
Freshmen Programming Contest
2022

Contest Problem Set
May 11, 2022

FPC 2022

Problems
A Avant-garde
B Balance by Elimination
C Cake Promise
D Dale ‘n’ Chip
E Eurovision
F Fastest Thing Alive
G Glass Reflection
H Highways of the Future
I Inspiring Professors
J Journey to Mastery

Copyright © 2022 by The FPC 2022 Jury. This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

Problem A: Avant-garde 3

A Avant-garde Time limit: 1s

Museum of Bad Art:
Blue Meanie

CC BY-NC-ND 2.0 By
Chris Devers on Flickr

A new style of painting has recently exploded in popularity. The artist
will start with some famous artwork as the background, and proceeds
to splash big blobs of paint on the canvas. You think this new art form
is terrible. To prove a point, you want to estimate the area of the nice
background picture that gets ruined, because it gets covered by the blobs.

The artist has splashed n big blobs on the canvas, which are shaped like
perfect circles. All the centres of the blobs lie on the x-axis, so each
blob is defined by a radius and x-coordinate. The second sample input
is visualized in Figure A.1.

Calculate the area of the background that is no longer visible, because
of the blobs. Your answer is correct if its relative error is less than 10%.
So your answer is correct if:

0.9 × Aactual ≤ Ayour output ≤ 1.1 × Aactual

Input

The input consists of:

• One line containing a single integer n (1 ≤ n ≤ 10), the number of blobs.

• n lines follow, one for each blob, each containing two integers: x (|x| ≤ 10), the x-
coordinate of the centre of the blob and r (1 ≤ r ≤ 10), the radius of the the blob.

Output

Output the area of the background that is covered by the blobs as a decimal number. Your
answer should have a relative error of at most 10%.

0-5 5

-5

5

Figure A.1: Visualization of Sample Input 2. The covered area is roughly equal to 42.

4 Problem A: Avant-garde

Sample Input 1 Sample Output 1
1
1 1

3.1415926583406

Sample Input 2 Sample Output 2
3
-6 1
0 3
4 2

41.9925053413308

Sample Input 3 Sample Output 3
3
-4 3
-4 1
-4 3

28.2743338897644

Problem B: Balance by Elimination 5

B Balance by Elimination Time limit: 3s

CC-BY 2.0 By Floyd Wilde on Flickr
Unidentified bright green tree

You are given a binary tree with n nodes. The nodes are conve-
niently numbered from 1 to n. Node 1 is the root of the binary
tree.

The height of the subtree rooted at node u is:

hu = 1 + max (hleft child, hright child)

If a left or right child doesn’t exist, its subtree height is defined
to be 0. In particular, if a node is a leaf, it has a height of 1.

You want the tree to become height-balanced. A node is height-balanced if:

|hleft child − hright child| < 2

A binary tree is height-balanced if all its nodes are height-balanced.

Find a way to remove at most 1 leaf from the tree, such that the binary tree becomes height-
balanced, or output that this is impossible. For example, the tree of the second sample input
(visualized in Figure B.1) becomes balanced when removing node 5.

Input

The input consists of:

• One line containing a single integer n (1 ≤ n ≤ 105), the number of nodes in the binary
tree.

• Then n lines follow, numbered from 1 to n. The ith line contains two integers, the labels
of the left and right child of node i.

If a left child or right child does not exist, the corresponding integer is equal to 0. It is
guaranteed that the input graph is a binary tree.

Output

Output a single integer:

• If the tree is already balanced, output “balanced”.

• If it’s impossible to make the tree height-balanced, output “impossible”.

• Else, output the number of the leaf you want to remove.

6 Problem B: Balance by Elimination

1

2 3

4

5

Figure B.1: Visualization of Sample Input 2.

Sample Input 1 Sample Output 1
4
4 2
0 0
0 0
0 3

balanced

Sample Input 2 Sample Output 2
5
2 3
0 0
0 4
0 5
0 0

5

Sample Input 3 Sample Output 3
4
2 0
3 0
4 0
0 0

impossible

Problem C: Cake Promise 7

C Cake Promise Time limit: 2s

A Fresh Pineapple Cake, the prize for
beating professor Wright.

