NWERC 2021 presentation of solutions

November 21, 2021

- Per Austrin

KTH Royal Institute of Technology

- Alexander Dietsch
e.solutions
- Ragnar Groot Koerkamp

ETH Zurich

- Antti Laaksonen

CSES

- Bjarki Ágúst Guǒmundsson Google
- Nils Gustafsson

KTH Royal Institute of Technology

- Timon Knigge

ETH Zurich

- Harry Smit

MPIM Bonn

- Bergur Snorrason

University of Iceland

- Pehr Söderman

Kattis

- Jorke de Vlas

Utrecht University

- Mees de Vries

IMC

- Paul Wild

FAU Erlangen-Nürnberg

- Michael Zündorf

Karlsruhe Institute of Technology

Big thanks to our test solvers

- Bernhard Linn Hilmarsson

ETH Zurich

- Robin Lee

Google

- Ludo Pulles

Leiden University

- Johan Sannemo

Kattis

- Reinier Schmiermann

Utrecht University

- Tobias Werth

Google

Problem Author: Pehr Söderman

## Problem

Given a drawer full of socks, compute how many you need to pick to be guaranteed to have a pair.

Problem Author: Pehr Söderman

## Problem

Given a drawer full of socks, compute how many you need to pick to be guaranteed to have a pair.

## Solution

- Count the number of socks you can pick without a pair, then add 1 at the end.

Problem Author: Pehr Söderman

## Problem

Given a drawer full of socks, compute how many you need to pick to be guaranteed to have a pair.

## Solution

- Count the number of socks you can pick without a pair, then add 1 at the end.
- For every type of socks you can pick max(left, right, 1 ) socks: all socks of one side, or 1 any sock.

Problem Author: Pehr Söderman

## Problem

Given a drawer full of socks, compute how many you need to pick to be guaranteed to have a pair.

## Solution

- Count the number of socks you can pick without a pair, then add 1 at the end.
- For every type of socks you can pick max(left, right, 1 ) socks: all socks of one side, or 1 any sock.
- Remember to output impossible when every sock type only has left socks, right socks, or a single any sock.

Problem Author: Pehr Söderman

## Problem

Given a drawer full of socks, compute how many you need to pick to be guaranteed to have a pair.

## Solution

- Count the number of socks you can pick without a pair, then add 1 at the end.
- For every type of socks you can pick max(left, right, 1 ) socks: all socks of one side, or 1 any sock.
- Remember to output impossible when every sock type only has left socks, right socks, or a single any sock.

Statistics: 218 submissions, 126 accepted, 9 unknown

## Problem

Use the timing of a password checker to guess a password.

## Problem

Use the timing of a password checker to guess a password.

## Solution

- First find the length: guess passwords of lengths 1 to 20 . The one with the longest timeout gives you the length.

Problem
Use the timing of a password checker to guess a password.

## Solution

- First find the length: guess passwords of lengths 1 to 20 . The one with the longest timeout gives you the length.
- Once you have the length of the password, guess the letters one by one:

Problem
Use the timing of a password checker to guess a password.

## Solution

- First find the length: guess passwords of lengths 1 to 20 . The one with the longest timeout gives you the length.
- Once you have the length of the password, guess the letters one by one:
- Iterate over all options (lowercase letters, uppercase letters, digits) until the timeout increases.

Problem
Use the timing of a password checker to guess a password.

## Solution

- First find the length: guess passwords of lengths 1 to 20 . The one with the longest timeout gives you the length.
- Once you have the length of the password, guess the letters one by one:
- Iterate over all options (lowercase letters, uppercase letters, digits) until the timeout increases.
- Then leave that letter and move on to the next one.


## Problem

Use the timing of a password checker to guess a password.

## Solution

- First find the length: guess passwords of lengths 1 to 20 . The one with the longest timeout gives you the length.
- Once you have the length of the password, guess the letters one by one:
- Iterate over all options (lowercase letters, uppercase letters, digits) until the timeout increases.
- Then leave that letter and move on to the next one.
- This takes no more than $20+20 \times 62=1260$ queries.


## Problem

Use the timing of a password checker to guess a password.

## Solution

- First find the length: guess passwords of lengths 1 to 20 . The one with the longest timeout gives you the length.
- Once you have the length of the password, guess the letters one by one:
- Iterate over all options (lowercase letters, uppercase letters, digits) until the timeout increases.
- Then leave that letter and move on to the next one.
- This takes no more than $20+20 \times 62=1260$ queries.
- This is more or less your only option: the timeout doesn't give you any other information.


## Problem

Use the timing of a password checker to guess a password.

## Solution

- First find the length: guess passwords of lengths 1 to 20 . The one with the longest timeout gives you the length.
- Once you have the length of the password, guess the letters one by one:
- Iterate over all options (lowercase letters, uppercase letters, digits) until the timeout increases.
- Then leave that letter and move on to the next one.
- This takes no more than $20+20 \times 62=1260$ queries.
- This is more or less your only option: the timeout doesn't give you any other information.

Statistics: 300 submissions, 118 accepted, 14 unknown

Problem Author: Paul Wild

## Problem

Given a list of stops on a trip, determine whether it passes through every meridian.

Problem Author: Paul Wild

## Problem

Given a list of stops on a trip, determine whether it passes through every meridian.

## Solution

- Observations:

Problem Author: Paul Wild

## Problem

Given a list of stops on a trip, determine whether it passes through every meridian.

## Solution

- Observations:
- You can ignore the latitudes - they do not matter.

Problem Author: Paul Wild

## Problem

Given a list of stops on a trip, determine whether it passes through every meridian.

## Solution

- Observations:
- You can ignore the latitudes - they do not matter.
- If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the answer is yes.

Problem Author: Paul Wild

## Problem

Given a list of stops on a trip, determine whether it passes through every meridian.

## Solution

- Observations:
- You can ignore the latitudes - they do not matter.
- If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the answer is yes.
- Naïve solution:


## Problem

Given a list of stops on a trip, determine whether it passes through every meridian.

## Solution

- Observations:
- You can ignore the latitudes - they do not matter.
- If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the answer is yes.
- Naïve solution:
- Keep an array of 720 booleans, one for each meridian and half-meridian.


## Problem

Given a list of stops on a trip, determine whether it passes through every meridian.

## Solution

- Observations:
- You can ignore the latitudes - they do not matter.
- If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the answer is yes.
- Naïve solution:
- Keep an array of 720 booleans, one for each meridian and half-meridian.
- When travelling to a new longitude, loop over the array and set the visited longitudes to true.


## Problem

Given a list of stops on a trip, determine whether it passes through every meridian.

## Solution

- Observations:
- You can ignore the latitudes - they do not matter.
- If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the answer is yes.
- Naïve solution:
- Keep an array of 720 booleans, one for each meridian and half-meridian.
- When travelling to a new longitude, loop over the array and set the visited longitudes to true.
- Finally, output yes if every element of the array is true, and no otherwise.


## Problem

Given a list of stops on a trip, determine whether it passes through every meridian.

