
BAPC 2023

Solutions presentation

The BAPC 2023 jury
October 28, 2023



D: Democratic Naming
Problem Author: Ivan Fever

Problem: Given the list of city names, determine the new county’s name based on the existing
city names.

Observation: Every letter can be handled individually.
Solution: For every letter position, count which letter occurs the most often.

Statistics: 63 submissions, 56 accepted, 1 unknown



D: Democratic Naming
Problem Author: Ivan Fever

Problem: Given the list of city names, determine the new county’s name based on the existing
city names.

Observation: Every letter can be handled individually.

Solution: For every letter position, count which letter occurs the most often.

Statistics: 63 submissions, 56 accepted, 1 unknown



D: Democratic Naming
Problem Author: Ivan Fever

Problem: Given the list of city names, determine the new county’s name based on the existing
city names.

Observation: Every letter can be handled individually.
Solution: For every letter position, count which letter occurs the most often.

Statistics: 63 submissions, 56 accepted, 1 unknown



D: Democratic Naming
Problem Author: Ivan Fever

Problem: Given the list of city names, determine the new county’s name based on the existing
city names.

Observation: Every letter can be handled individually.
Solution: For every letter position, count which letter occurs the most often.

Statistics: 63 submissions, 56 accepted, 1 unknown



D: Democratic Naming
Problem Author: Ivan Fever

Problem: Given the list of city names, determine the new county’s name based on the existing
city names.

Observation: Every letter can be handled individually.
Solution: For every letter position, count which letter occurs the most often.

Statistics: 63 submissions, 56 accepted, 1 unknown (spoiler: they solved it! )



A: APT Upgrade
Problem Author: Ragnar Groot Koerkamp

Problem: Calculate the maximum overall completion percentage of downloading n packages,
with m packages having finished downloading and k packages underway.

Observation 1: The largest packages need to have finished downloading.
Observation 2: The packages underway need to be the next largest, and at 99.9̄%.

Solution: Sort the list, sum the largest m + k packages, divide by the total sum, multiply by 100:∑m+k
i=1 si∑n
i=1 si

· 100 (assuming si are sorted from large to small)

Statistics: 95 submissions, 50 accepted, 21 unknown



A: APT Upgrade
Problem Author: Ragnar Groot Koerkamp

Problem: Calculate the maximum overall completion percentage of downloading n packages,
with m packages having finished downloading and k packages underway.

Observation 1: The largest packages need to have finished downloading.

Observation 2: The packages underway need to be the next largest, and at 99.9̄%.
Solution: Sort the list, sum the largest m + k packages, divide by the total sum, multiply by 100:∑m+k

i=1 si∑n
i=1 si

· 100 (assuming si are sorted from large to small)

Statistics: 95 submissions, 50 accepted, 21 unknown



A: APT Upgrade
Problem Author: Ragnar Groot Koerkamp

Problem: Calculate the maximum overall completion percentage of downloading n packages,
with m packages having finished downloading and k packages underway.

Observation 1: The largest packages need to have finished downloading.
Observation 2: The packages underway need to be the next largest, and at 99.9̄%.

Solution: Sort the list, sum the largest m + k packages, divide by the total sum, multiply by 100:∑m+k
i=1 si∑n
i=1 si

· 100 (assuming si are sorted from large to small)

Statistics: 95 submissions, 50 accepted, 21 unknown



A: APT Upgrade
Problem Author: Ragnar Groot Koerkamp

Problem: Calculate the maximum overall completion percentage of downloading n packages,
with m packages having finished downloading and k packages underway.

Observation 1: The largest packages need to have finished downloading.
Observation 2: The packages underway need to be the next largest, and at 99.9̄%.

Solution: Sort the list, sum the largest m + k packages, divide by the total sum, multiply by 100:∑m+k
i=1 si∑n
i=1 si

· 100 (assuming si are sorted from large to small)

Statistics: 95 submissions, 50 accepted, 21 unknown



A: APT Upgrade
Problem Author: Ragnar Groot Koerkamp

Problem: Calculate the maximum overall completion percentage of downloading n packages,
with m packages having finished downloading and k packages underway.

Observation 1: The largest packages need to have finished downloading.
Observation 2: The packages underway need to be the next largest, and at 99.9̄%.

Solution: Sort the list, sum the largest m + k packages, divide by the total sum, multiply by 100:∑m+k
i=1 si∑n
i=1 si

· 100 (assuming si are sorted from large to small)

Statistics: 95 submissions, 50 accepted, 21 unknown



B: Battle Bots
Problem Author: Mees de Vries

Problem: Given a size n robot, how many attacks do you need to reduce its size to 0? Two
attacks available:

• Sword: size = size / 2
• Claw: size = size - 1

Naive solution: Just try all possible combinations: S, C , SS, SC , CS, CC , SSS, SSC , . . ., until you
find one that works.
If m is the answer, this runs in O(m2m). Since m ≈ log2(n), this is O(n log(n)). Too
slow!



B: Battle Bots
Problem Author: Mees de Vries

Problem: Given a size n robot, how many attacks do you need to reduce its size to 0? Two
attacks available:

• Sword: size = size / 2

• Claw: size = size - 1

Naive solution: Just try all possible combinations: S, C , SS, SC , CS, CC , SSS, SSC , . . ., until you
find one that works.
If m is the answer, this runs in O(m2m). Since m ≈ log2(n), this is O(n log(n)). Too
slow!



B: Battle Bots
Problem Author: Mees de Vries

Problem: Given a size n robot, how many attacks do you need to reduce its size to 0? Two
attacks available:

• Sword: size = size / 2
• Claw: size = size - 1

Naive solution: Just try all possible combinations: S, C , SS, SC , CS, CC , SSS, SSC , . . ., until you
find one that works.
If m is the answer, this runs in O(m2m). Since m ≈ log2(n), this is O(n log(n)). Too
slow!



B: Battle Bots
Problem Author: Mees de Vries

Problem: Given a size n robot, how many attacks do you need to reduce its size to 0? Two
attacks available:

• Sword: size = size / 2
• Claw: size = size - 1

Naive solution: Just try all possible combinations: S, C , SS, SC , CS, CC , SSS, SSC , . . ., until you
find one that works.

If m is the answer, this runs in O(m2m). Since m ≈ log2(n), this is O(n log(n)). Too
slow!



B: Battle Bots
Problem Author: Mees de Vries

Problem: Given a size n robot, how many attacks do you need to reduce its size to 0? Two
attacks available:

• Sword: size = size / 2
• Claw: size = size - 1

Naive solution: Just try all possible combinations: S, C , SS, SC , CS, CC , SSS, SSC , . . ., until you
find one that works.
If m is the answer, this runs in O(m2m). Since m ≈ log2(n), this is O(n log(n)). Too
slow!



B: Battle Bots
Problem Author: Mees de Vries

Problem: Given a size n robot, how many attacks do you need to reduce its size to 0? Two
attacks available:

• Sword: size = size / 2
• Claw: size = size - 1

Observation: An optimal strategy is to use a series of S attacks followed by a single C .

Solution: Use claw attacks until the remaining size is < 1, then a single claw. Run time:
O(log(n))

Solution: You can also compute the answer directly as ⌈log2(n)⌉ + 1, but only if you either
1. Use long double in C++, which has 18 digits of precision
2. Calculate the bit length (in Python: (x - 1).bit length() == ceil(log2(x)))

Float note: 64-bit floating-point numbers (double) have too low precision (only 15 digits).

Statistics: 127 submissions, 50 accepted, 12 unknown



B: Battle Bots
Problem Author: Mees de Vries

Problem: Given a size n robot, how many attacks do you need to reduce its size to 0? Two
attacks available:

• Sword: size = size / 2
• Claw: size = size - 1

Observation: An optimal strategy is to use a series of S attacks followed by a single C .
Solution: Use claw attacks until the remaining size is < 1, then a single claw. Run time:

O(log(n))

Solution: You can also compute the answer directly as ⌈log2(n)⌉ + 1, but only if you either
1. Use long double in C++, which has 18 digits of precision
2. Calculate the bit length (in Python: (x - 1).bit length() == ceil(log2(x)))

Float note: 64-bit floating-point numbers (double) have too low precision (only 15 digits).

Statistics: 127 submissions, 50 accepted, 12 unknown



B: Battle Bots
Problem Author: Mees de Vries

Problem: Given a size n robot, how many attacks do you need to reduce its size to 0? Two
attacks available:

• Sword: size = size / 2
• Claw: size = size - 1

Observation: An optimal strategy is to use a series of S attacks followed by a single C .
Solution: Use claw attacks until the remaining size is < 1, then a single claw. Run time:

O(log(n))
Solution: You can also compute the answer directly as ⌈log2(n)⌉ + 1, but only if you either

1. Use long double in C++, which has 18 digits of precision
2. Calculate the bit length (in Python: (x - 1).bit length() == ceil(log2(x)))

Float note: 64-bit floating-point numbers (double) have too low precision (only 15 digits).

Statistics: 127 submissions, 50 accepted, 12 unknown



B: Battle Bots
Problem Author: Mees de Vries

Problem: Given a size n robot, how many attacks do you need to reduce its size to 0? Two
attacks available:

• Sword: size = size / 2
• Claw: size = size - 1

Observation: An optimal strategy is to use a series of S attacks followed by a single C .
Solution: Use claw attacks until the remaining size is < 1, then a single claw. Run time:

O(log(n))
Solution: You can also compute the answer directly as ⌈log2(n)⌉ + 1, but only if you either

1. Use long double in C++, which has 18 digits of precision
2. Calculate the bit length (in Python: (x - 1).bit length() == ceil(log2(x)))

Float note: 64-bit floating-point numbers (double) have too low precision (only 15 digits).