CC-BY-NC 2.0 By Megan Duong on Flickr

Today is the big day: professor P. Wright is organizing a
programming contest. All of his students are participating,
because he has promised to bake a cake for all teams that
can beat him in the contest.1 After the contest has ended,
professor Wright receives a raw copy of the scoreboard, in
which the teams are out of order. He is short on time: be-
sides baking, he also has some exams to grade. Therefore,
he needs a program to calculate how many teams beat him
in the contest.

The contest consists of a given number of problems, which
the teams will need to solve as fast as possible. One team beats another team if the number of
problems solved by the first team is strictly greater. If the number of problems solved is equal
between two teams, the team that required a lower sum of minutes to solve the problems
beats the other. Professor Wright is also willing to bake a cake for teams that solved the
same number of problems and required the same sum of minutes as himself.

Input

The input consists of:

• One line containing two integers t and p (2 ≤ t, p ≤ 1000), the number of teams
participating and the number of programming problems, respectively. Professor Wright
counts as one of the teams.

• t lines, each containing p values, the results for each team. The first line represents the
results of professor Wright. Each result is either “X”, indicating that the team did not
solve this problem, or an integer r (1 ≤ r ≤ 106), representing the number of minutes
that this team needed to solve the problem.

Output

Output the number of teams for which professor Wright needs to bake a cake.

Sample Input 1 Sample Output 1
5 5
40 X 10 30 20
X X 20 50 40
50 40 20 30 10
X X 30 X 50
X 30 5 40 20

2

1All characters and events in this problem description are fictional. Any resemblance to actual lecturers is
purely coincidental.

8 Problem C: Cake Promise

Sample Input 2 Sample Output 2
4 4
4 5 6 X
4 5 X 5
4 X 5 6
X 4 5 7

2

Problem D: Dale ‘n’ Chip 9

D Dale ‘n’ Chip Time limit: 2s

Dale, Chip, and all of their friends,
eager for a nice and predictable

game of Rock Paper Scissors.
CC-NC EmojiPng.com

Dale and Chip are preparing the annual Fantastic Party for
Chipmunks (FPC). This year, they say, it’s much more than
a big feast of nuts. In fact, they have prepared a game for
their fellow friends. Like any chipmunk, they want their game
to be predictable. There is no room for surprises. Last thing
you would want is an angry losing chipmunk. Therefore, they
will secretly plan the game such that everyone will win and lose
exactly one time.

The game goes like this: a group of chipmunks is arranged in a
circle. One of them will start the game by turning to their right
neighbour and play a round of Rock Paper Scissors. Afterwards,
the right neighbour turns to its right neighbour and plays a
round of Rock Paper Scissors, and so on. The game ends when
everyone has played with their right neighbour exactly once.

Dale has a list of chipmunks that will attend the party, and Chip knows for each of them what
power (Rock, Paper, or Scissors) they will always play—chipmunks are predictable, after all.
Not everybody will be at the party at the same time, so they want to prepare the game for
several sublists of the list of attendees. For every sublist, calculate the largest possible number
of chipmunks picked from that sublist that can be arranged in a circle, such that everyone
will be happy, no matter who starts the game.

A happy chipmunk is one that has won and lost exactly once.

Input

The input consists of:

• One line containing a single integer n (1 ≤ n ≤ 104), the total number of chipmunks on
the list of attendees.

• n lines, each line containing a string (“Rock”, “Paper” or “Scissors”), which repre-
sents for every attendee what power they will always play.

• One line containing a single integer q (1 ≤ q ≤ 105), the number of sublists Dale and
Chip would like to organise games for.

• q lines, each containing two integers s and e (1 ≤ s ≤ e ≤ n), representing a sublist
of all chipmunks i where s ≤ i ≤ e, for which Dale and Chip would like to organise a
game.