## Solution

- Observations:
- You can ignore the latitudes - they do not matter.
- If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the answer is yes.
- Naïve solution:
- Keep an array of 720 booleans, one for each meridian and half-meridian.
- When travelling to a new longitude, loop over the array and set the visited longitudes to true.
- Finally, output yes if every element of the array is true, and no otherwise.
- This naïve solution is correct!

Problem Author: Paul Wild

## Problem

Given a list of stops on a trip, determine whether it passes through every meridian.

## Solution

- Observations:
- You can ignore the latitudes - they do not matter.
- If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the answer is yes.
- Naïve solution:
- Keep an array of 720 booleans, one for each meridian and half-meridian.
- When travelling to a new longitude, loop over the array and set the visited longitudes to true.
- Finally, output yes if every element of the array is true, and no otherwise.
- This naïve solution is correct!
- Pitfalls: be careful to correctly operate on the circular array.

Problem Author: Paul Wild

## Problem

Given a list of stops on a trip, determine whether it passes through every meridian.

## Solution

- Observations:
- You can ignore the latitudes - they do not matter.
- If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the answer is yes.
- Naïve solution:
- Keep an array of 720 booleans, one for each meridian and half-meridian.
- When travelling to a new longitude, loop over the array and set the visited longitudes to true.
- Finally, output yes if every element of the array is true, and no otherwise.
- This naïve solution is correct!
- Pitfalls: be careful to correctly operate on the circular array.

Statistics: 342 submissions, 81 accepted, 74 unknown

## Edge case

## testcase <br> $\square$ runs: <br>  

Don't forget the edge case of going around for $359^{\circ}$ degrees and then turning around!

## Edge case

```
--- Original
+++ New
@@ @@
            cout <<setprecision(1) << fixed;
            double dres = res/2.0;
            double unfix = dres >= M/2 ? dres -M : dres;
- cout << unfix << "\n":
+ cout << "no " << unfix << "\n";
    }
}
```

Please read the output section carefully.

## Problem

Given some stars on a grid, encircle these with as few other grid points as possible.

D: Dyson Circle
Problem Author: Mees de Vries

## 

## Problem

Given some stars on a grid, encircle these with as few other grid points as possible.

## Solution

- Let's look at the first sample.


Problem Author: Mees de Vries

## Problem

Given some stars on a grid, encircle these with as few other grid points as possible.

## Solution

- Let's look at the first sample.
- We might as well remove a "dent" in our Dyson circle.


Problem Author: Mees de Vries

## Problem

Given some stars on a grid, encircle these with as few other grid points as possible.

## Solution

- Let's look at the first sample.
- We might as well remove a "dent" in our Dyson circle.
- In fact, we can do this with all dents.


Problem Author: Mees de Vries

## Problem

Given some stars on a grid, encircle these with as few other grid points as possible.

## Solution

- Let's look at the first sample.
- We might as well remove a "dent" in our Dyson circle.
- In fact, we can do this with all dents.
- In general, a rectangle with diagonal edges is always an optimal solution.


D: Dyson Circle
Problem Author: Mees de Vries

## 

## Problem

Given some stars on a grid, encircle these with as few other grid points as possible.

## Solution

- The only suns that matter are the four suns that touch the edges of the rectangle: the ones that maximize $x+y, x-y,-x+y,-x-y$.



## Problem

Given some stars on a grid, encircle these with as few other grid points as possible.

## Solution

- The only suns that matter are the four suns that touch the edges of the rectangle: the ones that maximize $x+y, x-y,-x+y,-x-y$.
- So the general answer is

$$
\begin{aligned}
4 & +\max _{i}\left(x_{i}+y_{i}\right)+\max _{i}\left(x_{i}-y_{i}\right)+ \\
& \max _{i}\left(-x_{i}+y_{i}\right)+\max _{i}\left(-x_{i}-y_{i}\right) .
\end{aligned}
$$



## Problem

Given some stars on a grid, encircle these with as few other grid points as possible.

## Problem

Given some stars on a grid, encircle these with as few other grid points as possible.

## Gotchas

- If all of the suns are on a diagonal, you need one additional square to make the inside a contiguous region.


Problem Author: Mees de Vries

Problem
Given some stars on a grid, encircle these with as few other grid points as possible.

## Gotchas

- If all of the suns are on a diagonal, you need one additional square to make the inside a contiguous region.
- However, if there is only one sun you do not need the
 additional square.


Problem Author: Mees de Vries

## Problem

Given some stars on a grid, encircle these with as few other grid points as possible.

## Gotchas

- If all of the suns are on a diagonal, you need one additional square to make the inside a contiguous region.
- However, if there is only one sun you do not need the
 additional square.

Statistics: 248 submissions, 48 accepted, 99 unknown

## Problem

Given an alphabetical list of $n$ words, split the list up into multiple columns so that the layout is at most $w$ characters wide and the height is minimised.

```
user@pc ~/glossary $ ls
algorithm programming
contest regional
eindhoven reykjavik
icpc ru
nwerc
```

G: Glossary Arrangement
Problem Author: Jorke de Vlas

## Solution

- The answer can be found using binary search.

Problem Author: Jorke de Vlas

## Solution

- The answer can be found using binary search.
- New problem: Is there a layout of height at most $h$ ?

Problem Author: Jorke de Vlas

## Solution

- The answer can be found using binary search.
- New problem: Is there a layout of height at most $h$ ?
- Given $h$, solve the new problem using dynamic programming: $f(i)=$ minimal width needed to split the first $i$ words into columns

Problem Author: Jorke de Vlas

## Solution

- The answer can be found using binary search.
- New problem: Is there a layout of height at most $h$ ?
- Given $h$, solve the new problem using dynamic programming: $f(i)=$ minimal width needed to split the first $i$ words into columns
- Number of states is $n$, and there are at most $h$ transitions from each state.

Problem Author: Jorke de Vlas

## Solution

- The answer can be found using binary search.
- New problem: Is there a layout of height at most $h$ ?
- Given $h$, solve the new problem using dynamic programming:

$$
f(i)=\text { minimal width needed to split the first } i \text { words into columns }
$$

- Number of states is $n$, and there are at most $h$ transitions from each state.
- Time complexity: $\mathcal{O}\left(n^{2} \log (n)\right)$.

Problem Author: Jorke de Vlas

## Solution

- The answer can be found using binary search.
- New problem: Is there a layout of height at most $h$ ?
- Given $h$, solve the new problem using dynamic programming:

$$
f(i)=\text { minimal width needed to split the first } i \text { words into columns }
$$

- Number of states is $n$, and there are at most $h$ transitions from each state.
- Time complexity: $\mathcal{O}\left(n^{2} \log (n)\right)$.
- Can also speed up DP for an $\mathcal{O}\left(n \log ^{2}(n)\right)$ solution.

Problem Author: Jorke de Vlas

## Solution

- The answer can be found using binary search.
- New problem: Is there a layout of height at most $h$ ?
- Given $h$, solve the new problem using dynamic programming:

$$
f(i)=\text { minimal width needed to split the first } i \text { words into columns }
$$

- Number of states is $n$, and there are at most $h$ transitions from each state.
- Time complexity: $\mathcal{O}\left(n^{2} \log (n)\right)$.
- Can also speed up DP for an $\mathcal{O}\left(n \log ^{2}(n)\right)$ solution.

