
Freshmen Programming Contest 2023

Solutions presentation

May 27, 2023

FPC 2023



E: Expected Eyes
Problem Author: Maarten Sijm and Leon van der Waal

• Problem: Given list of dice and the number of faces of each one of them, calculate the expected
value of throwing all of them at once.

• Naive solution: Calculate all possible throws, sum them and then divide them by the number of
possible outcomes.

• Complexity: O(xmax
n). Gets accepted!

• Observation:
• E [X + Y ] = E [X ] + E [Y ], for any independent X and Y
• E [dice with k faces] = 1

k
∑k

x=1 x = k+1
2

• Fast solution: Calculate the expected value of every dice, then sum them up.
• Complexity: O(n).

Statistics: 48 submissions, 44 accepted, 1 unknown



E: Expected Eyes
Problem Author: Maarten Sijm and Leon van der Waal

• Problem: Given list of dice and the number of faces of each one of them, calculate the expected
value of throwing all of them at once.

• Naive solution: Calculate all possible throws, sum them and then divide them by the number of
possible outcomes.

• Complexity: O(xmax
n). Gets accepted!

• Observation:
• E [X + Y ] = E [X ] + E [Y ], for any independent X and Y
• E [dice with k faces] = 1

k
∑k

x=1 x = k+1
2

• Fast solution: Calculate the expected value of every dice, then sum them up.
• Complexity: O(n).

Statistics: 48 submissions, 44 accepted, 1 unknown



E: Expected Eyes
Problem Author: Maarten Sijm and Leon van der Waal

• Problem: Given list of dice and the number of faces of each one of them, calculate the expected
value of throwing all of them at once.

• Naive solution: Calculate all possible throws, sum them and then divide them by the number of
possible outcomes.

• Complexity: O(xmax
n). Gets accepted!

• Observation:
• E [X + Y ] = E [X ] + E [Y ], for any independent X and Y
• E [dice with k faces] = 1

k
∑k

x=1 x = k+1
2

• Fast solution: Calculate the expected value of every dice, then sum them up.
• Complexity: O(n).

Statistics: 48 submissions, 44 accepted, 1 unknown



E: Expected Eyes
Problem Author: Maarten Sijm and Leon van der Waal

• Problem: Given list of dice and the number of faces of each one of them, calculate the expected
value of throwing all of them at once.

• Naive solution: Calculate all possible throws, sum them and then divide them by the number of
possible outcomes.

• Complexity: O(xmax
n). Gets accepted!

• Observation:
• E [X + Y ] = E [X ] + E [Y ], for any independent X and Y
• E [dice with k faces] = 1

k
∑k

x=1 x = k+1
2

• Fast solution: Calculate the expected value of every dice, then sum them up.
• Complexity: O(n).

Statistics: 48 submissions, 44 accepted, 1 unknown



E: Expected Eyes
Problem Author: Maarten Sijm and Leon van der Waal

• Problem: Given list of dice and the number of faces of each one of them, calculate the expected
value of throwing all of them at once.

• Naive solution: Calculate all possible throws, sum them and then divide them by the number of
possible outcomes.

• Complexity: O(xmax
n). Gets accepted!

• Observation:
• E [X + Y ] = E [X ] + E [Y ], for any independent X and Y
• E [dice with k faces] = 1

k
∑k

x=1 x = k+1
2

• Fast solution: Calculate the expected value of every dice, then sum them up.

• Complexity: O(n).

Statistics: 48 submissions, 44 accepted, 1 unknown



E: Expected Eyes
Problem Author: Maarten Sijm and Leon van der Waal

• Problem: Given list of dice and the number of faces of each one of them, calculate the expected
value of throwing all of them at once.

• Naive solution: Calculate all possible throws, sum them and then divide them by the number of
possible outcomes.

• Complexity: O(xmax
n). Gets accepted!

• Observation:
• E [X + Y ] = E [X ] + E [Y ], for any independent X and Y
• E [dice with k faces] = 1

k
∑k

x=1 x = k+1
2

• Fast solution: Calculate the expected value of every dice, then sum them up.
• Complexity: O(n).

Statistics: 48 submissions, 44 accepted, 1 unknown



E: Expected Eyes
Problem Author: Maarten Sijm and Leon van der Waal

• Problem: Given list of dice and the number of faces of each one of them, calculate the expected
value of throwing all of them at once.

• Naive solution: Calculate all possible throws, sum them and then divide them by the number of
possible outcomes.

• Complexity: O(xmax
n). Gets accepted!

• Observation:
• E [X + Y ] = E [X ] + E [Y ], for any independent X and Y
• E [dice with k faces] = 1

k
∑k

x=1 x = k+1
2

• Fast solution: Calculate the expected value of every dice, then sum them up.
• Complexity: O(n).

Statistics: 48 submissions, 44 accepted, 1 unknown



A: Admiring Droplets
Problem Author: Davina van Meer and Maarten Sijm

• Problem: Calculate the time that it takes for the fully coalesced droplet to reach the bottom of
the window.

• Solution: Perform a simulation of the droplets rolling down the window, one by one.
• Pitfalls:

• Check your unit conversions: 1 m = 1000 mm, 1 m3 = 109 mm3.

• Off-by-one errors are easy to make.

Statistics: 61 submissions, 38 accepted, 15 unknown



A: Admiring Droplets
Problem Author: Davina van Meer and Maarten Sijm

• Problem: Calculate the time that it takes for the fully coalesced droplet to reach the bottom of
the window.

• Solution: Perform a simulation of the droplets rolling down the window, one by one.

• Pitfalls:
• Check your unit conversions: 1 m = 1000 mm, 1 m3 = 109 mm3.

• Off-by-one errors are easy to make.

Statistics: 61 submissions, 38 accepted, 15 unknown



A: Admiring Droplets
Problem Author: Davina van Meer and Maarten Sijm

• Problem: Calculate the time that it takes for the fully coalesced droplet to reach the bottom of
the window.