Statistics: 127 submissions, 50 accepted, 12 unknown



B: Battle Bots
Problem Author: Mees de Vries

Problem: Given a size n robot, how many attacks do you need to reduce its size to 0? Two
attacks available:

• Sword: size = size / 2
• Claw: size = size - 1

Observation: An optimal strategy is to use a series of S attacks followed by a single C .
Solution: Use claw attacks until the remaining size is < 1, then a single claw. Run time:

O(log(n))
Solution: You can also compute the answer directly as ⌈log2(n)⌉ + 1, but only if you either

1. Use long double in C++, which has 18 digits of precision
2. Calculate the bit length (in Python: (x - 1).bit length() == ceil(log2(x)))

Float note: 64-bit floating-point numbers (double) have too low precision (only 15 digits).

Statistics: 127 submissions, 50 accepted, 12 unknown



F: Funicular Frenzy
Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is
minimized.

Solution: Simulation.

• Start the queue with 0 passengers.
• For every minute i , add ai , save the current queue length, and subtract c.
• The queue length can not go negative.
• Find the minute for which the queue length was the shortest.

Run time: O(n).
Edge case: The answer is “impossible” when the current queue length in minute i is never

smaller than c · (n − i).

Statistics: 111 submissions, 45 accepted, 18 unknown



F: Funicular Frenzy
Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is
minimized.

Solution: Simulation.
• Start the queue with 0 passengers.

• For every minute i , add ai , save the current queue length, and subtract c.
• The queue length can not go negative.
• Find the minute for which the queue length was the shortest.

Run time: O(n).
Edge case: The answer is “impossible” when the current queue length in minute i is never

smaller than c · (n − i).

Statistics: 111 submissions, 45 accepted, 18 unknown



F: Funicular Frenzy
Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is
minimized.

Solution: Simulation.
• Start the queue with 0 passengers.
• For every minute i , add ai , save the current queue length, and subtract c.

• The queue length can not go negative.
• Find the minute for which the queue length was the shortest.

Run time: O(n).
Edge case: The answer is “impossible” when the current queue length in minute i is never

smaller than c · (n − i).

Statistics: 111 submissions, 45 accepted, 18 unknown



F: Funicular Frenzy
Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is
minimized.

Solution: Simulation.
• Start the queue with 0 passengers.
• For every minute i , add ai , save the current queue length, and subtract c.
• The queue length can not go negative.

• Find the minute for which the queue length was the shortest.
Run time: O(n).

Edge case: The answer is “impossible” when the current queue length in minute i is never
smaller than c · (n − i).

Statistics: 111 submissions, 45 accepted, 18 unknown



F: Funicular Frenzy
Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is
minimized.

Solution: Simulation.
• Start the queue with 0 passengers.
• For every minute i , add ai , save the current queue length, and subtract c.
• The queue length can not go negative.
• Find the minute for which the queue length was the shortest.

Run time: O(n).
Edge case: The answer is “impossible” when the current queue length in minute i is never

smaller than c · (n − i).

Statistics: 111 submissions, 45 accepted, 18 unknown



F: Funicular Frenzy
Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is
minimized.

Solution: Simulation.
• Start the queue with 0 passengers.
• For every minute i , add ai , save the current queue length, and subtract c.
• The queue length can not go negative.
• Find the minute for which the queue length was the shortest.

Run time: O(n).

Edge case: The answer is “impossible” when the current queue length in minute i is never
smaller than c · (n − i).

Statistics: 111 submissions, 45 accepted, 18 unknown



F: Funicular Frenzy
Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is
minimized.

Solution: Simulation.
• Start the queue with 0 passengers.
• For every minute i , add ai , save the current queue length, and subtract c.
• The queue length can not go negative.
• Find the minute for which the queue length was the shortest.

Run time: O(n).
Edge case: The answer is “impossible” when the current queue length in minute i is never

smaller than c · (n − i).

Statistics: 111 submissions, 45 accepted, 18 unknown



F: Funicular Frenzy
Problem Author: Ragnar Groot Koerkamp

Problem: Determine at which minute you should enter the queue, such that the waiting time is
minimized.

Solution: Simulation.
• Start the queue with 0 passengers.
• For every minute i , add ai , save the current queue length, and subtract c.
• The queue length can not go negative.
• Find the minute for which the queue length was the shortest.

Run time: O(n).
Edge case: The answer is “impossible” when the current queue length in minute i is never

smaller than c · (n − i).

Statistics: 111 submissions, 45 accepted, 18 unknown



G: Geometry Game
Problem Author: Jorke de Vlas

Problem: Determine the most restrictive type of quadrilateral from four points.

Possible solution: There are multiple ways of determining the shapes, this is one of them:
• If all four sides have equal length, output “square” if the two diagonals have

equal length, else “rhombus”.
• If two pairs of opposite sides each have equal length, output “rectangle” if the

two diagonals have equal length, else “parallelogram”.
• If two pairs of adjacent sides each have equal length, output “kite”.
• If two pairs of opposite sides are parallel, output “trapezium”, else “none”.

Parallel test: Check if out-product of two vectors equals zero:

( x1
y1 ) × ( x2

y2 ) = x1 · y2 − x2 · y1 = 0

Float note: Calculating the length of an edge (
√

x2 + y 2) requires 18 digits (59 bits) of precision.
double only has 53!
I.e. 64-bit integers (without √) or C++ long double with an epsilon of 10−19 works.

Statistics: 122 submissions, 32 accepted, 48 unknown



G: Geometry Game
Problem Author: Jorke de Vlas

Problem: Determine the most restrictive type of quadrilateral from four points.
Possible solution: There are multiple ways of determining the shapes, this is one of them:

• If all four sides have equal length, output “square” if the two diagonals have
equal length, else “rhombus”.

• If two pairs of opposite sides each have equal length, output “rectangle” if the
two diagonals have equal length, else “parallelogram”.

• If two pairs of adjacent sides each have equal length, output “kite”.
• If two pairs of opposite sides are parallel, output “trapezium”, else “none”.

Parallel test: Check if out-product of two vectors equals zero:

( x1
y1 ) × ( x2

y2 ) = x1 · y2 − x2 · y1 = 0

Float note: Calculating the length of an edge (
√

x2 + y 2) requires 18 digits (59 bits) of precision.
double only has 53!
I.e. 64-bit integers (without √) or C++ long double with an epsilon of 10−19 works.

Statistics: 122 submissions, 32 accepted, 48 unknown



G: Geometry Game
Problem Author: Jorke de Vlas

Problem: Determine the most restrictive type of quadrilateral from four points.
Possible solution: There are multiple ways of determining the shapes, this is one of them:

• If all four sides have equal length, output “square” if the two diagonals have
equal length, else “rhombus”.

• If two pairs of opposite sides each have equal length, output “rectangle” if the
two diagonals have equal length, else “parallelogram”.

• If two pairs of adjacent sides each have equal length, output “kite”.
• If two pairs of opposite sides are parallel, output “trapezium”, else “none”.

Parallel test: Check if out-product of two vectors equals zero:

( x1
y1 ) × ( x2

y2 ) = x1 · y2 − x2 · y1 = 0

Float note: Calculating the length of an edge (
√

x2 + y 2) requires 18 digits (59 bits) of precision.
double only has 53!
I.e. 64-bit integers (without √) or C++ long double with an epsilon of 10−19 works.

Statistics: 122 submissions, 32 accepted, 48 unknown



G: Geometry Game
Problem Author: Jorke de Vlas

Problem: Determine the most restrictive type of quadrilateral from four points.
Possible solution: There are multiple ways of determining the shapes, this is one of them:

• If all four sides have equal length, output “square” if the two diagonals have
equal length, else “rhombus”.

• If two pairs of opposite sides each have equal length, output “rectangle” if the
two diagonals have equal length, else “parallelogram”.

• If two pairs of adjacent sides each have equal length, output “kite”.
• If two pairs of opposite sides are parallel, output “trapezium”, else “none”.

Parallel test: Check if out-product of two vectors equals zero:

( x1
y1 ) × ( x2

y2 ) = x1 · y2 − x2 · y1 = 0

Float note: Calculating the length of an edge (
√

x2 + y 2) requires 18 digits (59 bits) of precision.
double only has 53!
I.e. 64-bit integers (without √) or C++ long double with an epsilon of 10−19 works.

Statistics: 122 submissions, 32 accepted, 48 unknown



G: Geometry Game
Problem Author: Jorke de Vlas

Problem: Determine the most restrictive type of quadrilateral from four points.
Possible solution: There are multiple ways of determining the shapes, this is one of them:

• If all four sides have equal length, output “square” if the two diagonals have
equal length, else “rhombus”.

• If two pairs of opposite sides each have equal length, output “rectangle” if the
two diagonals have equal length, else “parallelogram”.

• If two pairs of adjacent sides each have equal length, output “kite”.
• If two pairs of opposite sides are parallel, output “trapezium”, else “none”.