Statistics: 102 submissions, 35 accepted, 31 unknown

## Problem

Given a pizza with many slices, each having its own spiciness level. Eating a slice with a certain spiciness is only possible if you have enough tolerance, and it increases this tolerance by the spiciness level of the slice.

You are allowed to start at any slice but after every slice, you must continue with one of the neighbouring slices. Which initial minimal tolerance is needed to finish the pizza.


## H: Heating Up

Problem Author: Alexander Dietsch

## Solution

- Problem can be solved with binary search. (If tolerance $x$ is enough, $x+1$ works as well)


## H: Heating Up

Problem Author: Alexander Dietsch

## Solution

- Problem can be solved with binary search. (If tolerance $x$ is enough, $x+1$ works as well)
- New problem: Does tolerance $x$ suffice to eat the whole pizza?


## Solution

- Problem can be solved with binary search. (If tolerance $x$ is enough, $x+1$ works as well)
- New problem: Does tolerance $x$ suffice to eat the whole pizza?
- Use a cyclic linked list, each element holds the spiciness level to finish the element and the increase in tolerance it gives. Initially 1 slice $=1$ element.


## Solution

- Problem can be solved with binary search. (If tolerance $x$ is enough, $x+1$ works as well)
- New problem: Does tolerance $x$ suffice to eat the whole pizza?
- Use a cyclic linked list, each element holds the spiciness level to finish the element and the increase in tolerance it gives. Initially 1 slice $=1$ element.
- Visit all elements; on a visit:


## Solution

- Problem can be solved with binary search. (If tolerance $x$ is enough, $x+1$ works as well)
- New problem: Does tolerance $x$ suffice to eat the whole pizza?
- Use a cyclic linked list, each element holds the spiciness level to finish the element and the increase in tolerance it gives. Initially 1 slice $=1$ element.
- Visit all elements; on a visit:
- Check if the initial tolerance is high enough to finish the element.


## Solution

- Problem can be solved with binary search. (If tolerance $x$ is enough, $x+1$ works as well)
- New problem: Does tolerance $x$ suffice to eat the whole pizza?
- Use a cyclic linked list, each element holds the spiciness level to finish the element and the increase in tolerance it gives. Initially 1 slice $=1$ element.
- Visit all elements; on a visit:
- Check if the initial tolerance is high enough to finish the element.
- If so, check if the resulting tolerance is enough to finish a neighbouring element.


## H: Heating Up

Problem Author: Alexander Dietsch

## Solution

- Problem can be solved with binary search. (If tolerance $x$ is enough, $x+1$ works as well)
- New problem: Does tolerance $x$ suffice to eat the whole pizza?
- Use a cyclic linked list, each element holds the spiciness level to finish the element and the increase in tolerance it gives. Initially 1 slice $=1$ element.
- Visit all elements; on a visit:
- Check if the initial tolerance is high enough to finish the element.
- If so, check if the resulting tolerance is enough to finish a neighbouring element.
- If that is the case, merge the elements. The spiciness level to finish the new element is the minimum, the increase in tolerance is the sum of both elements.


## H: Heating Up

Problem Author: Alexander Dietsch

## Solution

- Problem can be solved with binary search. (If tolerance $x$ is enough, $x+1$ works as well)
- New problem: Does tolerance $x$ suffice to eat the whole pizza?
- Use a cyclic linked list, each element holds the spiciness level to finish the element and the increase in tolerance it gives. Initially 1 slice $=1$ element.
- Visit all elements; on a visit:
- Check if the initial tolerance is high enough to finish the element.
- If so, check if the resulting tolerance is enough to finish a neighbouring element.
- If that is the case, merge the elements. The spiciness level to finish the new element is the minimum, the increase in tolerance is the sum of both elements.
- If the linked list can be merged into a single element, the initial tolerance is enough to finish the pizza.


## H: Heating Up

Problem Author: Alexander Dietsch

## Solution

- Problem can be solved with binary search. (If tolerance $x$ is enough, $x+1$ works as well)
- New problem: Does tolerance $x$ suffice to eat the whole pizza?
- Use a cyclic linked list, each element holds the spiciness level to finish the element and the increase in tolerance it gives. Initially 1 slice $=1$ element.
- Visit all elements; on a visit:
- Check if the initial tolerance is high enough to finish the element.
- If so, check if the resulting tolerance is enough to finish a neighbouring element.
- If that is the case, merge the elements. The spiciness level to finish the new element is the minimum, the increase in tolerance is the sum of both elements.
- If the linked list can be merged into a single element, the initial tolerance is enough to finish the pizza.

Statistics: 252 submissions, 29 accepted, 124 unknown

## F: Flatland Olympics

Problem Author: Harry Smit

## Problem

Given a line segment $s$ and a set of $n$ points $p_{1}, \ldots, p_{n}$. Find the number of pairs of points $p_{i}, p_{j}$ $(i<j)$ such that both points lie on the same side of $s$ and the line through $p_{i}$ and $p_{j}$ intersects $s$.

## Example



## F: Flatland Olympics

Problem Author: Harry Smit

## observation

- Observe how the relation of two points changes while moving from one end to the other of the line segment $s$ :


## F: Flatland Olympics

Problem Author: Harry Smit

## observation

- Observe how the relation of two points changes while moving from one end to the other of the line segment $s$ :



## F: Flatland Olympics

Problem Author: Harry Smit
observation

- Observe how the relation of two points changes while moving from one end to the other of the line segment $s$ :



## F: Flatland Olympics

Problem Author: Harry Smit

## observation

- Observe how the relation of two points changes while moving from one end to the other of the line segment $s$ :



## F: Flatland Olympics

Problem Author: Harry Smit

## Solution

- Separate the points above and below $s$ in two different sets.


## F: Flatland Olympics

Problem Author: Harry Smit

## Solution

- Separate the points above and below $s$ in two different sets.
- For each set:
- Sort the points around the start of $s$.
- Sort the points around the end of $s$.
- A pair of points has to be counted if their order in these two sequences differ.


## F: Flatland Olympics

Problem Author: Harry Smit

## Solution

- Separate the points above and below $s$ in two different sets.
- For each set:
- Sort the points around the start of $s$.
- Sort the points around the end of $s$.
- A pair of points has to be counted if their order in these two sequences differ.
- We need to find the number of inversions between two permutations.
- This can be done in $\mathcal{O}(n \log (n))$.


## F: Flatland Olympics

Problem Author: Harry Smit

## Solution

- Separate the points above and below $s$ in two different sets.
- For each set:
- Sort the points around the start of $s$.
- Sort the points around the end of $s$.
- A pair of points has to be counted if their order in these two sequences differ.
- We need to find the number of inversions between two permutations.
- This can be done in $\mathcal{O}(n \log (n))$.


## Gotcha

- Points lying along the line through s.
- Multiple points collinear with the start or the end of $s$.