Output

Output, for each of the q sublists, the largest number of chipmunks that can be arranged into
a circle such that every chipmunk is happy.

10 Problem D: Dale ‘n’ Chip

Sample Input 1 Sample Output 1
3
Rock
Paper
Scissors
3
1 3
1 2
2 3

3
0
0

Sample Input 2 Sample Output 2
8
Paper
Rock
Rock
Rock
Scissors
Paper
Scissors
Paper
4
3 8
4 6
1 6
2 7

6
3
3
3

Problem E: Eurovision 11

E Eurovision Time limit: 1s

© European Broadcasting Union

It’s that time of the year! Time again for Eurovision (and FPC)!
Although, there is something rather special about this edition.
In an unexpected turn of events, Delft was chosen to host Eu-
rovision in the Aula. As you might expect, all tickets were sold
out in a matter of seconds: students from all over Delft’s fac-
ulties are eager to attend such a special event. Naturally, their enthusiasm is sparked by the
same question: “What’s the longest time a contestant has to sing without breathing, given that
they breathe optimally?”

A song is divided into n musical segments, where the ith musical segment has pitch intensity
ai and is bi seconds in length. Each contestant sings these musical segments consecutively,
with no pause in between, but will take some deep breaths at key moments (consider the
time it takes to breathe negligible). To maintain a pleasing rhythm of music, performers only
breathe immediately after a local minimum in pitch intensity (i.e., after a musical segment i

where ai−1 > ai < ai+1, 1 < i < n) and do not take more than k breaths in total.

Note:

• Eurovision contestants have an inclination towards algorithmic thinking, and therefore,
they all breathe optimally: within the constraints, the longest time between two breaths
is as short as possible.

• Naturally, a singer will breathe right before starting to sing and immediately after
finishing, so these two breaths do NOT count towards the total number of breaths.

Input

The input consists of:

• One line containing two integers: n (1 ≤ n ≤ 104), the number of musical segments in
the song, and k (0 ≤ k < n), the maximum number of breaths that can be taken while
performing the song.

• n lines containing two integers each, ai and bi (1 ≤ ai, bi ≤ 109), the pitch and length
(in seconds) of the ith musical segment.

Output

Output the longest time (in seconds) between two breaths, for an optimal performance of the
song.

12 Problem E: Eurovision

Sample Input 1 Sample Output 1
6 1
1 1
2 1
1 1
2 1
1 1
2 1

3

Sample Input 2 Sample Output 2
9 2
2 1
1 1
2 1
1 1
2 1
1 1
2 1
1 1
2 1

4

Problem F: Fastest Thing Alive 13

F Fastest Thing Alive Time limit: 2s

A picture of Shonic the Marmot
watching over the horizon

CC-BY-NC Pairi Daiza zoo, Belgium

The villainous Doctor Pearman (though some prefer to call him
Dr. Mechanic) is up to no good once again. With his newest
machine, he has cracked the surface of the earth to tap into the
ancient power hidden below and use it to rule the world. After
seeing this, the great hero Shonic immediately departs along
Dragon Road to reach the Doctor and put a stop to his plan.

Along the road, Shonic the Marmot comes across a spikefield
of n rows, divided along m lanes. Each space in this spikefield
contains either a spike trap, or is blank. Shonic is all out of
his magic rings, so coming across a single spike would instantly kill him and have Doctor
Pearman’s plan succeed. Because of that, Shonic needs to go through a blank field in every
row of the spikefield. Because he’s moving very fast, Shonic can only make one horizontal
move when moving to the next row of the spikefield. He can either go left and move down
one row, right and move down one row, or stay in the same lane and move down one row.
Additionally, he cannot leave the spikefield (he can’t move to the left when in the leftmost
lane). When initially entering the spikefield, Shonic can choose which field of the first row he
starts in (though the field he starts in needs to be blank). A successful solution has Shonic
treverse every row, starting with the first, and ending on a free field in the last. Help Shonic
find a way to reach the end of the spikefield.