• Solution: Perform a simulation of the droplets rolling down the window, one by one.
• Pitfalls:

• Check your unit conversions: 1 m = 1000 mm, 1 m3 = 109 mm3.

• Off-by-one errors are easy to make.

Statistics: 61 submissions, 38 accepted, 15 unknown



A: Admiring Droplets
Problem Author: Davina van Meer and Maarten Sijm

• Problem: Calculate the time that it takes for the fully coalesced droplet to reach the bottom of
the window.

• Solution: Perform a simulation of the droplets rolling down the window, one by one.
• Pitfalls:

• Check your unit conversions: 1 m = 1000 mm, 1 m3 = 109 mm3.
• Off-by-one errors are easy to make.

Statistics: 61 submissions, 38 accepted, 15 unknown



A: Admiring Droplets
Problem Author: Davina van Meer and Maarten Sijm

• Problem: Calculate the time that it takes for the fully coalesced droplet to reach the bottom of
the window.

• Solution: Perform a simulation of the droplets rolling down the window, one by one.
• Pitfalls:

• Check your unit conversions: 1 m = 1000 mm, 1 m3 = 109 mm3.
• Off-by-one errors are easy to make.

Statistics: 61 submissions, 38 accepted, 15 unknown



B: Beaking Spackwards
Problem Author: Jeroen Op de Beek

• Problem: Generate a palindrome with exactly n ≤ 109 palindrome substrings.

• Observation: A string of length ℓ with identical characters has ℓ(ℓ+1)
2 palindromes.

• Thus, the length of the palindrome-esque word is O(√n).

• Solution: Find an ℓ such that ℓ(ℓ+1)
2 ≤ n, generate “a” × ℓ, and fill up the remainder with either:

• non-palindromes (e.g., “bcdbcd. . . ”).
• recursively applying the same strategy until the remaining length is 0.

• ℓ can be found using (linear or binary) search, or exactly:

ℓ =
⌊√

8n + 1 − 1
2

⌋

Statistics: 50 submissions, 22 accepted, 12 unknown



B: Beaking Spackwards
Problem Author: Jeroen Op de Beek

• Problem: Generate a palindrome with exactly n ≤ 109 palindrome substrings.
• Observation: A string of length ℓ with identical characters has ℓ(ℓ+1)

2 palindromes.
• Thus, the length of the palindrome-esque word is O(√n).

• Solution: Find an ℓ such that ℓ(ℓ+1)
2 ≤ n, generate “a” × ℓ, and fill up the remainder with either:

• non-palindromes (e.g., “bcdbcd. . . ”).
• recursively applying the same strategy until the remaining length is 0.

• ℓ can be found using (linear or binary) search, or exactly:

ℓ =
⌊√

8n + 1 − 1
2

⌋

Statistics: 50 submissions, 22 accepted, 12 unknown



B: Beaking Spackwards
Problem Author: Jeroen Op de Beek

• Problem: Generate a palindrome with exactly n ≤ 109 palindrome substrings.
• Observation: A string of length ℓ with identical characters has ℓ(ℓ+1)

2 palindromes.
• Thus, the length of the palindrome-esque word is O(√n).

• Solution: Find an ℓ such that ℓ(ℓ+1)
2 ≤ n, generate “a” × ℓ, and fill up the remainder with either:

• non-palindromes (e.g., “bcdbcd. . . ”).
• recursively applying the same strategy until the remaining length is 0.

• ℓ can be found using (linear or binary) search, or exactly:

ℓ =
⌊√

8n + 1 − 1
2

⌋

Statistics: 50 submissions, 22 accepted, 12 unknown



B: Beaking Spackwards
Problem Author: Jeroen Op de Beek

• Problem: Generate a palindrome with exactly n ≤ 109 palindrome substrings.
• Observation: A string of length ℓ with identical characters has ℓ(ℓ+1)

2 palindromes.
• Thus, the length of the palindrome-esque word is O(√n).

• Solution: Find an ℓ such that ℓ(ℓ+1)
2 ≤ n, generate “a” × ℓ, and fill up the remainder with either:

• non-palindromes (e.g., “bcdbcd. . . ”).
• recursively applying the same strategy until the remaining length is 0.

• ℓ can be found using (linear or binary) search, or exactly:

ℓ =
⌊√

8n + 1 − 1
2

⌋

Statistics: 50 submissions, 22 accepted, 12 unknown



B: Beaking Spackwards
Problem Author: Jeroen Op de Beek

• Problem: Generate a palindrome with exactly n ≤ 109 palindrome substrings.
• Observation: A string of length ℓ with identical characters has ℓ(ℓ+1)

2 palindromes.
• Thus, the length of the palindrome-esque word is O(√n).

• Solution: Find an ℓ such that ℓ(ℓ+1)
2 ≤ n, generate “a” × ℓ, and fill up the remainder with either:

• non-palindromes (e.g., “bcdbcd. . . ”).
• recursively applying the same strategy until the remaining length is 0.

• ℓ can be found using (linear or binary) search, or exactly:

ℓ =
⌊√

8n + 1 − 1
2

⌋

Statistics: 50 submissions, 22 accepted, 12 unknown



C: Catchy Tunes
Problem Author: Red Kaleb

• Problem: Shuffle the playlist such that no two songs from the same artist are played in a row.

• Guarantee: At least half of the songs are from a unique artist.
• Solution: Interleave the songs that have a unique artist with other songs.
• Many other fancy strategies are possible, but not required.

Statistics: 103 submissions, 21 accepted, 44 unknown



C: Catchy Tunes
Problem Author: Red Kaleb

• Problem: Shuffle the playlist such that no two songs from the same artist are played in a row.
• Guarantee: At least half of the songs are from a unique artist.

• Solution: Interleave the songs that have a unique artist with other songs.
• Many other fancy strategies are possible, but not required.