Statistics: 179 submissions, 12 accepted, 86 unknown

Problem Author: Nils Gustafsson

## Problem

Given two permutations $g$ and $h$ of size $n \leq 300000$, turn $g$ into $h$ by swapping pairs of elements with only smaller elements in between them. How many moves are needed and find the first up to 200000 moves.

Problem Author: Nils Gustafsson

## Problem

Given two permutations $g$ and $h$ of size $n \leq 300000$, turn $g$ into $h$ by swapping pairs of elements with only smaller elements in between them. How many moves are needed and find the first up to 200000 moves.

## Solution

- Observation: in an optimal solution, you can reorder the swaps to first do all swaps involving the shortest students.

Problem Author: Nils Gustafsson

## Problem

Given two permutations $g$ and $h$ of size $n \leq 300000$, turn $g$ into $h$ by swapping pairs of elements with only smaller elements in between them. How many moves are needed and find the first up to 200000 moves.

## Solution

- Observation: in an optimal solution, you can reorder the swaps to first do all swaps involving the shortest students.
- When doing swaps involving the shortest students, they always move one step at a time.


## Problem

Given two permutations $g$ and $h$ of size $n \leq 300000$, turn $g$ into $h$ by swapping pairs of elements with only smaller elements in between them. How many moves are needed and find the first up to 200000 moves.

## Solution

- Observation: in an optimal solution, you can reorder the swaps to first do all swaps involving the shortest students.
- When doing swaps involving the shortest students, they always move one step at a time.
- After the shortest students are in place, they do not affect any of the other swaps, and you can remove them from the sequence.


## Problem

Given two permutations $g$ and $h$ of size $n \leq 300000$, turn $g$ into $h$ by swapping pairs of elements with only smaller elements in between them. How many moves are needed and find the first up to 200000 moves.

## Solution

- Observation: in an optimal solution, you can reorder the swaps to first do all swaps involving the shortest students.
- When doing swaps involving the shortest students, they always move one step at a time.
- After the shortest students are in place, they do not affect any of the other swaps, and you can remove them from the sequence.
- Now your sequence has one fewer height, and you can repeat.

Problem Author: Nils Gustafsson

## Solution

- If the shortest students are in locations $a_{1}, \ldots, a_{k}$ in $g$ and $b_{1}, \ldots, b_{k}$ in $h$, then it takes

$$
\sum_{i=1}^{k}\left|a_{i}-b_{i}\right|
$$

steps to get them into the right location.

Problem Author: Nils Gustafsson

## Solution

- If the shortest students are in locations $a_{1}, \ldots, a_{k}$ in $g$ and $b_{1}, \ldots, b_{k}$ in $h$, then it takes

$$
\sum_{i=1}^{k}\left|a_{i}-b_{i}\right|
$$

steps to get them into the right location.

- When removing the shortest students, use a Segment or Fenwick tree to keep track of locations of the other students in the new sequence.

Problem Author: Nils Gustafsson

## Solution

- If the shortest students are in locations $a_{1}, \ldots, a_{k}$ in $g$ and $b_{1}, \ldots, b_{k}$ in $h$, then it takes

$$
\sum_{i=1}^{k}\left|a_{i}-b_{i}\right|
$$

steps to get them into the right location.

- When removing the shortest students, use a Segment or Fenwick tree to keep track of locations of the other students in the new sequence.
- Do the reconstruction while you count the steps, as long as you have not reached the number of steps you have to output.


## E: Exchange Students

## Solution

- If the shortest students are in locations $a_{1}, \ldots, a_{k}$ in $g$ and $b_{1}, \ldots, b_{k}$ in $h$, then it takes

$$
\sum_{i=1}^{k}\left|a_{i}-b_{i}\right|
$$

steps to get them into the right location.

- When removing the shortest students, use a Segment or Fenwick tree to keep track of locations of the other students in the new sequence.
- Do the reconstruction while you count the steps, as long as you have not reached the number of steps you have to output.
- Take care to not swap with equal elements. From $1,1,2$ to $2,1,1$, the first 1 needs to go right, but that is only possible by swapping the 2 to the left.

Problem Author: Nils Gustafsson

## Solution

- Challenge: Can you do it in $O(n \lg n+$ moves $)$ ?

Problem Author: Nils Gustafsson

## Solution

- Challenge: Can you do it in $O(n \lg n+$ moves $)$ ?
- Challenge: Can you do it in $O(n \lg n+$ moves $\lg n)$, but by processing all elements in random order?

Problem Author: Nils Gustafsson

## Solution

- Challenge: Can you do it in $O(n \lg n+$ moves $)$ ?
- Challenge: Can you do it in $O(n \lg n+$ moves $\lg n)$, but by processing all elements in random order?

Statistics: 24 submissions, 4 accepted, 13 unknown

Problem Author: Paul Wild

## Problem

Given a specific number of each of the letters M, D, C, L, X, V, I, what is the least number of Roman numerals that can be formed while using exactly the required number of each letter?

I: IXth Problem
Problem Author: Paul Wild

## Problem

Given a specific number of each of the letters M, D, C, L, X, V, I, what is the least number of Roman numerals that can be formed while using exactly the required number of each letter?

## Insight

We can use binary search on the answer. New subproblem: Given an integer $n$, can we form at most $n$ numerals using all the tiles?

I: IXth Problem
Problem Author: Paul Wild

## Solution for subproblem

Start with $n$ empty strings and add the digits in order from M to I.

$$
\begin{array}{lllllll}
M \times 4 & \mathrm{D} \times 1 & \mathrm{C} \times 7 & \mathrm{~L} \times 1 & \mathrm{X} \times 3 & \mathrm{~V} \times 1 & \mathrm{I} \times 3
\end{array}
$$

1. 
2. 

Problem Author: Paul Wild

## Solution for subproblem

Start with $n$ empty strings and add the digits in order from M to I.

| $M \times 0$ | $D \times 1$ | $C \times 7$ | $L \times 1$ | $X \times 3$ | $V \times 1$ | $I \times 3$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. MMM
2. M

- Distribute $M, C, X$ and $I$ in groups of three, and $D, L$ and $V$ on their own.

Problem Author: Paul Wild

## Solution for subproblem

Start with $n$ empty strings and add the digits in order from M to I.

| $\mathrm{M} \times 0$ | $\mathrm{D} \times 0$ | $\mathrm{C} \times 7$ | $\mathrm{~L} \times 1$ | $\mathrm{X} \times 3$ | $\mathrm{~V} \times 1$ | $\mathrm{I} \times 3$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. MMMD
2. M

- Distribute $M, C, X$ and $I$ in groups of three, and $D, L$ and $V$ on their own.

Problem Author: Paul Wild

## Solution for subproblem

Start with $n$ empty strings and add the digits in order from M to I.

| $M \times 0$ | $D \times 0$ | $C \times 1$ | $L \times 1$ | $X \times 3$ | $V \times 1$ | $I \times 3$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. MMMDCCC
2. MCCC

- Distribute M, C, X and I in groups of three, and D, L and V on their own.

