then it is impossible to solve the puzzle.

G: Gridlock

Problem Author: Matei Tinca

- Naive Solution: We can build a graph with all the dependencies, then compute the topological sorting.
- Complexity:
- Since an arrow points to an entire row or column of arrows, a cell has $\mathcal{O}(h)$ or $\mathcal{O}(w)$ dependencies, therefore, we have $\mathcal{O}(h w)$ nodes and $\mathcal{O}(h w(h+w))$ edges.

G: Gridlock

Problem Author: Matei Tinca

- Naive Solution: We can build a graph with all the dependencies, then compute the topological sorting.
- Complexity:
- Since an arrow points to an entire row or column of arrows, a cell has $\mathcal{O}(h)$ or $\mathcal{O}(w)$ dependencies, therefore, we have $\mathcal{O}(h w)$ nodes and $\mathcal{O}(h w(h+w))$ edges.
- Since the topological sorting has $\mathcal{O}(V+E)$ complexity, then this solution yields $\mathcal{O}(h w(h+w))$ complexity, which is not enough to pass the time limit.

Problem Author: Matei Tinca

- Observation: Maybe we can try to solve this in the opposite way.

Problem Author: Matei Tinca

- Observation: Maybe we can try to solve this in the opposite way.
- Instead of starting from a cell and recursively solving all of its dependencies, we can instead start from the trivial nodes, with no dependencies and then solve the nodes with more dependencies.

G: Gridlock

Problem Author: Matei Tinca

- Observation: Maybe we can try to solve this in the opposite way.
- Solution: Start from the margins of the puzzle and remove the cells one by one.

Problem Author: Matei Tinca

- Observation: Maybe we can try to solve this in the opposite way.
- Solution: Start from the margins of the puzzle and remove the cells one by one.
- When removing a cell, we can then attempt to remove all of its remaining neighbours.

G: Gridlock

- Observation: Maybe we can try to solve this in the opposite way.
- Solution: Start from the margins of the puzzle and remove the cells one by one.
- When removing a cell, we can then attempt to remove all of its remaining neighbours.
- To find the neighbours of a cell quickly, we can maintain for each cell a link to its neighbours.

G: Gridlock

- Observation: Maybe we can try to solve this in the opposite way.
- Solution: Start from the margins of the puzzle and remove the cells one by one.
- When removing a cell, we can then attempt to remove all of its remaining neighbours.
- To find the neighbours of a cell quickly, we can maintain for each cell a link to its neighbours.
- When removing a cell, we must link its left and right neighbours between each other. The same goes for the neighbours from above and below.

Problem Author: Matei Tinca

- Solution: Start from the margins of the puzzle and remove the cells one by one.
- When removing a cell, we can then attempt to remove all of its remaining neighbours.
- Complexity:
- We remove $\mathcal{O}(h \cdot w)$ cells.

G: Gridlock

Problem Author: Matei Tinca

- Solution: Start from the margins of the puzzle and remove the cells one by one.
- When removing a cell, we can then attempt to remove all of its remaining neighbours.
- Complexity:
- We remove $\mathcal{O}(h \cdot w)$ cells.
- Whenever we remove a cell, we check for at most 4 neighbours (up, down, left, right).

G: Gridlock

Problem Author: Matei Tinca

- Solution: Start from the margins of the puzzle and remove the cells one by one.
- When removing a cell, we can then attempt to remove all of its remaining neighbours.
- Complexity:
- We remove $\mathcal{O}(h \cdot w)$ cells.
- Whenever we remove a cell, we check for at most 4 neighbours (up, down, left, right).
- Changing the links of neighbouring cells takes $\mathcal{O}(1)$ time.

G: Gridlock

Problem Author: Matei Tinca

- Solution: Start from the margins of the puzzle and remove the cells one by one.
- When removing a cell, we can then attempt to remove all of its remaining neighbours.
- Complexity:
- We remove $\mathcal{O}(h \cdot w)$ cells.
- Whenever we remove a cell, we check for at most 4 neighbours (up, down, left, right).
- Changing the links of neighbouring cells takes $\mathcal{O}(1)$ time.
- In total, the solution takes $\mathcal{O}(h \cdot w)$ time, which is enough to pass the time limit.

G: Gridlock

Problem Author: Matei Tinca

- Solution: Start from the margins of the puzzle and remove the cells one by one.
- When removing a cell, we can then attempt to remove all of its remaining neighbours.
- Complexity:
- We remove $\mathcal{O}(h \cdot w)$ cells.
- Whenever we remove a cell, we check for at most 4 neighbours (up, down, left, right).
- Changing the links of neighbouring cells takes $\mathcal{O}(1)$ time.
- In total, the solution takes $\mathcal{O}(h \cdot w)$ time, which is enough to pass the time limit.

Statistics: 47 submissions, 1 accepted, 27 unknown

G: Gridlock

Problem Author: Matei Tinca

G: Gridlock

Problem Author: Matei Tinca

Magenta: Left
Red: Up Green: Right
Blue: Down

Problem Author: Matei Tinca

Magenta: Left
Red: Up Green: Right
Blue: Down

Problem Author: Matei Tinca

Magenta: Left
Red: Up Green: Right
Blue: Down

- Problem: Given a set of uniform random points in a square, find the smallest perimeter among all triangles.

- Problem: Given a set of uniform random points in a square, find the smallest perimeter among all triangles.
- Naive solution: Calculate the perimeter of all possible triangles, and take the minimum.