Parallel test: Check if out-product of two vectors equals zero:

( x1
y1 ) × ( x2

y2 ) = x1 · y2 − x2 · y1 = 0

Float note: Calculating the length of an edge (
√

x2 + y 2) requires 18 digits (59 bits) of precision.
double only has 53!
I.e. 64-bit integers (without √) or C++ long double with an epsilon of 10−19 works.

Statistics: 122 submissions, 32 accepted, 48 unknown



C: Compressing Commands
Problem Author: Ragnar Groot Koerkamp

Problem: Which working directory should you use to specify n file paths (with ../), with the
minimal number of relative path components?

Solution: Convert to tree:

/home/judge/comp/sec
/home/judge/comp/sol
/home/hacker/ans

/ home

judge

hacker

comp
sec

sol
ans

Compute #path components for all nodes in linear time.
1. cost(”/”) = #total path components.
2. For edge u → v : cost(v) = cost(u) + n − 2 · #fileswithprefix(v).
3. Output minu cost(u).

Insight: For edge u → v , cost(v) < cost(u) iff #fileswithprefix(v) > n
2 .

Statistics: 82 submissions, 16 accepted, 53 unknown



C: Compressing Commands
Problem Author: Ragnar Groot Koerkamp

Problem: Which working directory should you use to specify n file paths (with ../), with the
minimal number of relative path components?

Solution: Convert to tree:

/home/judge/comp/sec
/home/judge/comp/sol
/home/hacker/ans

/ home

judge

hacker

comp
sec

sol
ans

Compute #path components for all nodes in linear time.
1. cost(”/”) = #total path components.
2. For edge u → v : cost(v) = cost(u) + n − 2 · #fileswithprefix(v).
3. Output minu cost(u).

Insight: For edge u → v , cost(v) < cost(u) iff #fileswithprefix(v) > n
2 .

Statistics: 82 submissions, 16 accepted, 53 unknown



C: Compressing Commands
Problem Author: Ragnar Groot Koerkamp

Problem: Which working directory should you use to specify n file paths (with ../), with the
minimal number of relative path components?

Solution: Convert to tree:

/home/judge/comp/sec
/home/judge/comp/sol
/home/hacker/ans

/ home

judge

hacker

comp
sec

sol
ans

Compute #path components for all nodes in linear time.

1. cost(”/”) = #total path components.
2. For edge u → v : cost(v) = cost(u) + n − 2 · #fileswithprefix(v).
3. Output minu cost(u).

Insight: For edge u → v , cost(v) < cost(u) iff #fileswithprefix(v) > n
2 .

Statistics: 82 submissions, 16 accepted, 53 unknown



C: Compressing Commands
Problem Author: Ragnar Groot Koerkamp

Problem: Which working directory should you use to specify n file paths (with ../), with the
minimal number of relative path components?

Solution: Convert to tree:

/home/judge/comp/sec
/home/judge/comp/sol
/home/hacker/ans

/ home

judge

hacker

comp
sec

sol
ans

Compute #path components for all nodes in linear time.
1. cost(”/”) = #total path components.
2. For edge u → v : cost(v) = cost(u) + n − 2 · #fileswithprefix(v).
3. Output minu cost(u).

Insight: For edge u → v , cost(v) < cost(u) iff #fileswithprefix(v) > n
2 .

Statistics: 82 submissions, 16 accepted, 53 unknown



C: Compressing Commands
Problem Author: Ragnar Groot Koerkamp

Problem: Which working directory should you use to specify n file paths (with ../), with the
minimal number of relative path components?

Solution: Convert to tree:

/home/judge/comp/sec
/home/judge/comp/sol
/home/hacker/ans

/ home

judge

hacker

comp
sec

sol
ans

Compute #path components for all nodes in linear time.
1. cost(”/”) = #total path components.
2. For edge u → v : cost(v) = cost(u) + n − 2 · #fileswithprefix(v).
3. Output minu cost(u).

Insight: For edge u → v , cost(v) < cost(u) iff #fileswithprefix(v) > n
2 .

Statistics: 82 submissions, 16 accepted, 53 unknown



C: Compressing Commands
Problem Author: Ragnar Groot Koerkamp

Problem: Which working directory should you use to specify n file paths (with ../), with the
minimal number of relative path components?

Solution: Convert to tree:

/home/judge/comp/sec
/home/judge/comp/sol
/home/hacker/ans

/ home

judge

hacker

comp
sec

sol
ans

Compute #path components for all nodes in linear time.
1. cost(”/”) = #total path components.
2. For edge u → v : cost(v) = cost(u) + n − 2 · #fileswithprefix(v).
3. Output minu cost(u).

Insight: For edge u → v , cost(v) < cost(u) iff #fileswithprefix(v) > n
2 .

Statistics: 82 submissions, 16 accepted, 53 unknown



E: Exam Study Planning
Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal
scheduling.

Greedy approach: Study for the first exam you can pass. Doesn’t work: maybe you can study for more
shorter exams. (Sample 2!)

Greedy approach: Study for the shortest exams first. Doesn’t work: maybe you can pass all exams if you
study in order, but the first one takes a long time.

Brute force: Try all pass/fail combinations: runs in O(2n), way too slow.
Observation: If at time ei , end time of exam i , you have passed j exams, and have x minutes of

study time unused, it doesn’t matter which j exams you passed!
Use dynamic programming:

DP(i , j) =

{
x , max extra study time at ei with j exams passed,
−∞ if it’s impossible to pass j exams at ei .



E: Exam Study Planning
Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal
scheduling.

Greedy approach: Study for the first exam you can pass. Doesn’t work: maybe you can study for more
shorter exams. (Sample 2!)

Greedy approach: Study for the shortest exams first. Doesn’t work: maybe you can pass all exams if you
study in order, but the first one takes a long time.

Brute force: Try all pass/fail combinations: runs in O(2n), way too slow.
Observation: If at time ei , end time of exam i , you have passed j exams, and have x minutes of

study time unused, it doesn’t matter which j exams you passed!
Use dynamic programming:

DP(i , j) =

{
x , max extra study time at ei with j exams passed,
−∞ if it’s impossible to pass j exams at ei .



E: Exam Study Planning
Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal
scheduling.

Greedy approach: Study for the first exam you can pass. Doesn’t work: maybe you can study for more
shorter exams. (Sample 2!)

Greedy approach: Study for the shortest exams first. Doesn’t work: maybe you can pass all exams if you
study in order, but the first one takes a long time.

Brute force: Try all pass/fail combinations: runs in O(2n), way too slow.
Observation: If at time ei , end time of exam i , you have passed j exams, and have x minutes of

study time unused, it doesn’t matter which j exams you passed!
Use dynamic programming:

DP(i , j) =

{
x , max extra study time at ei with j exams passed,
−∞ if it’s impossible to pass j exams at ei .



E: Exam Study Planning
Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal
scheduling.

Greedy approach: Study for the first exam you can pass. Doesn’t work: maybe you can study for more
shorter exams. (Sample 2!)

Greedy approach: Study for the shortest exams first. Doesn’t work: maybe you can pass all exams if you
study in order, but the first one takes a long time.

Brute force: Try all pass/fail combinations: runs in O(2n), way too slow.

Observation: If at time ei , end time of exam i , you have passed j exams, and have x minutes of
study time unused, it doesn’t matter which j exams you passed!
Use dynamic programming:

DP(i , j) =

{
x , max extra study time at ei with j exams passed,
−∞ if it’s impossible to pass j exams at ei .



E: Exam Study Planning
Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal
scheduling.

Greedy approach: Study for the first exam you can pass. Doesn’t work: maybe you can study for more
shorter exams. (Sample 2!)

Greedy approach: Study for the shortest exams first. Doesn’t work: maybe you can pass all exams if you
study in order, but the first one takes a long time.

Brute force: Try all pass/fail combinations: runs in O(2n), way too slow.
Observation: If at time ei , end time of exam i , you have passed j exams, and have x minutes of

study time unused, it doesn’t matter which j exams you passed!

Use dynamic programming:

DP(i , j) =

{
x , max extra study time at ei with j exams passed,
−∞ if it’s impossible to pass j exams at ei .



E: Exam Study Planning
Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal
scheduling.

Greedy approach: Study for the first exam you can pass. Doesn’t work: maybe you can study for more
shorter exams. (Sample 2!)

Greedy approach: Study for the shortest exams first. Doesn’t work: maybe you can pass all exams if you
study in order, but the first one takes a long time.

Brute force: Try all pass/fail combinations: runs in O(2n), way too slow.
Observation: If at time ei , end time of exam i , you have passed j exams, and have x minutes of

study time unused, it doesn’t matter which j exams you passed!
Use dynamic programming:

DP(i , j) =

{
x , max extra study time at ei with j exams passed,
−∞ if it’s impossible to pass j exams at ei .



E: Exam Study Planning
Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal
scheduling.

DP

DP(i , j) =

{
x , max extra study time at ei with j exams passed,
−∞ if it’s impossible to pass j exams at ei .

To determine DP(i , j) there are two options:

Fail exam i : DP(i , j) = DP(i − 1, j) + si − ei−1︸ ︷︷ ︸
Time between exams

Pass exam i : DP(i , j) = DP(i − 1, j − 1) + si − ei−1︸ ︷︷ ︸
Time between exams

− ai︸︷︷︸
Prep time

+ ei − pi︸ ︷︷ ︸
Time saved on exam

Take the maximum of these options!
Note: you can only pass exam i if you have time to prep:

DP(i − 1, j − 1) + si − ei−1 ≥ ai .