I: IXth Problem
Problem Author: Paul Wild

## Solution for subproblem

Start with $n$ empty strings and add the digits in order from M to I.

$$
\begin{array}{lllllll}
M \times 0 & D \times 0 & C \times 0 & L \times 1 & X \times 2 & V \times 1 & I \times 3
\end{array}
$$

1. MMMDCCCXC
2. MCCC

- Distribute M, C, X and I in groups of three, and D, L and V on their own.
- If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.

I: IXth Problem
Problem Author: Paul Wild

## Solution for subproblem

Start with $n$ empty strings and add the digits in order from M to I.

$$
\begin{aligned}
& M \times 0 \quad D \times 0 \quad C \times 0 \\
& \mathrm{M} \times 0 \\
& \text { 1. MMMDCCCXC } \\
& \text { 2. MCCCL }
\end{aligned}
$$

- Distribute M, C, X and I in groups of three, and D, L and V on their own.
- If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
- Fill up later letters from the first available slot.

I: IXth Problem
Problem Author: Paul Wild

## Solution for subproblem

Start with $n$ empty strings and add the digits in order from M to I.

$$
\begin{aligned}
& M \times 0 \quad D \times 0 \quad C \times 0 \\
& \mathrm{M} \times 0 \\
& \text { 1. MMMDCCCXC } \\
& \text { 2. MCCCLXX }
\end{aligned}
$$

- Distribute M, C, X and I in groups of three, and D, L and V on their own.
- If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
- Fill up later letters from the first available slot.

I: IXth Problem
Problem Author: Paul Wild

## Solution for subproblem

Start with $n$ empty strings and add the digits in order from M to I.

$$
\begin{array}{ccccccc}
M \times 0 & \mathrm{D} \times 0 & \mathrm{C} \times 0 & \mathrm{~L} \times 0 & \mathrm{X} \times 0 & \mathrm{~V} \times 0 & \mathrm{I} \times 3
\end{array}
$$

1. MMMDCCCXCV
2. MCCCLXX

- Distribute M, C, X and I in groups of three, and D, L and V on their own.
- If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
- Fill up later letters from the first available slot.

I: IXth Problem
Problem Author: Paul Wild

## Solution for subproblem

Start with $n$ empty strings and add the digits in order from M to I.

$$
\begin{array}{ccccccc}
M \times 0 & D \times 0 & C \times 0 & L \times 0 & X \times 0 & \mathrm{~V} \times 0 & \mathrm{I} \times 0
\end{array}
$$

1. MMMDCCCXCVIII
2. MCCCLXX

- Distribute M, C, X and I in groups of three, and D, L and V on their own.
- If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
- Fill up later letters from the first available slot.

I: IXth Problem
Problem Author: Paul Wild

## Solution for subproblem

Start with $n$ empty strings and add the digits in order from M to I.

$$
\begin{array}{ccccccc}
M \times 0 & D \times 0 & C \times 0 & L \times 0 & X \times 0 & \mathrm{~V} \times 0 & \mathrm{I} \times 0
\end{array}
$$

1. MMMDCCCXCVIII
2. MCCCLXX

- Distribute M, C, X and I in groups of three, and D, L and V on their own.
- If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
- Fill up later letters from the first available slot.
- If you run out of letters or room at any point, abort.

I: IXth Problem
Problem Author: Paul Wild

## Solution for subproblem

Start with $n$ empty strings and add the digits in order from M to I.

$$
\begin{array}{ccccccc}
M \times 0 & D \times 0 & C \times 0 & L \times 0 & X \times 0 & \mathrm{~V} \times 0 & \mathrm{I} \times 0
\end{array}
$$

1. MMMDCCCXCVIII
2. MCCCLXX

- Distribute M, C, X and I in groups of three, and D, L and V on their own.
- If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
- Fill up later letters from the first available slot.
- If you run out of letters or room at any point, abort.
- As the numbers are huge, speed it up by grouping equal numbers together.

I: IXth Problem
Problem Author: Paul Wild

## Solution for subproblem

Start with $n$ empty strings and add the digits in order from M to I.

$$
\begin{array}{ccccccc}
M \times 0 & D \times 0 & C \times 0 & L \times 0 & X \times 0 & \mathrm{~V} \times 0 & \mathrm{I} \times 0
\end{array}
$$

1. MMMDCCCXCVIII
2. MCCCLXX

- Distribute M, C, X and I in groups of three, and D, L and V on their own.
- If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
- Fill up later letters from the first available slot.
- If you run out of letters or room at any point, abort.
- As the numbers are huge, speed it up by grouping equal numbers together.

Statistics: 34 submissions, 2 accepted, 20 unknown

Problem Author: Nils Gustafsson

## Problem

Play a single player version of the game Memory (aka Concentration), where the cards are randomly shuffled before and after reveal.

## Problem

Play a single player version of the game Memory (aka Concentration), where the cards are randomly shuffled before and after reveal.

## Solution

- First attempt: Revealing the cards with indices $i$ and $j$ will give you the card numbers $x$ and $y$. If you now query $(j, k)$ and you get result $(x, z)$ for some different $z$, you can deduce that $c_{i}=y$.
- Repeating this logic $n-1$ times, $n-2$ cards will be known. We still have to take care of the last two, but this is too many queries.
- Insight: We have to exploit the fact that there are many duplicates in the deck.


## Solution

- Attempt 2: Query for $(1,2),(3,4),(5,6), \cdots$. This gives you $\frac{n}{2}$ tuples on the form $(i, j, x, y)$ meaning that the cards on positions $i$ and $j$ have values $x, y$.


## Solution

- Attempt 2: Query for $(1,2),(3,4),(5,6), \cdots$. This gives you $\frac{n}{2}$ tuples on the form $(i, j, x, y)$ meaning that the cards on positions $i$ and $j$ have values $x, y$.
- Take two tuples on the form $\left(i_{1}, j_{1}, x, y\right),\left(i_{2}, j_{2}, y, z\right)$ and query $\left(i_{1}, i_{2}\right)$.


## Solution

- Attempt 2: Query for $(1,2),(3,4),(5,6), \cdots$. This gives you $\frac{n}{2}$ tuples on the form $(i, j, x, y)$ meaning that the cards on positions $i$ and $j$ have values $x, y$.
- Take two tuples on the form $\left(i_{1}, j_{1}, x, y\right),\left(i_{2}, j_{2}, y, z\right)$ and query $\left(i_{1}, i_{2}\right)$.
- With $75 \%$ probability the answer will be different numbers (e.g. $(x, z)$ ). This will give you two card positions and creates another tuple ( $i_{1}, i_{2}, x, z$ ).


## Solution

- Attempt 2: Query for $(1,2),(3,4),(5,6), \cdots$. This gives you $\frac{n}{2}$ tuples on the form $(i, j, x, y)$ meaning that the cards on positions $i$ and $j$ have values $x, y$.
- Take two tuples on the form $\left(i_{1}, j_{1}, x, y\right),\left(i_{2}, j_{2}, y, z\right)$ and query $\left(i_{1}, i_{2}\right)$.
- With $75 \%$ probability the answer will be different numbers (e.g. $(x, z)$ ). This will give you two card positions and creates another tuple ( $i_{1}, i_{2}, x, z$ ).
- With $25 \%$ probability the answer will be $(y, y)$ which gives you all four cards.


