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L: Lots of Liquid
Problem Author: Maarten Sijm

• Problem: Find the length of the side of a cube that contains all liquid.

• Solution: Calculate the value of following expression:

3

√∑
c

c3

• Pitfall: Make sure to use double, not float

Statistics: 97 submissions, 46 accepted, 13 unknown
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F: Fastestest Function
Problem Author: Ragnar Groot Koerkamp

• Problem: Given that foo took x% of the total run time before optimizing and y% after, what is
the factor of how much faster foo got?

• Observation: We can express this problem as the following equations:

old time foo
old time foo + other time = x% new time foo

new time foo + other time = y%

Goal: Rewrite these equations to find old time foo
new time foo

• Solution:
factor = old time foo

new time foo
= x · (1 − y)

y · (1 − x)

Statistics: 74 submissions, 37 accepted, 22 unknown
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B: Bubble-bubble Sort
Problem Author: Ragnar Groot Koerkamp

• Problem: How many iterations of Bubble-bubble Sort should you run?

• Solution: It is fast enough to simulate the algorithm and count the number of iterations.
Runtime: O(n2).

• Optimized:
• Observe that high numbers move to the right immediately, and low numbers move k − 1 to the left

per iteration.
• Solution: find the maximum distance (to the left) of any value to their sorted position (D), and

output
⌈ D

k − 1

⌉
.

• Runtime: O(n log n) for sorting, O(n) for finding the maximum distance.

Statistics: 73 submissions, 29 accepted, 27 unknown
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A: Abbreviated Aliases
Problem Author: Ragnar Groot Koerkamp

• Problem: Given a list of n aliases, calculate the total length of the shortest unique prefixes of
these aliases.

• Naive solution: For each alias, compare it to every other alias to find the shortest unique prefix of
that alias.

• Complexity: O(n2) (too slow)
• Solution: First sort the list of aliases lexicographically. Then for each alias you only need to

compare against the previous and the next alias in the sorted list to compute its shortest unique
prefix.

• Complexity: O(n log n)

Statistics: 154 submissions, 25 accepted, 77 unknown



A: Abbreviated Aliases
Problem Author: Ragnar Groot Koerkamp

• Problem: Given a list of n aliases, calculate the total length of the shortest unique prefixes of
these aliases.

• Naive solution: For each alias, compare it to every other alias to find the shortest unique prefix of
that alias.

• Complexity: O(n2) (too slow)

• Solution: First sort the list of aliases lexicographically. Then for each alias you only need to
compare against the previous and the next alias in the sorted list to compute its shortest unique
prefix.

• Complexity: O(n log n)

Statistics: 154 submissions, 25 accepted, 77 unknown



A: Abbreviated Aliases
Problem Author: Ragnar Groot Koerkamp

• Problem: Given a list of n aliases, calculate the total length of the shortest unique prefixes of
these aliases.

• Naive solution: For each alias, compare it to every other alias to find the shortest unique prefix of
that alias.

• Complexity: O(n2) (too slow)
• Solution: First sort the list of aliases lexicographically. Then for each alias you only need to

compare against the previous and the next alias in the sorted list to compute its shortest unique
prefix.

• Complexity: O(n log n)

Statistics: 154 submissions, 25 accepted, 77 unknown



A: Abbreviated Aliases
Problem Author: Ragnar Groot Koerkamp

• Problem: Given a list of n aliases, calculate the total length of the shortest unique prefixes of
these aliases.

• Naive solution: For each alias, compare it to every other alias to find the shortest unique prefix of
that alias.

• Complexity: O(n2) (too slow)
• Solution: First sort the list of aliases lexicographically. Then for each alias you only need to

compare against the previous and the next alias in the sorted list to compute its shortest unique
prefix.

• Complexity: O(n log n)

Statistics: 154 submissions, 25 accepted, 77 unknown



E: Extended Braille
Problem Author: Wessel van Woerden

• Problem: Given n braille characters by their points, determine how many of them are distinct up
to translation.

• To compare two characters: For each character P = {p1, . . . , pm} ⊂ Z2 sort its points
lexicographically such that p1 < . . . < pm. For two sorted characters P, Q check if all points differ
by the same translation: p1 − q1 = . . . = pm − qm.

• Complexity: O(m log m).
• Naive solution: For each character, compare it to every other character.

• Complexity: O(n2) compares (too slow)
• Solution: For each character, sort its points, and translate such that the first point is (0, 0). Then

sort or use a hash set to count the number of unique characters.
• Complexity: O(n) or O(n log n) compares

Statistics: 91 submissions, 14 accepted, 56 unknown
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C: Cookbook Composition
Problem Author: Timon Knigge

• Problem: Order the recipes by accessibility (lowest beginner time
expert time first).