Statistics: 103 submissions, 21 accepted, 44 unknown



C: Catchy Tunes
Problem Author: Red Kaleb

• Problem: Shuffle the playlist such that no two songs from the same artist are played in a row.
• Guarantee: At least half of the songs are from a unique artist.
• Solution: Interleave the songs that have a unique artist with other songs.

• Many other fancy strategies are possible, but not required.

Statistics: 103 submissions, 21 accepted, 44 unknown



C: Catchy Tunes
Problem Author: Red Kaleb

• Problem: Shuffle the playlist such that no two songs from the same artist are played in a row.
• Guarantee: At least half of the songs are from a unique artist.
• Solution: Interleave the songs that have a unique artist with other songs.
• Many other fancy strategies are possible, but not required.

Statistics: 103 submissions, 21 accepted, 44 unknown



C: Catchy Tunes
Problem Author: Red Kaleb

• Problem: Shuffle the playlist such that no two songs from the same artist are played in a row.
• Guarantee: At least half of the songs are from a unique artist.
• Solution: Interleave the songs that have a unique artist with other songs.
• Many other fancy strategies are possible, but not required.

Statistics: 103 submissions, 21 accepted, 44 unknown



I: Industry Improvements
Problem Author: Cristian-Alexandru Botocan

• Problem: Given a list of n boxes that need to be processed by a machine line in at most k runs,
determine the minimum summed weight that the machine needs to handle in one run.

• Naive solution: Iterate through all possible capacities and simulate the machine line to see if it
finishes in less than k runs.
O

(
n ·

∑
x
)

is too slow! Where
∑

x is the sum of all the weights.
• Observation: If the machine line processes everything in less than k runs with a capacity of a,

then it will also work for a capacity of b, where a < b.
• Solution: Binary search the capacity of the machine line.
• Complexity: O

(
n log

(∑
x
))

.
• Pitfall: Do not start binary search at 0, because machine capacity should be larger than the

largest box.

Statistics: 57 submissions, 13 accepted, 17 unknown



I: Industry Improvements
Problem Author: Cristian-Alexandru Botocan

• Problem: Given a list of n boxes that need to be processed by a machine line in at most k runs,
determine the minimum summed weight that the machine needs to handle in one run.

• Naive solution: Iterate through all possible capacities and simulate the machine line to see if it
finishes in less than k runs.
O

(
n ·

∑
x
)

is too slow! Where
∑

x is the sum of all the weights.

• Observation: If the machine line processes everything in less than k runs with a capacity of a,
then it will also work for a capacity of b, where a < b.

• Solution: Binary search the capacity of the machine line.
• Complexity: O

(
n log

(∑
x
))

.
• Pitfall: Do not start binary search at 0, because machine capacity should be larger than the

largest box.

Statistics: 57 submissions, 13 accepted, 17 unknown



I: Industry Improvements
Problem Author: Cristian-Alexandru Botocan

• Problem: Given a list of n boxes that need to be processed by a machine line in at most k runs,
determine the minimum summed weight that the machine needs to handle in one run.

• Naive solution: Iterate through all possible capacities and simulate the machine line to see if it
finishes in less than k runs.
O

(
n ·

∑
x
)

is too slow! Where
∑

x is the sum of all the weights.
• Observation: If the machine line processes everything in less than k runs with a capacity of a,

then it will also work for a capacity of b, where a < b.

• Solution: Binary search the capacity of the machine line.
• Complexity: O

(
n log

(∑
x
))

.
• Pitfall: Do not start binary search at 0, because machine capacity should be larger than the

largest box.

Statistics: 57 submissions, 13 accepted, 17 unknown



I: Industry Improvements
Problem Author: Cristian-Alexandru Botocan

• Problem: Given a list of n boxes that need to be processed by a machine line in at most k runs,
determine the minimum summed weight that the machine needs to handle in one run.

• Naive solution: Iterate through all possible capacities and simulate the machine line to see if it
finishes in less than k runs.
O

(
n ·

∑
x
)

is too slow! Where
∑

x is the sum of all the weights.
• Observation: If the machine line processes everything in less than k runs with a capacity of a,

then it will also work for a capacity of b, where a < b.
• Solution: Binary search the capacity of the machine line.

• Complexity: O
(
n log

(∑
x
))

.
• Pitfall: Do not start binary search at 0, because machine capacity should be larger than the

largest box.

Statistics: 57 submissions, 13 accepted, 17 unknown



I: Industry Improvements
Problem Author: Cristian-Alexandru Botocan

• Problem: Given a list of n boxes that need to be processed by a machine line in at most k runs,
determine the minimum summed weight that the machine needs to handle in one run.

• Naive solution: Iterate through all possible capacities and simulate the machine line to see if it
finishes in less than k runs.
O

(
n ·

∑
x
)

is too slow! Where
∑

x is the sum of all the weights.
• Observation: If the machine line processes everything in less than k runs with a capacity of a,

then it will also work for a capacity of b, where a < b.
• Solution: Binary search the capacity of the machine line.
• Complexity: O

(
n log

(∑
x
))

.

• Pitfall: Do not start binary search at 0, because machine capacity should be larger than the
largest box.

Statistics: 57 submissions, 13 accepted, 17 unknown



I: Industry Improvements
Problem Author: Cristian-Alexandru Botocan

• Problem: Given a list of n boxes that need to be processed by a machine line in at most k runs,
determine the minimum summed weight that the machine needs to handle in one run.

• Naive solution: Iterate through all possible capacities and simulate the machine line to see if it
finishes in less than k runs.
O

(
n ·

∑
x
)

is too slow! Where
∑

x is the sum of all the weights.
• Observation: If the machine line processes everything in less than k runs with a capacity of a,

then it will also work for a capacity of b, where a < b.
• Solution: Binary search the capacity of the machine line.
• Complexity: O

(
n log

(∑
x
))

.
• Pitfall: Do not start binary search at 0, because machine capacity should be larger than the

largest box.