Input

The input consists of:

• A line with two integers n (2 ≤ n ≤ 103) and m (2 ≤ m ≤ 103), the number of rows
and number of columns in the spikefield, respectively.

• n lines consisting of a single string of length m - the spikefield. An “*” (asterisk) signifies
that a field contains a spike trap and an “_” (underscore) signifies that the field is empty
and traversable by Shonic.

Output

The output consists of either:

• A single integer l (1 ≤ l ≤ n), showing which lane Shonic starts in.

• A single string consisting of n − 1 characters (“L”, “R” and “F”, standing for left, right
and forward respectively) showing the series of directions Shonic can take to reach the
end of the spikefield unharmed.

or the string “impossible” in case a valid path through the spikefield does not exist.

If there are multiple valid solutions, you may output any one of them.

14 Problem F: Fastest Thing Alive

Sample Input 1 Sample Output 1
5 5

__*__

***__

_
_

3
RFLF

Sample Input 2 Sample Output 2
5 5

__*__

***__

_
****_

impossible

Problem G: Glass Reflection 15

G Glass Reflection Time limit: 1s

A neon sign reflected in a double-
paned window, spelling “bbeeerr”.

CC BY-SA 2.0 by Brian Ross on Flickr

Late in the evening, you are sitting at the Funky Punk Café
and feeling a bit bored because you have not done any pro-
gramming all day. You stare out of the window and see that
the text on the neon signs gets reflected in a funny way: the
letters are partially overlapping, because the window is made
of double-paned glass. Would it be possible to automatically
read the text of the sign, just by looking at this mangled reflec-
tion? With a burst of sudden inspiration, you grab your laptop
and OCR2 camera from your bag, and start programming.

Your OCR camera appears to correctly recognize the letters in
the reflection when it accounts for the mirroring, except that all the letters are duplicated.
Moreover, if the text on the sign contains double (or more) letters, their reflection partially
overlaps, resulting in only one more letter than there would be in the original word. For
example, the word “beer” is reflected as “bbeeerr”, and the word “ooo” is reflected as
“oooo”. All that is left for you to do, is to write a program that converts these reflected
words back to their original form.

Input

The input consists of:

• One line containing a string of up to 106 English lowercase letters (a-z), the reflected
word read by your OCR camera.

Output

Output the word in its original form.

Sample Input 1 Sample Output 1
bbeeerr beer

Sample Input 2 Sample Output 2
sskkiilllleesssnneesss skilllessness

Sample Input 3 Sample Output 3
bbaalllooonnnoookkkeeeppeerr balloonnookkeeper

2OCR = Optical Character Recognition

This page is intentionally left blank.

Problem H: Highways of the Future 17

H Highways of the Future Time limit: 6s

Mitsubishi Cement Plant - Kyushu, Japan

Midgard is a city of mana energy and center of the world’s
economy. With its development steered by President
Shinda, chair of the Shinda electric power company, the
great city has undergone an age of great prosperity. Re-
cently, however, there have been reports that a group of
bandits called Snowfall has been attacking and shutting
down its mana reactors. In preparation for another attack,
President Shinda has assigned you the role of chief engineer
in a restructuring plan.

The city consists of n sectors, each of which has a mana
reactor: an enormous facility which extracts energy from
deep within the earth and transforms it into electricity
powering the whole sector. Currently, there are m highways between sectors. Each high-
way can be used to transport electric power from sector to sector and has only one direction.
The president has instructed you to build new highways between sectors, such that no matter
which reactors get shut down, the entire city will still have electrical power as long as there
is at least 1 reactor functioning.

Each reactor has an unlimited capacity for mana energy and can supply any number of sectors
as long as it is directly or indirectly connected to them. Additionally, due to the sheer cost
of building a highway, the president has instructed you to build as few highways as possible,
while still satisfying his previous condition.

Input

The input consists of:

• A line containing two integers n (1 ≤ n ≤ 105) and m (0 ≤ m ≤ 2 · 105), representing
the number of sectors in Midgard and the number of existing highways, respectively.