The solution is max{j : DP(n, j) ≥ 0}. Run time: O(n2).

Statistics: 44 submissions, 10 accepted, 30 unknown



E: Exam Study Planning
Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal
scheduling.

DP

DP(i , j) =

{
x , max extra study time at ei with j exams passed,
−∞ if it’s impossible to pass j exams at ei .

To determine DP(i , j) there are two options:
Fail exam i : DP(i , j) = DP(i − 1, j) + si − ei−1︸ ︷︷ ︸

Time between exams

Pass exam i : DP(i , j) = DP(i − 1, j − 1) + si − ei−1︸ ︷︷ ︸
Time between exams

− ai︸︷︷︸
Prep time

+ ei − pi︸ ︷︷ ︸
Time saved on exam

Take the maximum of these options!
Note: you can only pass exam i if you have time to prep:

DP(i − 1, j − 1) + si − ei−1 ≥ ai .

The solution is max{j : DP(n, j) ≥ 0}. Run time: O(n2).

Statistics: 44 submissions, 10 accepted, 30 unknown



E: Exam Study Planning
Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal
scheduling.

DP

DP(i , j) =

{
x , max extra study time at ei with j exams passed,
−∞ if it’s impossible to pass j exams at ei .

To determine DP(i , j) there are two options:
Fail exam i : DP(i , j) = DP(i − 1, j) + si − ei−1︸ ︷︷ ︸

Time between exams
Pass exam i : DP(i , j) = DP(i − 1, j − 1) + si − ei−1︸ ︷︷ ︸

Time between exams

− ai︸︷︷︸
Prep time

+ ei − pi︸ ︷︷ ︸
Time saved on exam

Take the maximum of these options!
Note: you can only pass exam i if you have time to prep:

DP(i − 1, j − 1) + si − ei−1 ≥ ai .

The solution is max{j : DP(n, j) ≥ 0}. Run time: O(n2).

Statistics: 44 submissions, 10 accepted, 30 unknown



E: Exam Study Planning
Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal
scheduling.

DP

DP(i , j) =

{
x , max extra study time at ei with j exams passed,
−∞ if it’s impossible to pass j exams at ei .

To determine DP(i , j) there are two options:
Fail exam i : DP(i , j) = DP(i − 1, j) + si − ei−1︸ ︷︷ ︸

Time between exams
Pass exam i : DP(i , j) = DP(i − 1, j − 1) + si − ei−1︸ ︷︷ ︸

Time between exams

− ai︸︷︷︸
Prep time

+ ei − pi︸ ︷︷ ︸
Time saved on exam

Take the maximum of these options!
Note: you can only pass exam i if you have time to prep:

DP(i − 1, j − 1) + si − ei−1 ≥ ai .

The solution is max{j : DP(n, j) ≥ 0}. Run time: O(n2).

Statistics: 44 submissions, 10 accepted, 30 unknown



E: Exam Study Planning
Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal
scheduling.

DP

DP(i , j) =

{
x , max extra study time at ei with j exams passed,
−∞ if it’s impossible to pass j exams at ei .

To determine DP(i , j) there are two options:
Fail exam i : DP(i , j) = DP(i − 1, j) + si − ei−1︸ ︷︷ ︸

Time between exams
Pass exam i : DP(i , j) = DP(i − 1, j − 1) + si − ei−1︸ ︷︷ ︸

Time between exams

− ai︸︷︷︸
Prep time

+ ei − pi︸ ︷︷ ︸
Time saved on exam

Take the maximum of these options!
Note: you can only pass exam i if you have time to prep:

DP(i − 1, j − 1) + si − ei−1 ≥ ai .

The solution is max{j : DP(n, j) ≥ 0}. Run time: O(n2).

Statistics: 44 submissions, 10 accepted, 30 unknown



E: Exam Study Planning
Problem Author: Jorke de Vlas and Reinier Schmiermann

Problem: Given an exam schedule, determine how many exams you can pass with optimal
scheduling.

DP

DP(i , j) =

{
x , max extra study time at ei with j exams passed,
−∞ if it’s impossible to pass j exams at ei .

To determine DP(i , j) there are two options:
Fail exam i : DP(i , j) = DP(i − 1, j) + si − ei−1︸ ︷︷ ︸

Time between exams
Pass exam i : DP(i , j) = DP(i − 1, j − 1) + si − ei−1︸ ︷︷ ︸

Time between exams

− ai︸︷︷︸
Prep time

+ ei − pi︸ ︷︷ ︸
Time saved on exam

Take the maximum of these options!
Note: you can only pass exam i if you have time to prep:

DP(i − 1, j − 1) + si − ei−1 ≥ ai .

The solution is max{j : DP(n, j) ≥ 0}. Run time: O(n2).

Statistics: 44 submissions, 10 accepted, 30 unknown



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Problem: Given the layout of a building, with doors that lock from only one side, how many exits
on the outside do we need to close all doors?

Observation: If a room a has an exit, then which doors can we close using that exit?
Write b → a to mean there is a door you can close from side a. Then consider:

a

b cd

e

f

g

g

If there is an exit at a, you can close all these doors: just start at any leaf, close that
door, and repeat.
Maybe you can close more doors, but definitely these ones.



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Problem: Given the layout of a building, with doors that lock from only one side, how many exits
on the outside do we need to close all doors?

Observation: If a room a has an exit, then which doors can we close using that exit?

Write b → a to mean there is a door you can close from side a. Then consider:

a

b cd

e

f

g

g

If there is an exit at a, you can close all these doors: just start at any leaf, close that
door, and repeat.
Maybe you can close more doors, but definitely these ones.



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Problem: Given the layout of a building, with doors that lock from only one side, how many exits
on the outside do we need to close all doors?

Observation: If a room a has an exit, then which doors can we close using that exit?
Write b → a to mean there is a door you can close from side a. Then consider:

a

b cd

e

f

g

g

If there is an exit at a, you can close all these doors: just start at any leaf, close that
door, and repeat.

Maybe you can close more doors, but definitely these ones.



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Problem: Given the layout of a building, with doors that lock from only one side, how many exits
on the outside do we need to close all doors?

Observation: If a room a has an exit, then which doors can we close using that exit?
Write b → a to mean there is a door you can close from side a. Then consider:

a

b cd

e

f

g

g

If there is an exit at a, you can close all these doors: just start at any leaf, close that
door, and repeat.
Maybe you can close more doors, but definitely these ones.



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Strongly connected: For a, b nodes, if you can walk from a to b via arrows, and also b to a, we call a and b
strongly connected.

SCC: We can collect strongly connected nodes into groups, called strongly connected
components.

Those components themselves form an acyclic graph.



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Strongly connected: For a, b nodes, if you can walk from a to b via arrows, and also b to a, we call a and b
strongly connected.

SCC: We can collect strongly connected nodes into groups, called strongly connected
components.

Those components themselves form an acyclic graph.



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Strongly connected: For a, b nodes, if you can walk from a to b via arrows, and also b to a, we call a and b
strongly connected.

SCC: We can collect strongly connected nodes into groups, called strongly connected
components.

Those components themselves form an acyclic graph.



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Strongly connected: For a, b nodes, if you can walk from a to b via arrows, and also b to a, we call a and b
strongly connected.

SCC: We can collect strongly connected nodes into groups, called strongly connected
components. Those components themselves form an acyclic graph.



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Strongly connected: For a, b nodes, if you can walk from a to b via arrows, and also b to a, we call a and b
strongly connected.

SCC: We can collect strongly connected nodes into groups, called strongly connected
components. Those components themselves form an acyclic graph.



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Necessary How many exits does this graph need? We need at least one in the (red) components
without outgoing edges. Otherwise you can never leave it once you close the last
incoming door.

Sufficient That is also enough exits: from any node you can follow the arrows to one of those
components, which we saw is enough to close all doors.



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Necessary How many exits does this graph need? We need at least one in the (red) components
without outgoing edges. Otherwise you can never leave it once you close the last
incoming door.

Sufficient That is also enough exits: from any node you can follow the arrows to one of those
components, which we saw is enough to close all doors.



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Solution Find the strongly connected components, e.g. with Tarjan’s algorithm. Output the
number of SCCs without outgoing edges.

Since we only have to count root-SCCs, simpler algorithms are also possible.
Note Be careful with recursion on python. Use a stack instead.

Runtime Runs in O(m).

Statistics: 24 submissions, 9 accepted, 13 unknown



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Solution Find the strongly connected components, e.g. with Tarjan’s algorithm. Output the
number of SCCs without outgoing edges.
Since we only have to count root-SCCs, simpler algorithms are also possible.

Note Be careful with recursion on python. Use a stack instead.
Runtime Runs in O(m).

Statistics: 24 submissions, 9 accepted, 13 unknown



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Solution Find the strongly connected components, e.g. with Tarjan’s algorithm. Output the
number of SCCs without outgoing edges.
Since we only have to count root-SCCs, simpler algorithms are also possible.

Note Be careful with recursion on python. Use a stack instead.

Runtime Runs in O(m).

Statistics: 24 submissions, 9 accepted, 13 unknown



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Solution Find the strongly connected components, e.g. with Tarjan’s algorithm. Output the
number of SCCs without outgoing edges.
Since we only have to count root-SCCs, simpler algorithms are also possible.