Statistics: 57 submissions, 13 accepted, 17 unknown



I: Industry Improvements
Problem Author: Cristian-Alexandru Botocan

• Problem: Given a list of n boxes that need to be processed by a machine line in at most k runs,
determine the minimum summed weight that the machine needs to handle in one run.

• Naive solution: Iterate through all possible capacities and simulate the machine line to see if it
finishes in less than k runs.
O

(
n ·

∑
x
)

is too slow! Where
∑

x is the sum of all the weights.
• Observation: If the machine line processes everything in less than k runs with a capacity of a,

then it will also work for a capacity of b, where a < b.
• Solution: Binary search the capacity of the machine line.
• Complexity: O

(
n log

(∑
x
))

.
• Pitfall: Do not start binary search at 0, because machine capacity should be larger than the

largest box.

Statistics: 57 submissions, 13 accepted, 17 unknown



H: Hunting the Mavericks
Problem Author: Angel Karchev

• Problem: Determine in which level to start your playthrough, so that you miss the least armour
upgrades.

• Solution:

• Calculate for each level i how many armour upgrades it contains (ci) and how often it is
required to obtain another armour upgrade (ri).

• Determine how many upgrades you would miss by starting at level 1 and store this in a
variable ans.

• For each level i in ascending order, determine how many you would miss by doing level i last
instead of first: ans := ans + ri − ci .

• Output the minimal value for ans over all levels.

• Pitfalls: Brute force quadratic solutions are too slow.

Statistics: 28 submissions, 4 accepted, 20 unknown



H: Hunting the Mavericks
Problem Author: Angel Karchev

• Problem: Determine in which level to start your playthrough, so that you miss the least armour
upgrades.

• Solution:
• Calculate for each level i how many armour upgrades it contains (ci) and how often it is

required to obtain another armour upgrade (ri).

• Determine how many upgrades you would miss by starting at level 1 and store this in a
variable ans.

• For each level i in ascending order, determine how many you would miss by doing level i last
instead of first: ans := ans + ri − ci .

• Output the minimal value for ans over all levels.
• Pitfalls: Brute force quadratic solutions are too slow.

Statistics: 28 submissions, 4 accepted, 20 unknown



H: Hunting the Mavericks
Problem Author: Angel Karchev

• Problem: Determine in which level to start your playthrough, so that you miss the least armour
upgrades.

• Solution:
• Calculate for each level i how many armour upgrades it contains (ci) and how often it is

required to obtain another armour upgrade (ri).
• Determine how many upgrades you would miss by starting at level 1 and store this in a

variable ans.

• For each level i in ascending order, determine how many you would miss by doing level i last
instead of first: ans := ans + ri − ci .

• Output the minimal value for ans over all levels.
• Pitfalls: Brute force quadratic solutions are too slow.

Statistics: 28 submissions, 4 accepted, 20 unknown



H: Hunting the Mavericks
Problem Author: Angel Karchev

• Problem: Determine in which level to start your playthrough, so that you miss the least armour
upgrades.

• Solution:
• Calculate for each level i how many armour upgrades it contains (ci) and how often it is

required to obtain another armour upgrade (ri).
• Determine how many upgrades you would miss by starting at level 1 and store this in a

variable ans.
• For each level i in ascending order, determine how many you would miss by doing level i last

instead of first: ans := ans + ri − ci .

• Output the minimal value for ans over all levels.
• Pitfalls: Brute force quadratic solutions are too slow.

Statistics: 28 submissions, 4 accepted, 20 unknown



H: Hunting the Mavericks
Problem Author: Angel Karchev

• Problem: Determine in which level to start your playthrough, so that you miss the least armour
upgrades.

• Solution:
• Calculate for each level i how many armour upgrades it contains (ci) and how often it is

required to obtain another armour upgrade (ri).
• Determine how many upgrades you would miss by starting at level 1 and store this in a

variable ans.
• For each level i in ascending order, determine how many you would miss by doing level i last

instead of first: ans := ans + ri − ci .
• Output the minimal value for ans over all levels.

• Pitfalls: Brute force quadratic solutions are too slow.

Statistics: 28 submissions, 4 accepted, 20 unknown



H: Hunting the Mavericks
Problem Author: Angel Karchev

• Problem: Determine in which level to start your playthrough, so that you miss the least armour
upgrades.

• Solution:
• Calculate for each level i how many armour upgrades it contains (ci) and how often it is

required to obtain another armour upgrade (ri).
• Determine how many upgrades you would miss by starting at level 1 and store this in a

variable ans.
• For each level i in ascending order, determine how many you would miss by doing level i last

instead of first: ans := ans + ri − ci .
• Output the minimal value for ans over all levels.

• Pitfalls: Brute force quadratic solutions are too slow.

Statistics: 28 submissions, 4 accepted, 20 unknown



H: Hunting the Mavericks
Problem Author: Angel Karchev

• Problem: Determine in which level to start your playthrough, so that you miss the least armour
upgrades.

• Solution:
• Calculate for each level i how many armour upgrades it contains (ci) and how often it is

required to obtain another armour upgrade (ri).
• Determine how many upgrades you would miss by starting at level 1 and store this in a

variable ans.
• For each level i in ascending order, determine how many you would miss by doing level i last

instead of first: ans := ans + ri − ci .
• Output the minimal value for ans over all levels.

• Pitfalls: Brute force quadratic solutions are too slow.

Statistics: 28 submissions, 4 accepted, 20 unknown



D: Dungeon of Darkness
Problem Author: Maarten Sijm and Angel Karchev

• Problem: Get to the final room in a dungeon, where you only see the symbols of the doors
leading from the current room.