## Solution

- Attempt 2: Query for $(1,2),(3,4),(5,6), \cdots$. This gives you $\frac{n}{2}$ tuples on the form $(i, j, x, y)$ meaning that the cards on positions $i$ and $j$ have values $x, y$.
- Take two tuples on the form $\left(i_{1}, j_{1}, x, y\right),\left(i_{2}, j_{2}, y, z\right)$ and query $\left(i_{1}, i_{2}\right)$.
- With $75 \%$ probability the answer will be different numbers (e.g. $(x, z)$ ). This will give you two card positions and creates another tuple ( $i_{1}, i_{2}, x, z$ ).
- With $25 \%$ probability the answer will be $(y, y)$ which gives you all four cards.
- By naively pairing up the tuples to get these collisions and executing the above strategy, you will solve the problem with around $\frac{15}{16} n$ queries. But this is still not enough!

B: Boredom Buster
Problem Author: Nils Gustafsson

## Solution

- How to cause many collisions using the idea on the previous slide?

B: Boredom Buster
Problem Author: Nils Gustafsson

## Solution

- How to cause many collisions using the idea on the previous slide?
- Let's model the problem as a graph with $\frac{n}{2}$ vertices, one for each card number.

B: Boredom Buster
Problem Author: Nils Gustafsson

## Solution

- How to cause many collisions using the idea on the previous slide?
- Let's model the problem as a graph with $\frac{n}{2}$ vertices, one for each card number.
- For every tuple $(i, j, x, y)$ add an edge between $x$ and $y$. This gives components which are either cycles or paths.


## Solution

- How to cause many collisions using the idea on the previous slide?
- Let's model the problem as a graph with $\frac{n}{2}$ vertices, one for each card number.
- For every tuple $(i, j, x, y)$ add an edge between $x$ and $y$. This gives components which are either cycles or paths.
- Querying for pairs of adjacent edges has a chance of eliminating both edges.


## Solution

- How to cause many collisions using the idea on the previous slide?
- Let's model the problem as a graph with $\frac{n}{2}$ vertices, one for each card number.
- For every tuple $(i, j, x, y)$ add an edge between $x$ and $y$. This gives components which are either cycles or paths.
- Querying for pairs of adjacent edges has a chance of eliminating both edges.


B: Boredom Buster
Problem Author: Nils Gustafsson

## Solution

- Make cycles into paths by querying two adjacent edges.

B: Boredom Buster
Problem Author: Nils Gustafsson

## Solution

- Make cycles into paths by querying two adjacent edges.
- Greedily query edges at the endpoints of paths, as long as they exist.


## Solution

- Make cycles into paths by querying two adjacent edges.
- Greedily query edges at the endpoints of paths, as long as they exist.
- Save components of size 2 for last.


## Solution

- Make cycles into paths by querying two adjacent edges.
- Greedily query edges at the endpoints of paths, as long as they exist.
- Save components of size 2 for last.
- This gives a solution with around $\frac{11}{12} n$ queries, which is good enough.


## Solution

- Make cycles into paths by querying two adjacent edges.
- Greedily query edges at the endpoints of paths, as long as they exist.
- Save components of size 2 for last.
- This gives a solution with around $\frac{11}{12} n$ queries, which is good enough.
- More details that need to be taken care of:


## Solution

- Make cycles into paths by querying two adjacent edges.
- Greedily query edges at the endpoints of paths, as long as they exist.
- Save components of size 2 for last.
- This gives a solution with around $\frac{11}{12} n$ queries, which is good enough.
- More details that need to be taken care of:
- Cycles of length 2 are special, they have a $50 \%$ chance of being unaffected.


## Solution

- Make cycles into paths by querying two adjacent edges.
- Greedily query edges at the endpoints of paths, as long as they exist.
- Save components of size 2 for last.
- This gives a solution with around $\frac{11}{12} n$ queries, which is good enough.
- More details that need to be taken care of:
- Cycles of length 2 are special, they have a $50 \%$ chance of being unaffected.
- At the end one tuple ( $i, j, x, y$ ) will remain. To take care of it, find another index $k$ with value $x$, and randomly query pairs in $\{i, j, k\}$ until a collision happens.


## Solution

- Make cycles into paths by querying two adjacent edges.
- Greedily query edges at the endpoints of paths, as long as they exist.
- Save components of size 2 for last.
- This gives a solution with around $\frac{11}{12} n$ queries, which is good enough.
- More details that need to be taken care of:
- Cycles of length 2 are special, they have a $50 \%$ chance of being unaffected.
- At the end one tuple ( $i, j, x, y$ ) will remain. To take care of it, find another index $k$ with value $x$, and randomly query pairs in $\{i, j, k\}$ until a collision happens.

Statistics: 23 submissions, 1 accepted, 8 unknown

Problem Author: Ragnar Groot Koerkamp

## Problem

Given is a list of $n$ shirts. We choose $k$ integers $I_{1}, \ldots, I_{k}$ uniformly at random and then randomly permute the first $l_{j}$ shirts for $j \in\{1, \ldots, k\}$. What is the expected position of the shirt that started at position $i$ (1-based)?

Problem Author: Ragnar Groot Koerkamp

## Problem

Given is a list of $n$ shirts. We choose $k$ integers $I_{1}, \ldots, I_{k}$ uniformly at random and then randomly permute the first $l_{j}$ shirts for $j \in\{1, \ldots, k\}$. What is the expected position of the shirt that started at position $i$ (1-based)?

## First idea

- Calculate the probability $p_{a}$ that your lucky shirt ends up at position a for all $a \in\{1, \ldots, n\}$.

Problem Author: Ragnar Groot Koerkamp

## Problem

Given is a list of $n$ shirts. We choose $k$ integers $I_{1}, \ldots, I_{k}$ uniformly at random and then randomly permute the first $l_{j}$ shirts for $j \in\{1, \ldots, k\}$. What is the expected position of the shirt that started at position $i$ (1-based)?

## First idea

- Calculate the probability $p_{a}$ that your lucky shirt ends up at position a for all $a \in\{1, \ldots, n\}$.
- The answer is

$$
\sum_{a=1}^{n} a \cdot p_{a} .
$$

Problem Author: Ragnar Groot Koerkamp

## Problem

Given is a list of $n$ shirts. We choose $k$ integers $I_{1}, \ldots, I_{k}$ uniformly at random and then randomly permute the first $l_{j}$ shirts for $j \in\{1, \ldots, k\}$. What is the expected position of the shirt that started at position $i$ (1-based)?

## First idea

- Calculate the probability $p_{a}$ that your lucky shirt ends up at position a for all $a \in\{1, \ldots, n\}$.
- The answer is

$$
\sum_{a=1}^{n} a \cdot p_{a} .
$$

- However, $p_{a}$ does not have a nice formula.

Problem Author: Ragnar Groot Koerkamp

## Solution (1/2)

- Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.