• Solution: For every recipe, calculate:
• beginner time by summing the durations of all steps.
• expert time by calculating the maximal finish time of a step.

• The finish time of a step is the step’s duration plus the maximal finish time of its dependencies.
• Calculate using dynamic programming by running over all steps in order.

• Finally, order the recipes by the given ratio.

Statistics: 111 submissions, 10 accepted, 87 unknown



C: Cookbook Composition
Problem Author: Timon Knigge

• Problem: Order the recipes by accessibility (lowest beginner time
expert time first).

• Solution: For every recipe, calculate:
• beginner time by summing the durations of all steps.
• expert time by calculating the maximal finish time of a step.

• The finish time of a step is the step’s duration plus the maximal finish time of its dependencies.
• Calculate using dynamic programming by running over all steps in order.

• Finally, order the recipes by the given ratio.

Statistics: 111 submissions, 10 accepted, 87 unknown



C: Cookbook Composition
Problem Author: Timon Knigge

• Problem: Order the recipes by accessibility (lowest beginner time
expert time first).

• Solution: For every recipe, calculate:
• beginner time by summing the durations of all steps.
• expert time by calculating the maximal finish time of a step.

• The finish time of a step is the step’s duration plus the maximal finish time of its dependencies.
• Calculate using dynamic programming by running over all steps in order.

• Finally, order the recipes by the given ratio.

Statistics: 111 submissions, 10 accepted, 87 unknown



C: Cookbook Composition
Problem Author: Timon Knigge

• Problem: Order the recipes by accessibility (lowest beginner time
expert time first).

• Solution: For every recipe, calculate:
• beginner time by summing the durations of all steps.
• expert time by calculating the maximal finish time of a step.

• The finish time of a step is the step’s duration plus the maximal finish time of its dependencies.
• Calculate using dynamic programming by running over all steps in order.

• Finally, order the recipes by the given ratio.

Statistics: 111 submissions, 10 accepted, 87 unknown



C: Cookbook Composition
Problem Author: Timon Knigge

• Problem: Order the recipes by accessibility (lowest beginner time
expert time first).

• Solution: For every recipe, calculate:
• beginner time by summing the durations of all steps.
• expert time by calculating the maximal finish time of a step.

• The finish time of a step is the step’s duration plus the maximal finish time of its dependencies.
• Calculate using dynamic programming by running over all steps in order.

• Finally, order the recipes by the given ratio.

Statistics: 111 submissions, 10 accepted, 87 unknown



K: Knitting Patterns
Problem Author: Maarten Sijm

• Problem: Given a knitting pattern and amount of wool it costs for letting the wool strand
unused, using the wool in a stitch, and for starting or ending the use of wool. Compute the
minimal amount of wool required for every colour of wool.

• Observation: Between two times a colour of wool is used, you either leave the strand through the
back unused for the entire gap, or you immediately end the use at the beginning of the gap and
start using it at the end.

• Solution: For every colour, iterate through the knitting pattern and remember the index of the
last time the colour occurred. If you encounter the colour again, the marginal cost is the
minimum between leaving the strand unused the whole time since the last time, and the sum of
the costs for ending and starting. Runs in O(|w | · n).

• Remark: Can be done in O(n) by doing some bookkeeping and storing for every colour the last
time it occurred.

Statistics: 58 submissions, 8 accepted, 50 unknown
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J: Jabbing Jets
Problem Author: Abe Wits

• Problem: Given n concentric circles, find the maximal number of points on these circles such that
the distance between any two points is at least e.

• Observation: Because ri+1 − ri ≥ e, each circle can be considered separately.

• The number of points on circle i is⌊
2π

2 arcsin( e
2ri

)

⌋
.

• Edge case: if 2ri < e, the number of points is 1.
• Beware floating point issues!

• Add 0.5 · 10−6 to every radius.

rr
e/2

Statistics: 168 submissions, 5 accepted, 137 unknown
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D: Dimensional Debugging
Problem Author: Ragnar Groot Koerkamp

• Problem: Given n algorithms that only work when their input x⃗ is small enough (x⃗ ≤ H⃗), can you
verify the correctness of all of them on sufficiently large inputs (x⃗ ≥ L⃗)?

• Since you know the answer in 0⃗, you can verify the correctness of all algorithms with L⃗ = 0⃗.
• Once algorithm i has been verified, you can verify other algorithms j for which L⃗j ≤ H⃗i .
• More generally, the number of algorithms reachable in this way can be counted

using BFS or DFS (floodfill).
• Complexity: O(n2)

Statistics: 25 submissions, 4 accepted, 21 unknown
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I: Inked Inscriptions
Problem Author: Ragnar Groot Koerkamp

• Problem: Copy n psalms in at most 2n
√

n pageflips.