• Solution: Use recursive DFS to delve deeper into the dungeon.
• If you don’t find the final room in a recursive call, print the symbol of the door you went through

to go back.
• Pitfall: Not being careful about when you print the symbol of a door.
• On that note, if you solved this problem, you’re probably qualified to be in the jury for next year

(the point above took the author > 3 hours to debug).

Statistics: 31 submissions, 5 accepted, 19 unknown



D: Dungeon of Darkness
Problem Author: Maarten Sijm and Angel Karchev

• Problem: Get to the final room in a dungeon, where you only see the symbols of the doors
leading from the current room.

• Solution: Use recursive DFS to delve deeper into the dungeon.

• If you don’t find the final room in a recursive call, print the symbol of the door you went through
to go back.

• Pitfall: Not being careful about when you print the symbol of a door.
• On that note, if you solved this problem, you’re probably qualified to be in the jury for next year

(the point above took the author > 3 hours to debug).

Statistics: 31 submissions, 5 accepted, 19 unknown



D: Dungeon of Darkness
Problem Author: Maarten Sijm and Angel Karchev

• Problem: Get to the final room in a dungeon, where you only see the symbols of the doors
leading from the current room.

• Solution: Use recursive DFS to delve deeper into the dungeon.
• If you don’t find the final room in a recursive call, print the symbol of the door you went through

to go back.

• Pitfall: Not being careful about when you print the symbol of a door.
• On that note, if you solved this problem, you’re probably qualified to be in the jury for next year

(the point above took the author > 3 hours to debug).

Statistics: 31 submissions, 5 accepted, 19 unknown



D: Dungeon of Darkness
Problem Author: Maarten Sijm and Angel Karchev

• Problem: Get to the final room in a dungeon, where you only see the symbols of the doors
leading from the current room.

• Solution: Use recursive DFS to delve deeper into the dungeon.
• If you don’t find the final room in a recursive call, print the symbol of the door you went through

to go back.
• Pitfall: Not being careful about when you print the symbol of a door.

• On that note, if you solved this problem, you’re probably qualified to be in the jury for next year
(the point above took the author > 3 hours to debug).

Statistics: 31 submissions, 5 accepted, 19 unknown



D: Dungeon of Darkness
Problem Author: Maarten Sijm and Angel Karchev

• Problem: Get to the final room in a dungeon, where you only see the symbols of the doors
leading from the current room.

• Solution: Use recursive DFS to delve deeper into the dungeon.
• If you don’t find the final room in a recursive call, print the symbol of the door you went through

to go back.
• Pitfall: Not being careful about when you print the symbol of a door.
• On that note, if you solved this problem, you’re probably qualified to be in the jury for next year

(the point above took the author > 3 hours to debug).

Statistics: 31 submissions, 5 accepted, 19 unknown



D: Dungeon of Darkness
Problem Author: Maarten Sijm and Angel Karchev

• Problem: Get to the final room in a dungeon, where you only see the symbols of the doors
leading from the current room.

• Solution: Use recursive DFS to delve deeper into the dungeon.
• If you don’t find the final room in a recursive call, print the symbol of the door you went through

to go back.
• Pitfall: Not being careful about when you print the symbol of a door.
• On that note, if you solved this problem, you’re probably qualified to be in the jury for next year

(the point above took the author > 3 hours to debug).

“If there is a way forward, you are never lost”
—The guy two invented DFS, probably

Statistics: 31 submissions, 5 accepted, 19 unknown



D: Dungeon of Darkness
Problem Author: Maarten Sijm and Angel Karchev

• Problem: Get to the final room in a dungeon, where you only see the symbols of the doors
leading from the current room.

• Solution: Use recursive DFS to delve deeper into the dungeon.
• If you don’t find the final room in a recursive call, print the symbol of the door you went through

to go back.
• Pitfall: Not being careful about when you print the symbol of a door.
• On that note, if you solved this problem, you’re probably qualified to be in the jury for next year

(the point above took the author > 3 hours to debug).

“If there is a way forward, you are never lost”
—The guy two invented DFS, probably

Statistics: 31 submissions, 5 accepted, 19 unknown



F: Feline Friendship
Problem Author: Jeroen Op de Beek

• Problem: Given a special functional graph,
change the least number of edges such that
there is a maximal path of length k.

• Observation 1: The array in the input is a
permutation → the favourite cat relations
form disjoint cycles.

Cats are visualised as circles, with arrows being the
favourite playing cat relations



F: Feline Friendship
Problem Author: Jeroen Op de Beek

• Problem: Given a special functional graph,
change the least number of edges such that
there is a maximal path of length k.

• Observation 2: If there is a cycle of length k,
0 operations suffice.

Take whole cycle as team.



F: Feline Friendship
Problem Author: Jeroen Op de Beek

• Problem: Given a special functional graph,
change the least number of edges such that
there is a maximal path of length k.

• Observation 3: Else if there is a cycle of
length > k, 1 operation is enough.

Make cycle into a path, and then choose where to
start.



F: Feline Friendship
Problem Author: Jeroen Op de Beek

• Problem: Given a special functional graph,
change the least number of edges such that
there is a maximal path of length k.

• Observation 4: If you can make teams of
length a and b, can make team of length
a + 1, a + 2, . . . , a + b in 1 operation.

Merge two cycles.



F: Feline Friendship
Problem Author: Jeroen Op de Beek

• Problem: Given a special functional graph,
change the least number of edges such that
there is a maximal path of length k.

• Solution: Greedily merge largest cycles in this
way, until sum becomes ≥ k.

• Complexity: O(n) for finding the disjoint
cycles and O(n log n) or O(n) for sorting the
cycle sizes.

Repeatedly connect cycles together.



F: Feline Friendship
Problem Author: Jeroen Op de Beek

• Problem: Given a special functional graph,
change the least number of edges such that
there is a maximal path of length k.

• Solution: Greedily merge largest cycles in this
way, until sum becomes ≥ k.