Problem Author: Ragnar Groot Koerkamp

## Solution (1/2)

- Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
- Only $M:=\max _{j} l_{j}$ is relevant! We distinguish two simple cases.

Problem Author: Ragnar Groot Koerkamp

## Solution (1/2)

- Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
- Only $M:=\max _{j} l_{j}$ is relevant! We distinguish two simple cases.
- Case 1: the shirt never moves during the process.

Problem Author: Ragnar Groot Koerkamp

## Solution (1/2)

- Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
- Only $M:=\max _{j} l_{j}$ is relevant! We distinguish two simple cases.
- Case 1: the shirt never moves during the process.
- This happens exactly when $M<i$.

Problem Author: Ragnar Groot Koerkamp

## Solution (1/2)

- Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
- Only $M:=\max _{j} l_{j}$ is relevant! We distinguish two simple cases.
- Case 1: the shirt never moves during the process.
- This happens exactly when $M<i$.
- The (expected) position of the shirt is $i$.

Problem Author: Ragnar Groot Koerkamp

## Solution (1/2)

- Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
- Only $M:=\max _{j} l_{j}$ is relevant! We distinguish two simple cases.
- Case 1: the shirt never moves during the process.
- This happens exactly when $M<i$.
- The (expected) position of the shirt is $i$.
- Case 2: the shirt is shuffled at least once.

Problem Author: Ragnar Groot Koerkamp

## Solution (1/2)

- Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
- Only $M:=\max _{j} l_{j}$ is relevant! We distinguish two simple cases.
- Case 1: the shirt never moves during the process.
- This happens exactly when $M<i$.
- The (expected) position of the shirt is $i$.
- Case 2: the shirt is shuffled at least once.
- This happens exactly when $M \geq i$.


## Solution (1/2)

- Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
- Only $M:=\max _{j} l_{j}$ is relevant! We distinguish two simple cases.
- Case 1: the shirt never moves during the process.
- This happens exactly when $M<i$.
- The (expected) position of the shirt is $i$.
- Case 2: the shirt is shuffled at least once.
- This happens exactly when $M \geq i$.
- You cannot distinguish the lucky shirt from any of the other first $M$ shirts


## Solution (1/2)

- Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
- Only $M:=\max _{j} l_{j}$ is relevant! We distinguish two simple cases.
- Case 1: the shirt never moves during the process.
- This happens exactly when $M<i$.
- The (expected) position of the shirt is $i$.
- Case 2: the shirt is shuffled at least once.
- This happens exactly when $M \geq i$.
- You cannot distinguish the lucky shirt from any of the other first $M$ shirts
- The (expected) position of the shirt is $(M+1) / 2$.

Problem Author: Ragnar Groot Koerkamp

## Solution (2/2)

- Thus the answer equals

$$
i \cdot \mathbb{P}(M<i)+\sum_{a=i}^{n} \frac{a+1}{2} \cdot \mathbb{P}(M=a)
$$

Problem Author: Ragnar Groot Koerkamp

## Solution (2/2)

- Thus the answer equals

$$
i \cdot \mathbb{P}(M<i)+\sum_{a=i}^{n} \frac{a+1}{2} \cdot \mathbb{P}(M=a)
$$

- As the $I_{j}$ are chosen uniformly at random (and independent of one another),

Problem Author: Ragnar Groot Koerkamp

## Solution (2/2)

- Thus the answer equals

$$
i \cdot \mathbb{P}(M<i)+\sum_{a=i}^{n} \frac{a+1}{2} \cdot \mathbb{P}(M=a)
$$

- As the $I_{j}$ are chosen uniformly at random (and independent of one another),

Problem Author: Ragnar Groot Koerkamp

## Solution (2/2)

- Thus the answer equals

$$
i \cdot \mathbb{P}(M<i)+\sum_{a=i}^{n} \frac{a+1}{2} \cdot \mathbb{P}(M=a)
$$

- As the $I_{j}$ are chosen uniformly at random (and independent of one another),

$$
\begin{aligned}
& \mathbb{P}(M<i)=\left(\frac{i-1}{n}\right)^{k}, \text { and } \\
& \mathbb{P}(M=a)=\mathbb{P}(M<a+1)-\mathbb{P}(M<a)=\left(\frac{a}{n}\right)^{k}-\left(\frac{a-1}{n}\right)^{k}
\end{aligned}
$$

Statistics: 30 submissions, 1 accepted, 25 unknown

Problem Author: Paul Wild

## Problem

Given a desired volume $v / 6$, find a set of integer-valued points whose convex hull has this volume.

Problem Author: Paul Wild

## Problem

Given a desired volume $v / 6$, find a set of integer-valued points whose convex hull has this volume.

## General idea

- Start with a cuboid and cut away tetrahedra from four of the corners.



## C: Cutting Edge

Problem Author: Paul Wild

## Problem

Given a desired volume $v / 6$, find a set of integer-valued points whose convex hull has this volume.

## General idea

- Start with a cuboid and cut away tetrahedra from four of the corners.
- Take a cuboid with size $a \times b \times c$ (assume wlog $a \leq b \leq c$ ), where $a b(c-1) \leq v / 6 \leq a b c$.



## C: Cutting Edge

Problem Author: Paul Wild

## Problem

Given a desired volume $v / 6$, find a set of integer-valued points whose convex hull has this volume.

## General idea

- Start with a cuboid and cut away tetrahedra from four of the corners.
- Take a cuboid with size $a \times b \times c$ (assume wlog $a \leq b \leq c$ ), where $a b(c-1) \leq v / 6 \leq a b c$.
- A tetrahedron with edge sizes $u, v$ and $w$ has volume $u v w / 6$, and we can cut off four tetrahedra that don't interfere with one another.



## C: Cutting Edge

Problem Author: Paul Wild

## Problem

Given a desired volume $v / 6$, find a set of integer-valued points whose convex hull has this volume.

## General idea

- Start with a cuboid and cut away tetrahedra from four of the corners.
- Take a cuboid with size $a \times b \times c$ (assume wlog $a \leq b \leq c$ ), where $a b(c-1) \leq v / 6 \leq a b c$.
- A tetrahedron with edge sizes $u, v$ and $w$ has volume $u v w / 6$, and we can cut off four tetrahedra that don't interfere with one another.


Problem Author: Paul Wild

## Finding the right tetrahedra

- We need to cut off a total volume of $a b c-v / 6$ from the cuboid. Let $r:=6 a b c-v$. Note $0 \leq r \leq 6 a b$.

Problem Author: Paul Wild

## Finding the right tetrahedra

- We need to cut off a total volume of $a b c-v / 6$ from the cuboid. Let $r:=6 a b c-v$. Note $0 \leq r \leq 6 a b$.
- Can we find four tetrahedra with the desired volume, that is, does the set

$$
S:=\{u v w \mid 0 \leq u \leq a, 0 \leq v \leq b, 0 \leq w \leq c\}
$$

contain four elements that sum to $r$ ?