Note Be careful with recursion on python. Use a stack instead.
Runtime Runs in O(m).

Statistics: 24 submissions, 9 accepted, 13 unknown



L: Locking Doors
Problem Author: Jorke de Vlas and Mike de Vries

Solution Find the strongly connected components, e.g. with Tarjan’s algorithm. Output the
number of SCCs without outgoing edges.
Since we only have to count root-SCCs, simpler algorithms are also possible.

Note Be careful with recursion on python. Use a stack instead.
Runtime Runs in O(m).

Statistics: 24 submissions, 9 accepted, 13 unknown



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).

Given: There is only one local maximum.

. . . . . .

. . . . . .

4210 20

30

40



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).
Given: There is only one local maximum.

. . . . . .

. . . . . .

4210 20

30

40



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).
Given: There is only one local maximum.

Solution 1: Two-dimensional binary search:

• Query points on the middle horizontal and vertical lines.
• Query points around the highest point on those lines.
• Update bounds to cover the area that contains the

highest point.
• Make sure to not forget the highest point of the previous

iteration, e.g. when it lies on the queried line!

• Repeat until bounds contain only one point.
Number of queries: ≈ 2n + n + 1

2 n + · · · ≈ 4n



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).
Given: There is only one local maximum.

Solution 1: Two-dimensional binary search:

• Query points on the middle horizontal and vertical lines.

• Query points around the highest point on those lines.
• Update bounds to cover the area that contains the

highest point.
• Make sure to not forget the highest point of the previous

iteration, e.g. when it lies on the queried line!

• Repeat until bounds contain only one point.

Number of queries: ≈ 2n + n + 1
2 n + · · · ≈ 4n



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).
Given: There is only one local maximum.

Solution 1: Two-dimensional binary search:

• Query points on the middle horizontal and vertical lines.
• Query points around the highest point on those lines.

• Update bounds to cover the area that contains the
highest point.

• Make sure to not forget the highest point of the previous
iteration, e.g. when it lies on the queried line!

• Repeat until bounds contain only one point.

Number of queries: ≈ 2n + n + 1
2 n + · · · ≈ 4n



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).
Given: There is only one local maximum.

Solution 1: Two-dimensional binary search:

• Query points on the middle horizontal and vertical lines.
• Query points around the highest point on those lines.
• Update bounds to cover the area that contains the

highest point.
• Make sure to not forget the highest point of the previous

iteration, e.g. when it lies on the queried line!

• Repeat until bounds contain only one point.

Number of queries: ≈ 2n + n + 1
2 n + · · · ≈ 4n



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).
Given: There is only one local maximum.

Solution 1: Two-dimensional binary search:

• Query points on the middle horizontal and vertical lines.
• Query points around the highest point on those lines.
• Update bounds to cover the area that contains the

highest point.
• Make sure to not forget the highest point of the previous

iteration, e.g. when it lies on the queried line!

• Repeat until bounds contain only one point.

Number of queries: ≈ 2n + n + 1
2 n + · · · ≈ 4n



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).
Given: There is only one local maximum.

Solution 1: Two-dimensional binary search:

• Query points on the middle horizontal and vertical lines.
• Query points around the highest point on those lines.
• Update bounds to cover the area that contains the

highest point.
• Make sure to not forget the highest point of the previous

iteration, e.g. when it lies on the queried line!

• Repeat until bounds contain only one point.

Number of queries: ≈ 2n + n + 1
2 n + · · · ≈ 4n



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).
Given: There is only one local maximum.

Solution 2: Do 3 · n random queries, then hill-climb to the top.

Proof: • If you find a point in the top-2n, you need at most 6n hill climbing queries to find
the absolute maximum (think of the worst case: sparse zigzag/spiral).

• For every query, the probability of hitting a point that is in the top-2n is 2n
n2 = 2

n .
• The probability of not finding a point in the top-2n in 3n queries is

(1 − 2
n )3n < e−6 < 0.0025 (1 − x ≤ e−x ).

Fun fact: Writing interactors with O(1) time per query was an interesting puzzle on its own!
Also, the randomized solution can be broken by an adversarial interactor (but that’s
way too complicated)

Statistics: 186 submissions, 4 accepted, 141 unknown



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).
Given: There is only one local maximum.

Solution 2: Do 3 · n random queries, then hill-climb to the top.
Proof: • If you find a point in the top-2n, you need at most 6n hill climbing queries to find

the absolute maximum (think of the worst case: sparse zigzag/spiral).

• For every query, the probability of hitting a point that is in the top-2n is 2n
n2 = 2

n .
• The probability of not finding a point in the top-2n in 3n queries is

(1 − 2
n )3n < e−6 < 0.0025 (1 − x ≤ e−x ).

Fun fact: Writing interactors with O(1) time per query was an interesting puzzle on its own!
Also, the randomized solution can be broken by an adversarial interactor (but that’s
way too complicated)

Statistics: 186 submissions, 4 accepted, 141 unknown



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).
Given: There is only one local maximum.

Solution 2: Do 3 · n random queries, then hill-climb to the top.
Proof: • If you find a point in the top-2n, you need at most 6n hill climbing queries to find

the absolute maximum (think of the worst case: sparse zigzag/spiral).
• For every query, the probability of hitting a point that is in the top-2n is 2n

n2 = 2
n .

• The probability of not finding a point in the top-2n in 3n queries is
(1 − 2

n )3n < e−6 < 0.0025 (1 − x ≤ e−x ).
Fun fact: Writing interactors with O(1) time per query was an interesting puzzle on its own!

Also, the randomized solution can be broken by an adversarial interactor (but that’s
way too complicated)

Statistics: 186 submissions, 4 accepted, 141 unknown



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).
Given: There is only one local maximum.

Solution 2: Do 3 · n random queries, then hill-climb to the top.
Proof: • If you find a point in the top-2n, you need at most 6n hill climbing queries to find

the absolute maximum (think of the worst case: sparse zigzag/spiral).
• For every query, the probability of hitting a point that is in the top-2n is 2n

n2 = 2
n .

• The probability of not finding a point in the top-2n in 3n queries is
(1 − 2

n )3n < e−6 < 0.0025 (1 − x ≤ e−x ).

Fun fact: Writing interactors with O(1) time per query was an interesting puzzle on its own!
Also, the randomized solution can be broken by an adversarial interactor (but that’s
way too complicated)

Statistics: 186 submissions, 4 accepted, 141 unknown



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).
Given: There is only one local maximum.

Solution 2: Do 3 · n random queries, then hill-climb to the top.
Proof: • If you find a point in the top-2n, you need at most 6n hill climbing queries to find

the absolute maximum (think of the worst case: sparse zigzag/spiral).
• For every query, the probability of hitting a point that is in the top-2n is 2n

n2 = 2
n .

• The probability of not finding a point in the top-2n in 3n queries is
(1 − 2

n )3n < e−6 < 0.0025 (1 − x ≤ e−x ).
There are 153 test cases, but not all of them are worst-case, so this works with high
probability.

Fun fact: Writing interactors with O(1) time per query was an interesting puzzle on its own!
Also, the randomized solution can be broken by an adversarial interactor (but that’s
way too complicated)

Statistics: 186 submissions, 4 accepted, 141 unknown



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).
Given: There is only one local maximum.

Solution 2: Do 3 · n random queries, then hill-climb to the top.
Proof: • If you find a point in the top-2n, you need at most 6n hill climbing queries to find

the absolute maximum (think of the worst case: sparse zigzag/spiral).
• For every query, the probability of hitting a point that is in the top-2n is 2n

n2 = 2
n .

• The probability of not finding a point in the top-2n in 3n queries is
(1 − 2

n )3n < e−6 < 0.0025 (1 − x ≤ e−x ).
There are 153 test cases, but not all of them are worst-case, so this works with high
probability.

Fun fact: Writing interactors with O(1) time per query was an interesting puzzle on its own!
Also, the randomized solution can be broken by an adversarial interactor (but that’s
way too complicated)

Statistics: 186 submissions, 4 accepted, 141 unknown



K: King of the Hill
Problem Author: Maarten Sijm

Problem: Find the highest value in an n2 grid in 10n + 100 queries (n ≤ 10 000).
Given: There is only one local maximum.

Solution 2: Do 3 · n random queries, then hill-climb to the top.
Proof: • If you find a point in the top-2n, you need at most 6n hill climbing queries to find

the absolute maximum (think of the worst case: sparse zigzag/spiral).
• For every query, the probability of hitting a point that is in the top-2n is 2n

n2 = 2
n .

• The probability of not finding a point in the top-2n in 3n queries is
(1 − 2

n )3n < e−6 < 0.0025 (1 − x ≤ e−x ).
There are 153 test cases, but not all of them are worst-case, so this works with high
probability.

Fun fact: Writing interactors with O(1) time per query was an interesting puzzle on its own!
Also, the randomized solution can be broken by an adversarial interactor (but that’s
way too complicated)

Statistics: 186 submissions, 4 accepted, 141 unknown



H: Hidden Art
Problem Author: Reinier Schmiermann

Problem: Given an infinitely repeating four-colour pattern, can you find a square whose corners
have four different colors?



H: Hidden Art
Problem Author: Reinier Schmiermann

Problem: Given an infinitely repeating four-colour pattern, can you find a square whose corners
have four different colors?



H: Hidden Art
Problem Author: Reinier Schmiermann

Problem: Given an infinitely repeating four-colour pattern, can you find a square whose corners
have four different colors?