• Complexity: O(n) for finding the disjoint
cycles and O(n log n) or O(n) for sorting the
cycle sizes.

Repeatedly connect cycles together.

Statistics: 40 submissions, 4 accepted, 17 unknown



G: Gridlock
Problem Author: Matei Tinca

• Problem: Given a grid full of arrows, remove them one by one. When removing an arrow, it must
not point to another arrow in the grid.

• Observation: If we want to remove an arrow, all of the other arrows that it points to must be
removed first.

• This means that the arrow that we want to remove has a bunch of dependencies.

• Naive Solution: We can build a graph with all the dependencies, then compute the topological
sorting.



G: Gridlock
Problem Author: Matei Tinca

• Problem: Given a grid full of arrows, remove them one by one. When removing an arrow, it must
not point to another arrow in the grid.

• Observation: If we want to remove an arrow, all of the other arrows that it points to must be
removed first.

• This means that the arrow that we want to remove has a bunch of dependencies.

• Naive Solution: We can build a graph with all the dependencies, then compute the topological
sorting.



G: Gridlock
Problem Author: Matei Tinca

• Problem: Given a grid full of arrows, remove them one by one. When removing an arrow, it must
not point to another arrow in the grid.

• Observation: If we want to remove an arrow, all of the other arrows that it points to must be
removed first.

• This means that the arrow that we want to remove has a bunch of dependencies.

• Naive Solution: We can build a graph with all the dependencies, then compute the topological
sorting.



G: Gridlock
Problem Author: Matei Tinca

• Problem: Given a grid full of arrows, remove them one by one. When removing an arrow, it must
not point to another arrow in the grid.

• Observation: If we want to remove an arrow, all of the other arrows that it points to must be
removed first.

• This means that the arrow that we want to remove has a bunch of dependencies.

• Naive Solution: We can build a graph with all the dependencies, then compute the topological
sorting.



G: Gridlock
Problem Author: Matei Tinca

• Problem: Given a grid full of arrows, remove them one by one. When removing an arrow, it must
not point to another arrow in the grid.

• Observation: If we want to remove an arrow, all of the other arrows that it points to must be
removed first.

• This means that the arrow that we want to remove has a bunch of dependencies.

• Naive Solution: We can build a graph with all the dependencies, then compute the topological
sorting.

• If one such sorting exists, we have a solution.
• If one does not exist, then it is impossible to solve the puzzle.



G: Gridlock
Problem Author: Matei Tinca

• Naive Solution: We can build a graph with all the dependencies, then compute the topological
sorting.

• Complexity:
• Since an arrow points to an entire row or column of arrows, a cell has O(h) or O(w)

dependencies, therefore, we have O(hw) nodes and O(hw(h + w)) edges.

• Since the topological sorting has O(V + E) complexity, then this solution yields
O(hw(h + w)) complexity, which is not enough to pass the time limit.



G: Gridlock
Problem Author: Matei Tinca

• Naive Solution: We can build a graph with all the dependencies, then compute the topological
sorting.

• Complexity:
• Since an arrow points to an entire row or column of arrows, a cell has O(h) or O(w)

dependencies, therefore, we have O(hw) nodes and O(hw(h + w)) edges.
• Since the topological sorting has O(V + E) complexity, then this solution yields

O(hw(h + w)) complexity, which is not enough to pass the time limit.



G: Gridlock
Problem Author: Matei Tinca

• Observation: Maybe we can try to solve this
in the opposite way.

• Solution: Start from the margins of the
puzzle and remove the cells one by one.

• When removing a cell, we can then attempt to
remove all of its remaining neighbours.

• To find the neighbours of a cell quickly, we can
maintain for each cell a link to its neighbours.

• When removing a cell, we must link its left
and right neighbours between each other. The
same goes for the neighbours from above and
below.



G: Gridlock
Problem Author: Matei Tinca

• Observation: Maybe we can try to solve this
in the opposite way.

• Instead of starting from a cell and recursively
solving all of its dependencies, we can instead
start from the trivial nodes, with no
dependencies and then solve the nodes with
more dependencies.

• Solution: Start from the margins of the
puzzle and remove the cells one by one.

• When removing a cell, we can then attempt to
remove all of its remaining neighbours.

• To find the neighbours of a cell quickly, we can
maintain for each cell a link to its neighbours.

• When removing a cell, we must link its left
and right neighbours between each other. The
same goes for the neighbours from above and
below.



G: Gridlock
Problem Author: Matei Tinca

• Observation: Maybe we can try to solve this
in the opposite way.

• Solution: Start from the margins of the
puzzle and remove the cells one by one.

• When removing a cell, we can then attempt to
remove all of its remaining neighbours.

• To find the neighbours of a cell quickly, we can
maintain for each cell a link to its neighbours.

• When removing a cell, we must link its left
and right neighbours between each other. The
same goes for the neighbours from above and
below.



G: Gridlock
Problem Author: Matei Tinca

• Observation: Maybe we can try to solve this
in the opposite way.

• Solution: Start from the margins of the
puzzle and remove the cells one by one.

• When removing a cell, we can then attempt to
remove all of its remaining neighbours.

• To find the neighbours of a cell quickly, we can
maintain for each cell a link to its neighbours.

• When removing a cell, we must link its left
and right neighbours between each other. The
same goes for the neighbours from above and
below.



G: Gridlock
Problem Author: Matei Tinca

• Observation: Maybe we can try to solve this
in the opposite way.

• Solution: Start from the margins of the
puzzle and remove the cells one by one.

• When removing a cell, we can then attempt to
remove all of its remaining neighbours.

• To find the neighbours of a cell quickly, we can
maintain for each cell a link to its neighbours.

• When removing a cell, we must link its left
and right neighbours between each other. The
same goes for the neighbours from above and
below.



G: Gridlock
Problem Author: Matei Tinca

• Observation: Maybe we can try to solve this
in the opposite way.