- Problem: Given a set of uniform random points in a square, find the smallest perimeter among all triangles.
- Naive solution: Calculate the perimeter of all possible triangles, and take the minimum.
- Complexity: This solution runs in $\mathcal{O}\left(n^{3}\right)$ time, too slow!

J: Jurassic Park

- Problem: Given a set of uniform random points in a square, find the smallest perimeter among all triangles.
- Observation: The points are randomly distributed, so there are no nasty testcases.
- How can we make use of this fact?

- Problem: Given a set of uniform random points in a square, find the smallest perimeter among all triangles.
- Solution: Divide the bounding box into a $\left\lfloor\sqrt{\frac{\pi}{3}}\right\rfloor \times\left\lfloor\sqrt{\frac{\pi}{3}}\right\rfloor$ grid, with sidelengths ℓ.
- Observation: By the pigeonhole principle, at least one of the tiles contains 3 points.

- Problem: Given a set of uniform random points in a square, find the smallest perimeter among all triangles.
- Solution: Divide the bounding box into a $\left\lfloor\sqrt{\frac{n}{3}}\right\rfloor \times\left\lfloor\sqrt{\frac{n}{3}}\right\rfloor$ grid, with sidelengths ℓ.
- Observation: By the pigeonhole principle, at least one of the tiles contains 3 points.
- Observation: The smallest perimeter is hence at most $(2+\sqrt{2}) \ell$.

- Problem: Given a set of uniform random points in a square, find the smallest perimeter among all triangles.
- Solution: Divide the bounding box into a $\left\lfloor\sqrt{\frac{n}{3}}\right\rfloor \times\left\lfloor\sqrt{\frac{n}{3}}\right\rfloor$ grid, with sidelengths ℓ.
- Observation: By the pigeonhole principle, at least one of the tiles contains 3 points.
- Observation: The smallest perimeter is hence at most $(2+\sqrt{2}) \ell$.
- Observation: This means that the distance between two points of the smallest triangle can at most be $\left(1+\frac{1}{2} \sqrt{2}\right) \ell<2 \ell$.

- Problem: Given a set of uniform random points in a square, find the smallest perimeter among all triangles.
- Observation: This means that the distance between two points of the smallest triangle can at most be $\left(1+\frac{1}{2} \sqrt{2}\right) \ell<2 \ell$.
- Solution: Calculate the perimeter of the triangles contained in all blocks of 3×3 tiles.

- Problem: Given a set of uniform random points in a square, find the smallest perimeter among all triangles.
- Observation: This means that the distance between two points of the smallest triangle can at most be $\left(1+\frac{1}{2} \sqrt{2}\right) \ell<2 \ell$.
- Solution: Calculate the perimeter of the triangles contained in all blocks of 3×3 tiles.
- Solution: Because the points are uniformly distributed, the number of points inside the blocks is small with high probability.

- Problem: Given a set of uniform random points in a square, find the smallest perimeter among all triangles.
- Observation: This means that the distance between two points of the smallest triangle can at most be $\left(1+\frac{1}{2} \sqrt{2}\right) \ell<2 \ell$.
- Solution: Calculate the perimeter of the triangles contained in all blocks of 3×3 tiles.
- Solution: Because the points are uniformly distributed, the number of points inside the blocks is small with high probability.
- Complexity: $\mathcal{O}(n)$, with high probability.

- Problem: Given a set of uniform random points in a square, find the smallest perimeter among all triangles.
- Solution: Many other solutions work using the randomness, as long as you somehow do not check all possible triangles.
- Challenge: Try to make an algorithm that does not use randomness, and runs in $\mathcal{O}(n \log (n))$ time.

Problem Author: Leon van der Waal

- Time limits can be tricky...

J: Jurassic Park

Problem Author: Leon van der Waal

- Time limits can be tricky...

Statistics: 38 submissions, 0 accepted, 33 unknown

Language stats

Random facts

Jury work

- 361 commits (last year: 371)

[^0]
Random facts

Jury work

- 361 commits (last year: 371)
- 339 secret test cases (last year: 252)

[^1]
Random facts

Jury work

- 361 commits (last year: 371)
- 339 secret test cases (last year: 252)
- 96 accepted jury/proofreader solutions (last year: 59)

[^2]
Random facts

Jury work

- 361 commits (last year: 371)
- 339 secret test cases (last year: 252)
- 96 accepted jury/proofreader solutions (last year: 59)
- The minimum ${ }^{1}$ number of lines the jury needed to solve all problems is

$$
4+6+5+9+1+12+14+5+3+5=64
$$

On average 6.4 lines per problem, down from 10.4 last year

[^3]
Thanks to:

The Proofreaders

- Andrei Botocan (Bucharest, Romania)
- Davina van Meer (Delft)
- Michael Vasseur (VU Amsterdam)
- Michal Tešnar (RU Groningen)
- Nadyne Aretz (TU Delft)
- Thomas Verwoerd Q (TU Delft)
- Wietze Koops (RU Groningen)

The Jury for FPC (TU Delft) and AAPJE (VU Amsterdam)

- Alexandru Bolfa (TU Delft)
- Angel Karchev (TU Delft)
- Jeroen Op de Beek (TU Delft)
- Leon van der Waal (TU Delft)
- Maarten Sijm (TU Delft)
- Matei Tinca (VU Amsterdam)
- Red Kalab (VU Amsterdam)

[^0]: ${ }^{1}$ After codegolfing

[^1]: ${ }^{1}$ After codegolfing

[^2]: ${ }^{1}$ After codegolfing

[^3]: ${ }^{1}$ After codegolfing