H: Hidden Art
Problem Author: Reinier Schmiermann

Problem: Given an infinitely repeating four-colour pattern, can you find a square whose corners
have four different colors?



H: Hidden Art
Problem Author: Reinier Schmiermann

Problem: Given an infinitely repeating four-colour pattern, can you find a square whose corners
have four different colors?



H: Hidden Art
Problem Author: Reinier Schmiermann

Problem: Given an infinitely repeating four-colour pattern, can you find a square whose corners
have four different colors?



H: Hidden Art
Problem Author: Reinier Schmiermann

Problem: Given an infinitely repeating four-colour pattern, can you find a square whose corners
have four different colors?

Observation: If you have a solution in the infinite grid, then it forms a rectangle in the original grid.
w r w r w r
w g w g w g
b g b g b g
w r w r w r
w g w g w g
b g b g b g

Observation: However, not all rectangles in the original grid make squares.
g w b w g w b w
w w r w w w r w
g w b w g w b w
w w r w w w r w



H: Hidden Art
Problem Author: Reinier Schmiermann

Problem: Given an infinitely repeating four-colour pattern, can you find a square whose corners
have four different colors?

Observation: If you have a solution in the infinite grid, then it forms a rectangle in the original grid.
w r w r w r
w g w g w g
b g b g b g
w r w r w r
w g w g w g
b g b g b g

Observation: However, not all rectangles in the original grid make squares.
g w b w g w b w
w w r w w w r w
g w b w g w b w
w w r w w w r w



H: Hidden Art
Problem Author: Reinier Schmiermann

Observation: However, not all rectangles in the original grid make squares.
g w b w g w b w
w w r w w w r w
g w b w g w b w
w w r w w w r w

Which rectangles correspond to squares?
Observation: For an x × y rectangle in a w × h grid, we can obtain all rectangles (x + kh) × (y + ℓw).

Question: For which x , y can we pick k, ℓ such that

x + kh = y + ℓw ⇐⇒ x − y = ℓw − kh?

Answer: Bézout’s theorem: if and only if gcd(h, w) | x − y .
In the example above: it doesn’t work, because x − y = 2 − 1 = 1 while
gcd(w , h) = gcd(4, 2) = 2.



H: Hidden Art
Problem Author: Reinier Schmiermann

Observation: However, not all rectangles in the original grid make squares.
g w b w g w b w
w w r w w w r w
g w b w g w b w
w w r w w w r w

Which rectangles correspond to squares?

Observation: For an x × y rectangle in a w × h grid, we can obtain all rectangles (x + kh) × (y + ℓw).
Question: For which x , y can we pick k, ℓ such that

x + kh = y + ℓw ⇐⇒ x − y = ℓw − kh?

Answer: Bézout’s theorem: if and only if gcd(h, w) | x − y .
In the example above: it doesn’t work, because x − y = 2 − 1 = 1 while
gcd(w , h) = gcd(4, 2) = 2.



H: Hidden Art
Problem Author: Reinier Schmiermann

Observation: However, not all rectangles in the original grid make squares.
g w b w g w b w
w w r w w w r w
g w b w g w b w
w w r w w w r w

Which rectangles correspond to squares?
Observation: For an x × y rectangle in a w × h grid, we can obtain all rectangles (x + kh) × (y + ℓw).

Question: For which x , y can we pick k, ℓ such that

x + kh = y + ℓw ⇐⇒ x − y = ℓw − kh?

Answer: Bézout’s theorem: if and only if gcd(h, w) | x − y .
In the example above: it doesn’t work, because x − y = 2 − 1 = 1 while
gcd(w , h) = gcd(4, 2) = 2.



H: Hidden Art
Problem Author: Reinier Schmiermann

Observation: However, not all rectangles in the original grid make squares.
g w b w g w b w
w w r w w w r w
g w b w g w b w
w w r w w w r w

Which rectangles correspond to squares?
Observation: For an x × y rectangle in a w × h grid, we can obtain all rectangles (x + kh) × (y + ℓw).

Question: For which x , y can we pick k, ℓ such that

x + kh = y + ℓw ⇐⇒ x − y = ℓw − kh?

Answer: Bézout’s theorem: if and only if gcd(h, w) | x − y .
In the example above: it doesn’t work, because x − y = 2 − 1 = 1 while
gcd(w , h) = gcd(4, 2) = 2.



H: Hidden Art
Problem Author: Reinier Schmiermann

Observation: However, not all rectangles in the original grid make squares.
g w b w g w b w
w w r w w w r w
g w b w g w b w
w w r w w w r w

Which rectangles correspond to squares?
Observation: For an x × y rectangle in a w × h grid, we can obtain all rectangles (x + kh) × (y + ℓw).

Question: For which x , y can we pick k, ℓ such that

x + kh = y + ℓw ⇐⇒ x − y = ℓw − kh?

Answer: Bézout’s theorem: if and only if gcd(h, w) | x − y .

In the example above: it doesn’t work, because x − y = 2 − 1 = 1 while
gcd(w , h) = gcd(4, 2) = 2.



H: Hidden Art
Problem Author: Reinier Schmiermann

Observation: However, not all rectangles in the original grid make squares.
g w b w g w b w
w w r w w w r w
g w b w g w b w
w w r w w w r w

Which rectangles correspond to squares?
Observation: For an x × y rectangle in a w × h grid, we can obtain all rectangles (x + kh) × (y + ℓw).

Question: For which x , y can we pick k, ℓ such that

x + kh = y + ℓw ⇐⇒ x − y = ℓw − kh?

Answer: Bézout’s theorem: if and only if gcd(h, w) | x − y .
In the example above: it doesn’t work, because x − y = 2 − 1 = 1 while
gcd(w , h) = gcd(4, 2) = 2.



H: Hidden Art
Problem Author: Reinier Schmiermann

Naive solution: For every rectangle in the grid, check if its corners have all four colors, and if the
difference between height and width is divisible by g = gcd(w , h).

Run time: O((hw)2) – too slow for h · w = 200,000.
Observation: Once the width of the rectangle is fixed, all possible rectangle heights are known, and

they all differ by multiples of g .
Observation: There are not that many combinations of colors possible.



H: Hidden Art
Problem Author: Reinier Schmiermann

Naive solution: For every rectangle in the grid, check if its corners have all four colors, and if the
difference between height and width is divisible by g = gcd(w , h).
Run time: O((hw)2) – too slow for h · w = 200,000.

Observation: Once the width of the rectangle is fixed, all possible rectangle heights are known, and
they all differ by multiples of g .

Observation: There are not that many combinations of colors possible.



H: Hidden Art
Problem Author: Reinier Schmiermann

Naive solution: For every rectangle in the grid, check if its corners have all four colors, and if the
difference between height and width is divisible by g = gcd(w , h).
Run time: O((hw)2) – too slow for h · w = 200,000.

Observation: Once the width of the rectangle is fixed, all possible rectangle heights are known, and
they all differ by multiples of g .

Observation: There are not that many combinations of colors possible.



H: Hidden Art
Problem Author: Reinier Schmiermann

Naive solution: For every rectangle in the grid, check if its corners have all four colors, and if the
difference between height and width is divisible by g = gcd(w , h).
Run time: O((hw)2) – too slow for h · w = 200,000.

Observation: Once the width of the rectangle is fixed, all possible rectangle heights are known, and
they all differ by multiples of g .

Observation: There are not that many combinations of colors possible.



H: Hidden Art
Problem Author: Reinier Schmiermann

r b w g r r
r w b b g r
g r b b w w
b b b w g r
g r g g r b
w w w b w g
r w b w g w
w r g w b w
w r b g w b

Row 0 (mod 3): { }

Row 1 (mod 3): { }

Row 2 (mod 3): { }

w r b g b g

b g g r g b

b w w w b w

Solution: Fix two columns. Then check all colour combinations in those two columns, and store
them by their row (mod g).

Then go through compatible rows, and see if they have compatible color combinations.
Run time: O(hw2) – fast enough, but program efficiently, especially in Python!

Statistics: 63 submissions, 1 accepted, 41 unknown



H: Hidden Art
Problem Author: Reinier Schmiermann

r b w g r r
r w b b g r
g r b b w w
b b b w g r
g r g g r b
w w w b w g
r w b w g w
w r g w b w
w r b g w b

Row 0 (mod 3): { }

Row 1 (mod 3): { }

Row 2 (mod 3): { }

w r b g b g

b g g r g b

b w w w b w

Solution: Fix two columns. Then check all colour combinations in those two columns, and store
them by their row (mod g).
Then go through compatible rows, and see if they have compatible color combinations.

Run time: O(hw2) – fast enough, but program efficiently, especially in Python!

Statistics: 63 submissions, 1 accepted, 41 unknown



H: Hidden Art
Problem Author: Reinier Schmiermann

r b w g r r
r w b b g r
g r b b w w
b b b w g r
g r g g r b
w w w b w g
r w b w g w
w r g w b w
w r b g w b

Row 0 (mod 3): { }

Row 1 (mod 3): { }

Row 2 (mod 3): { }

w r b g b g

b g g r g b

b w w w b w

Solution: Fix two columns. Then check all colour combinations in those two columns, and store
them by their row (mod g).
Then go through compatible rows, and see if they have compatible color combinations.

Run time: O(hw2) – fast enough, but program efficiently, especially in Python!