• Solution: Start from the margins of the
puzzle and remove the cells one by one.

• When removing a cell, we can then attempt to
remove all of its remaining neighbours.

• To find the neighbours of a cell quickly, we can
maintain for each cell a link to its neighbours.

• When removing a cell, we must link its left
and right neighbours between each other. The
same goes for the neighbours from above and
below.



G: Gridlock
Problem Author: Matei Tinca

• Solution: Start from the margins of the puzzle and remove the cells one by one.
• When removing a cell, we can then attempt to remove all of its remaining neighbours.
• Complexity:

• We remove O(h · w) cells.

• Whenever we remove a cell, we check for at most 4 neighbours (up, down, left, right).
• Changing the links of neighbouring cells takes O(1) time.
• In total, the solution takes O(h · w) time, which is enough to pass the time limit.

Statistics: 47 submissions, 1 accepted, 27 unknown



G: Gridlock
Problem Author: Matei Tinca

• Solution: Start from the margins of the puzzle and remove the cells one by one.
• When removing a cell, we can then attempt to remove all of its remaining neighbours.
• Complexity:

• We remove O(h · w) cells.
• Whenever we remove a cell, we check for at most 4 neighbours (up, down, left, right).

• Changing the links of neighbouring cells takes O(1) time.
• In total, the solution takes O(h · w) time, which is enough to pass the time limit.

Statistics: 47 submissions, 1 accepted, 27 unknown



G: Gridlock
Problem Author: Matei Tinca

• Solution: Start from the margins of the puzzle and remove the cells one by one.
• When removing a cell, we can then attempt to remove all of its remaining neighbours.
• Complexity:

• We remove O(h · w) cells.
• Whenever we remove a cell, we check for at most 4 neighbours (up, down, left, right).
• Changing the links of neighbouring cells takes O(1) time.

• In total, the solution takes O(h · w) time, which is enough to pass the time limit.

Statistics: 47 submissions, 1 accepted, 27 unknown



G: Gridlock
Problem Author: Matei Tinca

• Solution: Start from the margins of the puzzle and remove the cells one by one.
• When removing a cell, we can then attempt to remove all of its remaining neighbours.
• Complexity:

• We remove O(h · w) cells.
• Whenever we remove a cell, we check for at most 4 neighbours (up, down, left, right).
• Changing the links of neighbouring cells takes O(1) time.
• In total, the solution takes O(h · w) time, which is enough to pass the time limit.

Statistics: 47 submissions, 1 accepted, 27 unknown



G: Gridlock
Problem Author: Matei Tinca

• Solution: Start from the margins of the puzzle and remove the cells one by one.
• When removing a cell, we can then attempt to remove all of its remaining neighbours.
• Complexity:

• We remove O(h · w) cells.
• Whenever we remove a cell, we check for at most 4 neighbours (up, down, left, right).
• Changing the links of neighbouring cells takes O(1) time.
• In total, the solution takes O(h · w) time, which is enough to pass the time limit.

Statistics: 47 submissions, 1 accepted, 27 unknown



G: Gridlock
Problem Author: Matei Tinca

Magenta: Left Red: Up Green: Right Blue: Down (possible)



G: Gridlock
Problem Author: Matei Tinca

Magenta: Left Red: Up Green: Right Blue: Down (possible)



G: Gridlock
Problem Author: Matei Tinca

Magenta: Left Red: Up Green: Right Blue: Down (possible)



G: Gridlock
Problem Author: Matei Tinca

Magenta: Left Red: Up Green: Right Blue: Down (possible)



G: Gridlock
Problem Author: Matei Tinca

Magenta: Left Red: Up Green: Right Blue: Down (impossible)



J: Jurassic Park
Problem Author: Leon van der Waal

• Problem: Given a set of uniform random
points in a square, find the smallest perimeter
among all triangles.



J: Jurassic Park
Problem Author: Leon van der Waal

• Problem: Given a set of uniform random
points in a square, find the smallest perimeter
among all triangles.

• Naive solution: Calculate the perimeter of all
possible triangles, and take the minimum.

• Complexity: This solution runs in O
(
n3)

time, too slow!



J: Jurassic Park
Problem Author: Leon van der Waal

• Problem: Given a set of uniform random
points in a square, find the smallest perimeter
among all triangles.

• Naive solution: Calculate the perimeter of all
possible triangles, and take the minimum.

• Complexity: This solution runs in O
(
n3)

time, too slow!



J: Jurassic Park
Problem Author: Leon van der Waal

• Problem: Given a set of uniform random
points in a square, find the smallest perimeter
among all triangles.

• Observation: The points are randomly
distributed, so there are no nasty testcases.

• How can we make use of this fact?



J: Jurassic Park
Problem Author: Leon van der Waal

• Problem: Given a set of uniform random
points in a square, find the smallest perimeter
among all triangles.

• Solution: Divide the bounding box into a⌊√ n
3
⌋

×
⌊√ n

3
⌋

grid, with sidelengths ℓ.

• Observation: By the pigeonhole principle, at
least one of the tiles contains 3 points.

• Observation: The smallest perimeter is hence
at most

(
2 +

√
2
)

ℓ.



J: Jurassic Park
Problem Author: Leon van der Waal

• Problem: Given a set of uniform random
points in a square, find the smallest perimeter
among all triangles.

• Solution: Divide the bounding box into a⌊√ n
3
⌋

×
⌊√ n

3
⌋

grid, with sidelengths ℓ.
• Observation: By the pigeonhole principle, at

least one of the tiles contains 3 points.

• Observation: The smallest perimeter is hence
at most

(
2 +

√
2
)

ℓ.



J: Jurassic Park
Problem Author: Leon van der Waal

• Problem: Given a set of uniform random
points in a square, find the smallest perimeter
among all triangles.