• Then follow m lines containing two integers each, x and y (1 ≤ x, y ≤ n), which indicate
the presence of a one-directional highway from sector x to sector y.

Output

Output the minimum number of highways that have to be added to have any reactor be able
to power every sector.

Sample Input 1 Sample Output 1
3 2
1 2
1 3

2

18 Problem H: Highways of the Future

Sample Input 2 Sample Output 2
8 9
1 3
5 1
2 5
2 6
3 4
3 5
5 6
8 5
3 7

3

Sample Input 3 Sample Output 3
9 9
1 3
5 1
2 5
2 6
3 4
3 5
8 5
7 3
3 7

3

Problem I: Inspiring Professors 19

I Inspiring Professors Time limit: 3s

CC-BY 2.0 By Plashing Vole on Flickr

At TU Delft, more and more courses are going back
to on-campus lectures. So, naturally, it becomes more
difficult to effectively schedule which lecturer can have
which lecture hall. They asked you, an algorithm ex-
pert, for help on this sub-problem:

There are n lectures that happen at the same time,
numbered 1 to n. In the ith course, xi students will
attend the lecture on-campus. The lectures are or-
dered by friendliness of the professor who gives the
lecture, with the friendliest lecturer (we all know who
that is) giving lecture 1.

There are m lecture halls. The lecture halls are numbered from 1 to m and the jth lecture
hall has capacity cj . The list of m lecture halls is ranked on “niceness”, with the nicest lecture
hall on top.

Write a program that reads in the lectures and lecture halls and makes a valid assignment
of the halls to lectures. In a valid assignment, the capacity of the hall assigned to a lecture
should be greater or equal than the number of students attending.

If there exist multiple valid assignments, compute the assignment which maximizes the nice-
ness of the lecture hall of the friendliest professor. If there are still multiple assignments,
maximize the niceness of the lecture hall of lecturer 2, and so on.

Input

The input consists of:

• One line containing two integers n (1 ≤ n ≤ 5000) and m (1 ≤ m ≤ 5000), the number
of lectures and halls, respectively.

• The next line contains n integers xi, with xi (1 ≤ xi ≤ 109) the number of students
attending the ith lecture.

• The last line contains m integers cj , with cj (1 ≤ cj ≤ 109) the capacity of lecture hall
j.

Output

If there is a valid assignment, output a line with n numbers, with the ith being equal to the
number of the lecture hall that gets assigned to lecture i.

If there is no valid assignment, output “impossible”.

20 Problem I: Inspiring Professors

Sample Input 1 Sample Output 1
3 3
4 5 6
6 5 5

2 3 1

Sample Input 2 Sample Output 2
5 5
3 2 1 4 8
6 8 1 7 5

1 4 3 5 2

Problem J: Journey to Mastery 21

J Journey to Mastery Time limit: 1s

Screen capture of the arcade version of
Street Fighter III: Third Strike.

Street Fighter and the image depicted are ©
Capcom

Your best friend Ken has really gotten into the new Street
fighter game (Ultra Ultimate Street Fighter 2 Turbo Cham-
pionship Edition DX+ & Knuckles). Unfortunately, he is
not very good yet, especially on defence, and really wants
to attend the Fighting Pro Cup (FPC) in a few months.
To get better, he has set up a training mode room where
he can set a dummy computer player to fight him one on
one using a specific set of actions. Reyn’s goal is to consis-
tently hit the training mode dummy without getting hit.
To give him an example for how to always play optimally
under these particular circumstances, you have decided to
write a program that, provided with any computer player
actions, always hits the dummy with an attack first.

The fight starts with the player and the dummy n spaces away from each other. They then
proceed to take turns taking actions at a regular interval of 1 unit of time (the dummy takes
an action, then the player takes an action 1 unit of time later, followed by the dummy taking
an action 1 unit of time after that). The completion of every action takes two units of time,
but some moves have an additional cooldown of 2 or 4 units of time after the move is finished,
in which no action can be taken, effectively “skipping” the user’s next move(s). The player
and the dummy both have a predetermined set of actions to choose from, detailed below:

Training Mode Dummy:

• Walk Forward (“W”)
The user slowly moves a single space toward the opponent. If this action is performed
when already 1 space away from the opponent, it does nothing.

