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A: Avant-garde
Problem Author: Jeroen Op de Beek

• Problem: Find the area of the union of at most 10 circles.

• But the relative error allowed is 10%, so simple approximations are good enough
• Solutions: There are many different ways to approximate the area.

• Handy formula for all points (x , y) that lie on a circle: (x − cx )2 + y2 = r2

• Draw a bounding box around the circles and check if randomly sampled points lie inside of at least
one circle or not. Output Abounding box · proportion of random points that hit a circle.

• Split the canvas in very small squares, and for each square, check if it overlaps with some circle.
• Define the function f (x) = Highest y coordinate of any circle at this x. Calculate the integral of f (x)

numerically with small rectangles.

• Alternative solution: Calculate all intersection points of all circles. Find all circular arcs that are
on the outside of the resulting shape. Use formulas to calculate the total area.

• Pitfalls:

• Use too low resolution for your approximation technique, by setting the stepsize too big or not
sampling enough random points.

• Only sample points between −10 and 10 is not enough, circles also have a radius of at most 10.
• Spending too much time on debugging a solution which tries to compute the area with exact formulas.
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Figure 1: Monte Carlo random sampling Figure 2: Pixellation based approximation

Figure 3: Approximation by numerically integrating a function
(Have to multiply the area by two at the end)

Statistics: 58 submissions, 10 accepted, 35 unknown



B: Balance by Elimination
Problem Author: Jeroen Op de Beek

• Problem: Make a binary tree height-balanced by removing at most one leaf.

• Naive solution: Make a Depth First Search that calculates subtree heights and checks if a binary
tree is balanced.

• Remove all leaves one by one and check if the tree becomes balanced with a DFS. O(n2)

• Solution: Notice that there’s only one candidate leaf that could possibly balance the tree.
• This is the deepest leaf in the subtree of the deepest unbalanced node.
• Now we only need to do two DFS’s: A DFS for finding the candidate leaf, and a DFS for checking

if the tree became balanced. O(n)
• Pitfall: Checking the globally deepest leaf, instead of the deepest leaf in the correct subtree.
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Figure 4: Proof by picture: The only candidate leaf is the leaf underneath the deepest unbalanced node.

Statistics: 32 submissions, 6 accepted, 19 unknown



C: Cake Promise
Problem Author: Maarten Sijm

• Problem: Calculate how many teams beat prof. Wright in the programming contest.

• Solution: Count how many teams solved more problems than prof. Wright.
• If a team solved the same number of problems as prof. Wright, check whether the total amount of

time needed is less than or equal to the time required by the professor.

Statistics: 67 submissions, 43 accepted, 8 unknown
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D: Dale ‘n’ Chip
Problem Author: Jeroen Op de Beek and Dragos-Paul Vecerdea

• Problem: Given a list of moves (Rock, Paper, Scissors), calculate for a set of intervals, each
move’s frequency within those intervals.

• Key observation: Players should be placed in a certain pattern: R P S R P S . . . .
Answer for query range [i , j] is calculated as: 3 · min(freq(R)[i , j], freq(P)[i , j], freq(S)[i , j])

• Naive solution: For all queries, iterate over the interval and count each move’s frequency.

• Too slow. O(n ∗ q)

• Solution: Notice that we can pre-compute each move’s frequency in O(n) time
for all the intervals [1, i ] (1 ≤ i ≤ n).

• Computation: freq(R)[1, i] = freq(R)[1, i − 1] + ( 1 if ith move is “Rock”, 0 otherwise ).
Same for Paper and Scissors.

• For a given interval freq(R)[i , j] = freq(R)[1, j] − freq(R)[1, i − 1]. Lookups take O(1) time.
• Time complexity: O(n + q)

Statistics: 104 submissions, 19 accepted, 45 unknown
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E: Eurovision
Problem Author: Jeroen Op de Beek and Dragos-Paul Vecerdea

• Problem: Given a series of numbers and k cuts allowed, choose where to cut the list such that
the sum of the largest interval (S) is the smallest.

• First step: Transform the initial input into a list of numbers which represent groups of song
fragments that can not be divided. Each song fragment is a part between two local minima.

• Second step: Find where to cut the list of song fragments.
• Note: For a given S, you can calculate whether it is possible

to perform the song using at most k breaths in O(n) time.
• Therefore, it is possible to find S using binary search:

• If it is possible to perform a song for a given S, search lower; else, search higher.

Statistics: 14 submissions, 2 accepted, 8 unknown
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F: Fastest Thing Alive
Problem Author: Angel Karchev

• Problem: Find a path with no spikes, while moving up to one lane to the side for each row.

• Solution: Traverse every possible path until a spike is reached by using DFS.
• For each visited field, remember the direction from which it was accessed in order to recover a

correct path.
• Pitfalls: If you don’t keep track of already visited fields, the solution will take a long time.

Statistics: 80 submissions, 13 accepted, 39 unknown
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G: Glass Reflection
Problem Author: Maarten Sijm and Robert van Dijk

• Problem: Remove duplicated letters from a reflected word.

• Solution: For every letter in the word (starting from the second letter):
• If the letter is equal to the previous letter, add it to the result.
• Else, discard the letter.