Statistics: 63 submissions, 1 accepted, 41 unknown



H: Hidden Art
Problem Author: Reinier Schmiermann

r b w g r r
r w b b g r
g r b b w w
b b b w g r
g r g g r b
w w w b w g
r w b w g w
w r g w b w
w r b g w b

Row 0 (mod 3): { }

Row 1 (mod 3): { }

Row 2 (mod 3): { }

w r b g b g

b g g r g b

b w w w b w

Solution: Fix two columns. Then check all colour combinations in those two columns, and store
them by their row (mod g).
Then go through compatible rows, and see if they have compatible color combinations.

Run time: O(hw2) – fast enough, but program efficiently, especially in Python!

Statistics: 63 submissions, 1 accepted, 41 unknown



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

Problem: Given a tree, can you find the number of connected subtrees of each size? (modulo
109 + 7 because the answer is huge).

Observation: Let’s define F (v , c) - the number of connected subtrees, that have node v as the root
and have exactly c nodes.
If we can compute F , we can get the answer to the problem by calculating∑

i∈V F (i , c).
Solution: Use dynamic programming



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

Problem: Given a tree, can you find the number of connected subtrees of each size? (modulo
109 + 7 because the answer is huge).

Observation: Let’s define F (v , c) - the number of connected subtrees, that have node v as the root
and have exactly c nodes.

If we can compute F , we can get the answer to the problem by calculating∑
i∈V F (i , c).

Solution: Use dynamic programming



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

Problem: Given a tree, can you find the number of connected subtrees of each size? (modulo
109 + 7 because the answer is huge).

Observation: Let’s define F (v , c) - the number of connected subtrees, that have node v as the root
and have exactly c nodes.
If we can compute F , we can get the answer to the problem by calculating∑

i∈V F (i , c).

Solution: Use dynamic programming



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

Problem: Given a tree, can you find the number of connected subtrees of each size? (modulo
109 + 7 because the answer is huge).

Observation: Let’s define F (v , c) - the number of connected subtrees, that have node v as the root
and have exactly c nodes.
If we can compute F , we can get the answer to the problem by calculating∑

i∈V F (i , c).
Solution: Use dynamic programming



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

Base case: If v is a leaf:
F (v , c) = 1 if c is 0 or 1.
F (v , c) = 0 if c ≥ 2.

DP idea: Consider the following subtree:

To calculate F (v , c) we need to consider every way to distribute c − 1 remaining nodes
among three child subtrees of v :
F (v , c) =

∑c−1
c1=0

∑c−1−c1
c2=0 F (u1, c1)F (u2, c2)F (u3, c − c1 − c2)

Problem: For a node with many children m, this will hit the time limit:

F (v , c) =
c−1∑
c1=0

c−1−c1∑
c2=0

...

c−1−...∑
cn−1=0

m∏
i=1

F (ui , ci)



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

Base case: If v is a leaf:
F (v , c) = 1 if c is 0 or 1.
F (v , c) = 0 if c ≥ 2.

DP idea: Consider the following subtree:

To calculate F (v , c) we need to consider every way to distribute c − 1 remaining nodes
among three child subtrees of v :
F (v , c) =

∑c−1
c1=0

∑c−1−c1
c2=0 F (u1, c1)F (u2, c2)F (u3, c − c1 − c2)

Problem: For a node with many children m, this will hit the time limit:

F (v , c) =
c−1∑
c1=0

c−1−c1∑
c2=0

...

c−1−...∑
cn−1=0

m∏
i=1

F (ui , ci)



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

Base case: If v is a leaf:
F (v , c) = 1 if c is 0 or 1.
F (v , c) = 0 if c ≥ 2.

DP idea: Consider the following subtree:

To calculate F (v , c) we need to consider every way to distribute c − 1 remaining nodes
among three child subtrees of v :
F (v , c) =

∑c−1
c1=0

∑c−1−c1
c2=0 F (u1, c1)F (u2, c2)F (u3, c − c1 − c2)

Problem: For a node with many children m, this will hit the time limit:

F (v , c) =
c−1∑
c1=0

c−1−c1∑
c2=0

...

c−1−...∑
cn−1=0

m∏
i=1

F (ui , ci)



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

Base case: If v is a leaf:
F (v , c) = 1 if c is 0 or 1.
F (v , c) = 0 if c ≥ 2.

DP idea: Consider the following subtree:

To calculate F (v , c) we need to consider every way to distribute c − 1 remaining nodes
among three child subtrees of v :
F (v , c) =

∑c−1
c1=0

∑c−1−c1
c2=0 F (u1, c1)F (u2, c2)F (u3, c − c1 − c2)

Problem: For a node with many children m, this will hit the time limit:

F (v , c) =
c−1∑
c1=0

c−1−c1∑
c2=0

...

c−1−...∑
cn−1=0

m∏
i=1

F (ui , ci)



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

Fix: Introduce F ′(v , i , c) - the number of connected subtrees, that have node v as the root,
have exactly c nodes and only include first i children of node v .

Base cases for node v that has m children:
F (v , c) = F ′(v , m, c),
F ′(v , 1, c) = F (u1, c − 1),



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

Fix: Introduce F ′(v , i , c) - the number of connected subtrees, that have node v as the root,
have exactly c nodes and only include first i children of node v .
Base cases for node v that has m children:
F (v , c) = F ′(v , m, c),
F ′(v , 1, c) = F (u1, c − 1),



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

DP Let’s calculate F ′(v , 2, c) for this graph:

For that we just need to decide how many nodes will be in the subtree of the second
child and then we can recurse: F ′(v , 2, c) =

∑c−1
c2=0 F ′(v , 1, c − c2)F (u2, c2)



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

DP Let’s calculate F ′(v , 2, c) for this graph:

For that we just need to decide how many nodes will be in the subtree of the second
child and then we can recurse: F ′(v , 2, c) =

∑c−1
c2=0 F ′(v , 1, c − c2)F (u2, c2)



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

Runtime: Computing F ′(v , i , c) for all c takes O(|ui | ·
∑

j |uj |) time, where |ui | denotes the size
of the subtree at ui .

Total time spent at |v | is O(
∑

i

∑
j |ui | · |uj |).

Observation:
∑

i

∑
j |ui | · |uj | is the number of pairs of nodes with lowest common ancestor v .

Since every pair of nodes has one LCA, the total runtime is O(n2).

Statistics: 14 submissions, 6 accepted, 5 unknown



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

Runtime: Computing F ′(v , i , c) for all c takes O(|ui | ·
∑

j |uj |) time, where |ui | denotes the size
of the subtree at ui .
Total time spent at |v | is O(

∑
i

∑
j |ui | · |uj |).

Observation:
∑

i

∑
j |ui | · |uj | is the number of pairs of nodes with lowest common ancestor v .

Since every pair of nodes has one LCA, the total runtime is O(n2).

Statistics: 14 submissions, 6 accepted, 5 unknown



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

Runtime: Computing F ′(v , i , c) for all c takes O(|ui | ·
∑

j |uj |) time, where |ui | denotes the size
of the subtree at ui .
Total time spent at |v | is O(

∑
i

∑
j |ui | · |uj |).

Observation:
∑

i

∑
j |ui | · |uj | is the number of pairs of nodes with lowest common ancestor v .

Since every pair of nodes has one LCA, the total runtime is O(n2).

Statistics: 14 submissions, 6 accepted, 5 unknown



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

Runtime: Computing F ′(v , i , c) for all c takes O(|ui | ·
∑

j |uj |) time, where |ui | denotes the size
of the subtree at ui .
Total time spent at |v | is O(

∑
i

∑
j |ui | · |uj |).

Observation:
∑

i

∑
j |ui | · |uj | is the number of pairs of nodes with lowest common ancestor v .

Since every pair of nodes has one LCA, the total runtime is O(n2).

Statistics: 14 submissions, 6 accepted, 5 unknown



J: Jungle Job
Problem Author: Jorke de Vlas and Mike de Vries

Runtime: Computing F ′(v , i , c) for all c takes O(|ui | ·
∑

j |uj |) time, where |ui | denotes the size
of the subtree at ui .
Total time spent at |v | is O(

∑
i

∑
j |ui | · |uj |).

Observation:
∑

i

∑
j |ui | · |uj | is the number of pairs of nodes with lowest common ancestor v .

Since every pair of nodes has one LCA, the total runtime is O(n2).

Statistics: 14 submissions, 6 accepted, 5 unknown



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Problem: Given are n ≤ 105 countries with ascending infection rates ri , and quarantine times ti .

15 14 13 10 9 7 5 4 3 2 0

m = 3

• Hop: if rj ≥ ri − m, go without quarantine (1 day).
• Jump: go with quarantine (1 + tj days).

Answer 105 queries: What is the fastest route from x to y .



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Solution If rx < ry : We can hop directly, so print 1.

Observation Jump at most once, and only in the very beginning.
If rx > ry , four options:

1. Hop to the right up to m at a time.
2. Jump directly to y .
3. Jump right of y , then hop left once.
4. Jump left of y , then hop right some times.

15 14 13 10 9 7 5 4 3 2 0

x y



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Solution If rx < ry : We can hop directly, so print 1.
Observation Jump at most once, and only in the very beginning.

If rx > ry , four options:
1. Hop to the right up to m at a time.
2. Jump directly to y .
3. Jump right of y , then hop left once.
4. Jump left of y , then hop right some times.