• Jump Forward and Kick (“J”)
The user makes a swift leap, moving 2 spaces towards the opponent, then performs a
kick 1 unit of time after the action has been initiated. Since the user is in the air, the
jump is able to avoid any “Hadouken” attacks for the duration of the action. If the
opponent is 1 space away, after the leap, the kick attack will connect and end the game.
If before the start of the action, players are 1 unit away, the dummy will jump over the
player and be 1 space away on the other side (functionally, the side does not matter). If
the players is 2 spaces away, the jump will only travel 1 space and end up 1 space from
the player.

• Grounded Kick (“K”)
The user performs a kick attack that hits the opponent if they are up to 2 spaces away,
ending the game if it connects. The kick comes out 1 unit of time after the attack has
been selected and lasts for the next 1 unit of time. Has a cooldown of 2 units of time
after being used.

22 Problem J: Journey to Mastery

• Hadouken (“H”)
A blue fireball that fires immediately, after which it begins travelling horizontally across
the screen at a speed of 1 space per unit of time (by the user’s next action it will have
traveled 2 spaces, and by their action after that it will have traveled 4 spaces). Hits
grounded opponents when it reaches the space they are currently on, ending the game
on contact. If a Hadouken comes into contact with an opposing Hadouken, the fireballs
cancel each other out. Has a cooldown of 2 units of time after being used.

Player:

• Nothing (“N”)
The user stands completely stationary for the duration of this action.

• Grounded Kick (“K”)
Identical to dummy Grounded Kick.

• Hadouken (“H”)
Identical to dummy Hadouken.

• Shoryuken (“S”)
The user performs an inhumanly high leap upward, and performs an uppercut that hits
an opponent 1 space away and ends the game on contact. The uppercut comes out
immediately as the user selects the attack. For the first unit of time after this action
is selected, the user is completely invulnerable to any attacks (so for instance, this move
can be used in reaction to a “jump forward and kick” action, and if players are 1 space
away by the time the Shoryuken action is taken, the human player wins, as they land
the uppercut and are invulnerable to the kick). Has a cooldown of 4 units of time after
being used.

Interaction

This is an interactive problem. Your submission will be run against an interactor, which reads
the standard output of your submission and writes to the standard input of your submission.
This interaction needs to follow a specific protocol:

The interactor first sends one line containing one integer n (1 ≤ n ≤ 100), the initial number
of spaces between the players. After that begins the following process:

• The interactor either sends one letter, corresponding to one of the 4 dummy actions, or
a “-” to signify a cooldown.

• Then, your program should either output a letter, corresponding to one of the 4 player
actions, or a “-” to signify a cooldown.

Problem J: Journey to Mastery 23

This process continues until either player manages to land a successful attack within its range
on the other player. A test is considered passed if, at the end of the process, the only successful
attack to end the game is made by the player. A correct solution is indicated by the interactor
by inputting the symbol “V” on the last line. Tests with no correct solution possible will not
be used.

To prevent infinite loops, the dummy makes a move forward (“W” or “J”) at least once every
five moves. Additionally, a limit of 1000 moves has been placed on the number of actions the
player can make, after which the solution will be considered incorrect.

Make sure you flush the buffer after each write.

A testing tool is provided to help you develop your solution. Instructions on how to use it
can be found in the comments at the top of that file.

Read Sample Interaction 1 Write
3

W

K

V

Read Sample Interaction 2 Write
3

K

H

-

-

V

Read Sample Interaction 3 Write
6

H

H

-

-

W

H

H

-

-

H

J

-

V

	Problems
	Avant-garde
	Balance by Elimination
	Cake Promise
	Dale `n' Chip
	Eurovision
	Fastest Thing Alive
	Glass Reflection
	Highways of the Future
	Inspiring Professors
	Journey to Mastery