Problem Author: Paul Wild

## Finding the right tetrahedra

- We need to cut off a total volume of $a b c-v / 6$ from the cuboid. Let $r:=6 a b c-v$. Note $0 \leq r \leq 6 a b$.
- Can we find four tetrahedra with the desired volume, that is, does the set

$$
S:=\{u v w \mid 0 \leq u \leq a, 0 \leq v \leq b, 0 \leq w \leq c\}
$$

contain four elements that sum to $r$ ?

- If $c \geq 6$, this is easily done with (at most) three polyhedra:

Problem Author: Paul Wild

## Finding the right tetrahedra

- We need to cut off a total volume of $a b c-v / 6$ from the cuboid. Let $r:=6 a b c-v$. Note $0 \leq r \leq 6 a b$.
- Can we find four tetrahedra with the desired volume, that is, does the set

$$
S:=\{u v w \mid 0 \leq u \leq a, 0 \leq v \leq b, 0 \leq w \leq c\}
$$

contain four elements that sum to $r$ ?

- If $c \geq 6$, this is easily done with (at most) three polyhedra:
- For the first one, take $u_{0}=a, v_{0}=b, w_{0}=\left\lfloor\frac{r}{a b}\right\rfloor$


## Problem Author: Paul Wild

## Finding the right tetrahedra

- We need to cut off a total volume of $a b c-v / 6$ from the cuboid. Let $r:=6 a b c-v$. Note $0 \leq r \leq 6 a b$.
- Can we find four tetrahedra with the desired volume, that is, does the set

$$
S:=\{u v w \mid 0 \leq u \leq a, 0 \leq v \leq b, 0 \leq w \leq c\}
$$

contain four elements that sum to $r$ ?

- If $c \geq 6$, this is easily done with (at most) three polyhedra:
- For the first one, take $u_{0}=a, v_{0}=b, w_{0}=\left\lfloor\frac{r}{a b}\right\rfloor$
- For the second one, take $u_{1}=a, v_{1}=\left\lfloor\frac{r-u_{0} v_{0} w_{0}}{a}\right\rfloor, w_{1}=1$


## Problem Author: Paul Wild

## Finding the right tetrahedra

- We need to cut off a total volume of $a b c-v / 6$ from the cuboid. Let $r:=6 a b c-v$. Note $0 \leq r \leq 6 a b$.
- Can we find four tetrahedra with the desired volume, that is, does the set

$$
S:=\{u v w \mid 0 \leq u \leq a, 0 \leq v \leq b, 0 \leq w \leq c\}
$$

contain four elements that sum to $r$ ?

- If $c \geq 6$, this is easily done with (at most) three polyhedra:
- For the first one, take $u_{0}=a, v_{0}=b, w_{0}=\left\lfloor\frac{r}{a b}\right\rfloor$
- For the second one, take $u_{1}=a, v_{1}=\left\lfloor\frac{r-u_{0} v_{0} w_{0}}{a}\right\rfloor, w_{1}=1$
- For the last one, take $u_{2}=r-u_{0} v_{0} w_{0}-u_{1} v_{1} w_{1}, v_{2}=1, w_{2}=1$.


## Problem Author: Paul Wild

## Finding the right tetrahedra

- We need to cut off a total volume of $a b c-v / 6$ from the cuboid. Let $r:=6 a b c-v$. Note $0 \leq r \leq 6 a b$.
- Can we find four tetrahedra with the desired volume, that is, does the set

$$
S:=\{u v w \mid 0 \leq u \leq a, 0 \leq v \leq b, 0 \leq w \leq c\}
$$

contain four elements that sum to $r$ ?

- If $c \geq 6$, this is easily done with (at most) three polyhedra:
- For the first one, take $u_{0}=a, v_{0}=b, w_{0}=\left\lfloor\frac{r}{a b}\right\rfloor$
- For the second one, take $u_{1}=a, v_{1}=\left\lfloor\frac{r-u_{0} v_{0} w_{0}}{a}\right\rfloor, w_{1}=1$
- For the last one, take $u_{2}=r-u_{0} v_{0} w_{0}-u_{1} v_{1} w_{1}, v_{2}=1, w_{2}=1$.
- If $c \leq 5$, then so are $a$ and $b$, which implies that $|S|$ is small (at most 31 ).


## Finding the right tetrahedra

- We need to cut off a total volume of $a b c-v / 6$ from the cuboid. Let $r:=6 a b c-v$. Note $0 \leq r \leq 6 a b$.
- Can we find four tetrahedra with the desired volume, that is, does the set

$$
S:=\{u v w \mid 0 \leq u \leq a, 0 \leq v \leq b, 0 \leq w \leq c\}
$$

contain four elements that sum to $r$ ?

- If $c \geq 6$, this is easily done with (at most) three polyhedra:
- For the first one, take $u_{0}=a, v_{0}=b, w_{0}=\left\lfloor\frac{r}{a b}\right\rfloor$
- For the second one, take $u_{1}=a, v_{1}=\left\lfloor\frac{r-u_{0} v_{0} w_{0}}{a}\right\rfloor, w_{1}=1$
- For the last one, take $u_{2}=r-u_{0} v_{0} w_{0}-u_{1} v_{1} w_{1}, v_{2}=1, w_{2}=1$.
- If $c \leq 5$, then so are $a$ and $b$, which implies that $|S|$ is small (at most 31).
- Brute force all combinations to check if $r$ can be written as a sum of four elements in $S$.

Problem Author: Paul Wild

## Leftover cases

This solves all cases except for two:

- The case where $a=b=c=1$ and $v=1$. This is the first sample.


Problem Author: Paul Wild

## Leftover cases

This solves all cases except for two:

- The case where $a=b=c=1$ and $v=1$. This is the first sample.
- The case where $a=b=c=2$ and $v=25$. Then $r=23$. This is the third sample.



## C: Cutting Edge

Problem Author: Paul Wild

## Leftover cases

This solves all cases except for two:

- The case where $a=b=c=1$ and $v=1$. This is the first sample.
- The case where $a=b=c=2$ and $v=25$. Then $r=23$. This is the third sample.


Statistics: 4 submissions, 0 accepted, 4 unknown

## Random facts

## Jury work

- 632 commits

[^0]
## Random facts

## Jury work

- 632 commits
- 681 secret test cases (last year: 486$)(\approx 57$ per problem!)

[^1]
## Random facts

## Jury work

- 632 commits
- 681 secret test cases (last year: 486$)(\approx 57$ per problem!)
- 248 jury solutions (last year: 232)

[^2]
## Random facts

## Jury work

- 632 commits
- 681 secret test cases (last year: 486 ) ( $\approx 57$ per problem!)
- 248 jury solutions (last year: 232)
- The minimum ${ }^{1}$ number of lines the jury needed to solve all problems is

$$
10+114+27+5+64+51+42+32+43+23+10+6=427
$$

On average 35.5 lines per problem, up from 9.6 in the BAPC

[^3]
[^0]:    ${ }^{1}$ After codegolfing

[^1]:    ${ }^{1}$ After codegolfing

[^2]:    ${ }^{1}$ After codegolfing

[^3]:    ${ }^{1}$ After codegolfing