• Pitfalls:
• Do not use += to concatenate strings
• When using Java, do not print letter-by-letter, because I/O is slow

Statistics: 107 submissions, 41 accepted, 14 unknown
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H: Highways of the Future
Problem Author: Cristian-Alexandru Botocan

Problem:

• Given a directed graph, how many directed edges should you add to get one big Strongly
Connected Component?



H: Highways of the Future
Problem Author: Cristian-Alexandru Botocan

Problem:

• Given a directed graph, how many directed edges should you add to get one big Strongly
Connected Component?

Solution:

• Firstly we have to compute the number the number of Strongly Connected Components (SCC) of
the directed graph.

• Def: A Strongly Connected Component is the portion of a directed graph in which there is a path
from each vertex to another vertex.

• To determine the number of the SCCs, we can use the Kosaraju’s algorithm or Tarjan’s algorithm.
• If the graph consists of one single SCC, we will just output 0 and finish the program.



H: Highways of the Future
Problem Author: Cristian-Alexandru Botocan

Problem:

• Given a directed graph, how many directed edges should you add to get one big Strongly
Connected Component?

Solution:

• If the graph does not consist of one single SCC, then we still have to do some operations.
• Def: A SCC-root has no incoming edges from a different SCC.
• Def: A SCC-leaf has no outgoing edges to a different SCC.
• Note: We can have the case where a single SCC is both SCC-root and SCC-leaf.



H: Highways of the Future
Problem Author: Cristian-Alexandru Botocan

Problem:

• Given a directed graph, how many directed edges should you add to get one big Strongly
Connected Component?

Solution:

• The total number of edges which have to be added is represented by:

max(number of SCC-roots, number of SCC-leaves)

• Thus, after we computed the SCCs, we can just count the number of SCC-roots and SCC-leaves
and print the maximum between those.



H: Highways of the Future
Problem Author: Cristian-Alexandru Botocan

Problem:

• Given a directed graph, how many directed edges should you add to get one big Strongly
Connected Component?

Pitfalls:

• Compute the number of connected components using simple BFS/DFS instead considering Strong
Connected components using Kosaraju’s/Tarjan’s algorithm.

• Computing the final answer as number of SCCs − 1, instead of computing the maximum between
the total number of SCC-roots and SCC-leaves.

Statistics: 12 submissions, 0 accepted, 12 unknown



I: Inspiring Professors
Problem Author: Jeroen Op de Beek

• Problem: Find the lexicographically minimal, valid assignment of m lecture halls with capacities
cj to n lectures. xi students will come to lecture i .

• First attempt: Build the assignment from left to right, trying to optimize the niceness of the
lecture hall of professor 1, then professor 2, · · · .

• Try all lecture halls from nicest to least nice, and check if x1 ≤ cj .
• After fixing the hall for professor 1, m − 1 lecture halls and n − 1 courses are left.
• To find out if there exists any valid assignment of these, sort the remaining lecture halls and courses

decreasingly.
• This gives two new sequences x ′

1 ≥ x ′
2 ≥ · · · ≥ x ′

n−1 and c′
1 ≥ c′

2 ≥ · · · ≥ c′
m−1

• Check if the ith course in the order can be matched with the ith hall. x ′
i ≤ c′

i
• It can be proven that if this greedy approach fails, a valid assignment does not exist.
• After a match for professor 1 is found, repeat this procedure for professor 2, 3, · · · , n
• Runtime: O(n · m · (n log n + m log m)), too slow!
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I: Inspiring Professors
Problem Author: Jeroen Op de Beek

• First speedup: The log factors are easy to remove: Only sort the halls and courses once at the
beginning, and remove items from the lists when necessary.

• Second speedup:

• For each phase of the algorithm, when searching for the best lecture hall for the next professor, The
greedy assignment checker checks very similar arrays x ′ and c′ each time.

• In fact, per phase, x ′ stays the same, and c′ changes only by one element.
• With clever precomputation per phase of O(n + m), it’s possible to check whether the greedy will fail

in O(1)!

• This gives a solution with O(n · (n + m)) complexity.

Statistics: 2 submissions, 0 accepted, 2 unknown
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J: Journey to Mastery
Problem Author: Angel Karchev

• Problem: Use a combination of moves to hit the dummy before they hit you.

• Solution:

• Always counter the dummy’s Hadouken with your own, so you don’t need to keep track of fireball
positions.

• At distance 1, Shoryuken beats everything, so use that.
• At distance 2, the dummy using grounded kick beats everything, so never let the dummy reach

distance 2.
• At distance 3, kick if the dummy walks forward, and Shoryuken if the dummy jumps.
• At distance 4, wait if the dummy walks forward, kick if they jump.
• At distance 5, wait if the dummy uses a jump or walks.
• At any longer distance, you can pick whichever action you like, unless the dummy uses Hadouken.

• Angel’s solution only uses Hadouken at long range and is 140 lines because of it, while Maarten’s
tries to match player cooldowns to the dummy and is 10 lines.

Statistics: 0 submissions, 0 accepted, 0 unknown
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Other stats

Jury work

• 371 commits (last year: 323)
• 252 secret test cases (last year: 219)
• 59 accepted jury solutions (last year: 44)
• The minimum1 number of lines the jury needed to solve all problems is

4 + 12 + 3 + 3 + 8 + 16 + 1 + 37 + 16 + 4 = 104

On average 10.4 lines per problem, down from 13.9 from last year

1After codegolfing
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