15 14 13 10 9 7 5 4 3 2 0

x y



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Solution If rx < ry : We can hop directly, so print 1.
Observation Jump at most once, and only in the very beginning.

If rx > ry , four options:
1. Hop to the right up to m at a time.
2. Jump directly to y .
3. Jump right of y , then hop left once.
4. Jump left of y , then hop right some times.

15 14 13 10 9 7 5 4 3 2 0

x y



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Case 1: Hop to the right up to m at a time.
Define Hk(i) as the rightmost country reachable within 2k hops.

Compute H0 with two-pointers / sliding window.
Compute Hk+1(i) as Hk(Hk(i)).
To compute hops from x to y :
Try to go right 2k steps without overshooting y , for decreasing k.
O(n log2(n)) space and O(log2(n)) time per query.

Case 2: Jump directly to y : trivial.
Case 3: Hop to the right of y , then hop left once.

Keep suffix-minimum minj<i tj .
Add one for the hop.



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Case 1: Hop to the right up to m at a time.
Define Hk(i) as the rightmost country reachable within 2k hops.
Compute H0 with two-pointers / sliding window.

Compute Hk+1(i) as Hk(Hk(i)).
To compute hops from x to y :
Try to go right 2k steps without overshooting y , for decreasing k.
O(n log2(n)) space and O(log2(n)) time per query.

Case 2: Jump directly to y : trivial.
Case 3: Hop to the right of y , then hop left once.

Keep suffix-minimum minj<i tj .
Add one for the hop.



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Case 1: Hop to the right up to m at a time.
Define Hk(i) as the rightmost country reachable within 2k hops.
Compute H0 with two-pointers / sliding window.
Compute Hk+1(i) as Hk(Hk(i)).

To compute hops from x to y :
Try to go right 2k steps without overshooting y , for decreasing k.
O(n log2(n)) space and O(log2(n)) time per query.

Case 2: Jump directly to y : trivial.
Case 3: Hop to the right of y , then hop left once.

Keep suffix-minimum minj<i tj .
Add one for the hop.



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Case 1: Hop to the right up to m at a time.
Define Hk(i) as the rightmost country reachable within 2k hops.
Compute H0 with two-pointers / sliding window.
Compute Hk+1(i) as Hk(Hk(i)).
To compute hops from x to y :
Try to go right 2k steps without overshooting y , for decreasing k.

O(n log2(n)) space and O(log2(n)) time per query.
Case 2: Jump directly to y : trivial.
Case 3: Hop to the right of y , then hop left once.

Keep suffix-minimum minj<i tj .
Add one for the hop.



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Case 1: Hop to the right up to m at a time.
Define Hk(i) as the rightmost country reachable within 2k hops.
Compute H0 with two-pointers / sliding window.
Compute Hk+1(i) as Hk(Hk(i)).
To compute hops from x to y :
Try to go right 2k steps without overshooting y , for decreasing k.
O(n log2(n)) space and O(log2(n)) time per query.

Case 2: Jump directly to y : trivial.
Case 3: Hop to the right of y , then hop left once.

Keep suffix-minimum minj<i tj .
Add one for the hop.



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Case 1: Hop to the right up to m at a time.
Define Hk(i) as the rightmost country reachable within 2k hops.
Compute H0 with two-pointers / sliding window.
Compute Hk+1(i) as Hk(Hk(i)).
To compute hops from x to y :
Try to go right 2k steps without overshooting y , for decreasing k.
O(n log2(n)) space and O(log2(n)) time per query.

Case 2: Jump directly to y : trivial.

Case 3: Hop to the right of y , then hop left once.
Keep suffix-minimum minj<i tj .
Add one for the hop.



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Case 1: Hop to the right up to m at a time.
Define Hk(i) as the rightmost country reachable within 2k hops.
Compute H0 with two-pointers / sliding window.
Compute Hk+1(i) as Hk(Hk(i)).
To compute hops from x to y :
Try to go right 2k steps without overshooting y , for decreasing k.
O(n log2(n)) space and O(log2(n)) time per query.

Case 2: Jump directly to y : trivial.
Case 3: Hop to the right of y , then hop left once.

Keep suffix-minimum minj<i tj .
Add one for the hop.



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Case 1: Hop to the right up to m at a time.
Define Hk(i) as the rightmost country reachable within 2k hops.
Compute H0 with two-pointers / sliding window.
Compute Hk+1(i) as Hk(Hk(i)).
To compute hops from x to y :
Try to go right 2k steps without overshooting y , for decreasing k.
O(n log2(n)) space and O(log2(n)) time per query.

Case 2: Jump directly to y : trivial.
Case 3: Hop to the right of y , then hop left once.

Keep suffix-minimum minj<i tj .

Add one for the hop.



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Case 1: Hop to the right up to m at a time.
Define Hk(i) as the rightmost country reachable within 2k hops.
Compute H0 with two-pointers / sliding window.
Compute Hk+1(i) as Hk(Hk(i)).
To compute hops from x to y :
Try to go right 2k steps without overshooting y , for decreasing k.
O(n log2(n)) space and O(log2(n)) time per query.

Case 2: Jump directly to y : trivial.
Case 3: Hop to the right of y , then hop left once.

Keep suffix-minimum minj<i tj .
Add one for the hop.



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Case 4: Hop to the left of y , then hop right some times.

15 14 13 10 9 7 5 4 3 2 0

x y

Iterate through the countries from left to right, keeping track of the best country to
jump to first.

For each country, either:
• jump to the stored best and hop from there, or
• jump directly and update the stored best.

Statistics: 14 submissions, 0 accepted, 12 unknown



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Case 4: Hop to the left of y , then hop right some times.

15 14 13 10 9 7 5 4 3 2 0

x y

Iterate through the countries from left to right, keeping track of the best country to
jump to first.
For each country, either:

• jump to the stored best and hop from there, or
• jump directly and update the stored best.

Statistics: 14 submissions, 0 accepted, 12 unknown



I: International Irregularities
Problem Author: Ragnar Groot Koerkamp

Case 4: Hop to the left of y , then hop right some times.

15 14 13 10 9 7 5 4 3 2 0

x y

Iterate through the countries from left to right, keeping track of the best country to
jump to first.
For each country, either:

• jump to the stored best and hop from there, or
• jump directly and update the stored best.

Statistics: 14 submissions, 0 accepted, 12 unknown



Language stats

C C++ C# Java Kotlin Python 3
0

25

50

75

100

125

150

175
correct
wrong answer
timelimit
run error
pending



Random facts

Jury work

• 1061 commits, of which 564 for the main contest (last year: 721/434)

• 1358 secret test cases (last year: 604) (= 113.2 per problem!) (most cases for one problem is 28)
• 196 jury solutions (last year: 165)
• The minimum1 number of lines the jury needed to solve all problems is

1 + 1 + 7 + 1 + 8 + 2 + 7 + 8 + 15 + 10 + 10 + 14 = 84

On average 7.0 lines per problem, down from 11.9 in BAPC 2022 or 13.9 in preliminaries 2023



Random facts

Jury work

• 1061 commits, of which 564 for the main contest (last year: 721/434)
• 1358 secret test cases (last year: 604) (= 113.2 per problem!) (most cases for one problem is 28)

• 196 jury solutions (last year: 165)
• The minimum1 number of lines the jury needed to solve all problems is

1 + 1 + 7 + 1 + 8 + 2 + 7 + 8 + 15 + 10 + 10 + 14 = 84

On average 7.0 lines per problem, down from 11.9 in BAPC 2022 or 13.9 in preliminaries 2023



Random facts

Jury work

• 1061 commits, of which 564 for the main contest (last year: 721/434)
• 1358 secret test cases (last year: 604) (= 113.2 per problem!) (most cases for one problem is 28)
• 196 jury solutions (last year: 165)

• The minimum1 number of lines the jury needed to solve all problems is

1 + 1 + 7 + 1 + 8 + 2 + 7 + 8 + 15 + 10 + 10 + 14 = 84

On average 7.0 lines per problem, down from 11.9 in BAPC 2022 or 13.9 in preliminaries 2023



Random facts

Jury work

• 1061 commits, of which 564 for the main contest (last year: 721/434)
• 1358 secret test cases (last year: 604) (= 113.2 per problem!) (most cases for one problem is 28)
• 196 jury solutions (last year: 165)
• The minimum1 number of lines the jury needed to solve all problems is

1 + 1 + 7 + 1 + 8 + 2 + 7 + 8 + 15 + 10 + 10 + 14 = 84

On average 7.0 lines per problem, down from 11.9 in BAPC 2022 or 13.9 in preliminaries 2023

1We actually had some time to do codegolfing this time, compared to the preliminaries



Thanks to:

The proofreaders

Jaap Eldering
Kevin Verbeek
Mark van Helvoort ( Hero )
Michael Vasseur
Nicky Gerritsen ( Hero )
Pavel Kunyavskiy ( Hero )
Thomas Verwoerd ( Hero )

The jury

Gregor Behnke
Ivan Fefer
Jorke de Vlas
Ludo Pulles
Maarten Sijm
Mees de Vries
Mike de Vries
Ragnar Groot Koerkamp
Reinier Schmiermann
Wessel van Woerden

Want to join the jury? Submit to the Call for Problems of BAPC 2024 at:

https://jury.bapc.eu/

https://jury.bapc.eu/