• Solution: Divide the bounding box into a⌊√ n
3
⌋

×
⌊√ n

3
⌋

grid, with sidelengths ℓ.
• Observation: By the pigeonhole principle, at

least one of the tiles contains 3 points.
• Observation: The smallest perimeter is hence

at most
(
2 +

√
2
)

ℓ.



J: Jurassic Park
Problem Author: Leon van der Waal

• Problem: Given a set of uniform random
points in a square, find the smallest perimeter
among all triangles.

• Solution: Divide the bounding box into a⌊√ n
3
⌋

×
⌊√ n

3
⌋

grid, with sidelengths ℓ.
• Observation: By the pigeonhole principle, at

least one of the tiles contains 3 points.
• Observation: The smallest perimeter is hence

at most
(
2 +

√
2
)

ℓ.
• Observation: This means that the distance

between two points of the smallest triangle
can at most be

(
1 + 1

2
√

2
)

ℓ < 2ℓ.

• Solution: Calculate the perimeter of the
triangles contained in all blocks of 3 × 3 tiles.

• Solution: Because the points are uniformly
distributed, the number of points inside the
blocks is small with high probability.

• Complexity: O(n), with high probability.



J: Jurassic Park
Problem Author: Leon van der Waal

• Problem: Given a set of uniform random
points in a square, find the smallest perimeter
among all triangles.

• Observation: This means that the distance
between two points of the smallest triangle
can at most be

(
1 + 1

2
√

2
)

ℓ < 2ℓ.
• Solution: Calculate the perimeter of the

triangles contained in all blocks of 3 × 3 tiles.

• Solution: Because the points are uniformly
distributed, the number of points inside the
blocks is small with high probability.

• Complexity: O(n), with high probability.



J: Jurassic Park
Problem Author: Leon van der Waal

• Problem: Given a set of uniform random
points in a square, find the smallest perimeter
among all triangles.

• Observation: This means that the distance
between two points of the smallest triangle
can at most be

(
1 + 1

2
√

2
)

ℓ < 2ℓ.
• Solution: Calculate the perimeter of the

triangles contained in all blocks of 3 × 3 tiles.
• Solution: Because the points are uniformly

distributed, the number of points inside the
blocks is small with high probability.

• Complexity: O(n), with high probability.



J: Jurassic Park
Problem Author: Leon van der Waal

• Problem: Given a set of uniform random
points in a square, find the smallest perimeter
among all triangles.

• Observation: This means that the distance
between two points of the smallest triangle
can at most be

(
1 + 1

2
√

2
)

ℓ < 2ℓ.
• Solution: Calculate the perimeter of the

triangles contained in all blocks of 3 × 3 tiles.
• Solution: Because the points are uniformly

distributed, the number of points inside the
blocks is small with high probability.

• Complexity: O(n), with high probability.



J: Jurassic Park
Problem Author: Leon van der Waal

• Problem: Given a set of uniform random
points in a square, find the smallest perimeter
among all triangles.

• Solution: Many other solutions work using the
randomness, as long as you somehow do not
check all possible triangles.

• Challenge: Try to make an algorithm that
does not use randomness, and runs in
O(n log(n)) time.



J: Jurassic Park
Problem Author: Leon van der Waal

• Time limits can be tricky. . .

Statistics: 38 submissions, 0 accepted, 33 unknown



J: Jurassic Park
Problem Author: Leon van der Waal

• Time limits can be tricky. . .

Statistics: 38 submissions, 0 accepted, 33 unknown



Language stats

C C++ Java Kotlin Python 3
0

20

40

60

80

correct
wrong answer
timelimit
run error
pending



Random facts

Jury work

• 361 commits (last year: 371)

• 339 secret test cases (last year: 252)
• 96 accepted jury/proofreader solutions (last year: 59)
• The minimum1 number of lines the jury needed to solve all problems is

4 + 6 + 5 + 9 + 1 + 12 + 14 + 5 + 3 + 5 = 64

On average 6.4 lines per problem, down from 10.4 last year

1After codegolfing



Random facts

Jury work

• 361 commits (last year: 371)
• 339 secret test cases (last year: 252)

• 96 accepted jury/proofreader solutions (last year: 59)
• The minimum1 number of lines the jury needed to solve all problems is

4 + 6 + 5 + 9 + 1 + 12 + 14 + 5 + 3 + 5 = 64

On average 6.4 lines per problem, down from 10.4 last year

1After codegolfing



Random facts

Jury work

• 361 commits (last year: 371)
• 339 secret test cases (last year: 252)
• 96 accepted jury/proofreader solutions (last year: 59)

• The minimum1 number of lines the jury needed to solve all problems is

4 + 6 + 5 + 9 + 1 + 12 + 14 + 5 + 3 + 5 = 64

On average 6.4 lines per problem, down from 10.4 last year

1After codegolfing



Random facts

Jury work

• 361 commits (last year: 371)
• 339 secret test cases (last year: 252)
• 96 accepted jury/proofreader solutions (last year: 59)
• The minimum1 number of lines the jury needed to solve all problems is

4 + 6 + 5 + 9 + 1 + 12 + 14 + 5 + 3 + 5 = 64

On average 6.4 lines per problem, down from 10.4 last year

1After codegolfing



Thanks to:

The Proofreaders
• Andrei Botocan (Bucharest, Romania)
• Davina van Meer (Delft)
• Michael Vasseur (VU Amsterdam)
• Michal Tešnar (RU Groningen)
• Nadyne Aretz (TU Delft)
• Thomas Verwoerd (TU Delft)
• Wietze Koops (RU Groningen)

The Jury for FPC (TU Delft)
and AAPJE (VU Amsterdam)

• Alexandru Bolfa (TU Delft)
• Angel Karchev (TU Delft)
• Jeroen Op de Beek (TU Delft)
• Leon van der Waal (TU Delft)
• Maarten Sijm (TU Delft)
• Matei Tinca (VU Amsterdam)
• Red Kalab (VU Amsterdam)