• Most naive solutions use O(n2) pageflips, so you need to be smarter.
• Idea: each psalm corresponds to a point in 2D space, and the pageflips needed to copy one psalm

after another corresponds to their Manhattan distance.
• So, you need to find a path of bounded length that visits all points.
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• So, you need to find a path of bounded length that visits all points.
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Statistics: 36 submissions, 3 accepted, 28 unknown
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G: Guessing Primes
Problem Author: Ludo Pulles

• Problem: Guess the hidden 5-digit prime in at most 6 guesses, i.e., play Primel.

• First approach: repeatedly guess a random prime satisfying all constraints so far.

• Wrong answer: Occasionally uses 7 guesses!

• Observation: Many guesses may be needed when only a single digit is not known yet.
• Solution: Ensure that the first two 5-digit primes contain all 10 digits (e.g. 24683 and 10597) so

that the set of digits is known. Then make up to 4 random consistent guesses.
• This is guaranteed to succeed in 6 guesses:

• When all digits are distinct, each digit can only be guessed in the wrong location 4 times, once in the
first 2 guesses, and in 3 of the 4 remaining guesses.

• When there are at most 4 distinct digits, each position can only be guessed wrongly at most 3 times.
In both cases, the final guess must be correct.

• Note: The hidden test data simply consists of 13 test cases covering all 5-digit primes.

Statistics: 59 submissions, 0 accepted, 54 unknown
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H: Heavy Hauling
Problem Author: Ragnar Groot Koerkamp

• Problem: Given n boxes at given positions. Moving a box d positions costs d2.
What is the minimal cost to make all box positions distinct?

• Observation: The boxes will remain in their original order (they will never overtake each other).
• Observation: Groups of consecutive boxes map to an interval.
• The cost of moving a box from position p to a position x , can be modelled with a quadratic

function Cp(x) = (x − p)2.
• Example: For one box with original position 3 moved to position x , C3(x) = (x − 3)2 = x2 − 6x + 9.

• When adding the costs of two groups of boxes that overlap together, translate the cost function of
the right group of boxes by the size of the left group.

• Example: For two boxes with original position 3, moved such that the left-most box is at position x ,
the summed cost is C3,3(x) = C3(x) + C3(x + 1) = (x − 3)2 + (x − 2)2 = 2x2 − 10x + 13.
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• Problem: Given n boxes at given positions. Moving a box d positions costs d2.
What is the minimal cost to make all box positions distinct?

• The cost of a box at a position x , starting at position p, can be modelled with a quadratic
function Cp(x) = (x − p)2.

• For two boxes that start at position 3, the summed cost is
C3,3(x) = C3(x) + C3(x + 1) = (x − 3)2 + (x − 2)2 = 2x2 − 10x + 13.

Proof by example:
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C3,3(3) = 2 · 32 − 10 · 3 + 13 = 1
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• Problem: Given n boxes at given positions. Moving a box d positions costs d2.
What is the minimal cost to make all box positions distinct?

• The cost of a box at a position x , starting at position p, can be modelled with a quadratic
function Cp(x) = (x − p)2.

• For two boxes that start at position 3, the summed cost is
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H: Heavy Hauling
Problem Author: Ragnar Groot Koerkamp

• Problem: Given n boxes at given positions. Moving a box d positions costs d2.
What is the minimal cost to make all box positions distinct?

• Solution: Add every box from left to right, maintaining the optimal placement by maintaining the
cost function for every group of boxes.

• If two groups of boxes touch or overlap, merge them into one group by summing their (possibly
translated) costs.

• This new group may overlap with its preceding group after the merge, so merge recursively.

• For every group with cost C(x) = ax2 + bx + c, the minimal cost is:

C
(⌊−b

2a + 1
2

⌋)
• The total runtime is O(n) (after sorting): we do at most n − 1 merges.

Statistics: 10 submissions, 0 accepted, 9 unknown
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ETV Board also did their best!



Random facts

Jury work

• 298 commits

• 375 secret test cases (≈ 31 per problem!)
• 153 jury + proofreader solutions
• The minimum1 number of lines the jury needed to solve all problems is

5 + 3 + 8 + 9 + 3 + 2 + 25 + 9 + 3 + 4 + 6 + 2 = 79

On average 6.6 lines per problem, down from 7.5 in last year’s preliminaries

1After codegolfing
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