
NWERC 2021 presentation of solutions

November 21, 2021

NWERC 2021 Jury

• Per Austrin
KTH Royal Institute of Technology

• Alexander Dietsch
e.solutions

• Ragnar Groot Koerkamp
ETH Zurich

• Antti Laaksonen
CSES

• Bjarki Ágúst Guðmundsson
Google

• Nils Gustafsson
KTH Royal Institute of Technology

• Timon Knigge
ETH Zurich

• Harry Smit
MPIM Bonn

• Bergur Snorrason
University of Iceland

• Pehr Söderman
Kattis

• Jorke de Vlas
Utrecht University

• Mees de Vries
IMC

• Paul Wild
FAU Erlangen-Nürnberg

• Michael Zündorf
Karlsruhe Institute of Technology

Big thanks to our test solvers

• Bernhard Linn Hilmarsson
ETH Zurich

• Robin Lee
Google

• Ludo Pulles
Leiden University

• Johan Sannemo
Kattis

• Reinier Schmiermann
Utrecht University

• Tobias Werth
Google

K: Knitpicking
Problem Author: Pehr Söderman

Problem
Given a drawer full of socks, compute how many you need to pick to be guaranteed to have a pair.

Solution

• Count the number of socks you can pick without a pair, then add 1 at the end.
• For every type of socks you can pick max(left, right, 1) socks: all socks of one side, or 1 any

sock.
• Remember to output impossible when every sock type only has left socks, right socks, or a

single any sock.

Statistics: 218 submissions, 126 accepted, 9 unknown

K: Knitpicking
Problem Author: Pehr Söderman

Problem
Given a drawer full of socks, compute how many you need to pick to be guaranteed to have a pair.

Solution

• Count the number of socks you can pick without a pair, then add 1 at the end.

• For every type of socks you can pick max(left, right, 1) socks: all socks of one side, or 1 any
sock.

• Remember to output impossible when every sock type only has left socks, right socks, or a
single any sock.

Statistics: 218 submissions, 126 accepted, 9 unknown

K: Knitpicking
Problem Author: Pehr Söderman

Problem
Given a drawer full of socks, compute how many you need to pick to be guaranteed to have a pair.

Solution

• Count the number of socks you can pick without a pair, then add 1 at the end.
• For every type of socks you can pick max(left, right, 1) socks: all socks of one side, or 1 any

sock.

• Remember to output impossible when every sock type only has left socks, right socks, or a
single any sock.

Statistics: 218 submissions, 126 accepted, 9 unknown

K: Knitpicking
Problem Author: Pehr Söderman

Problem
Given a drawer full of socks, compute how many you need to pick to be guaranteed to have a pair.

Solution

• Count the number of socks you can pick without a pair, then add 1 at the end.
• For every type of socks you can pick max(left, right, 1) socks: all socks of one side, or 1 any

sock.
• Remember to output impossible when every sock type only has left socks, right socks, or a

single any sock.

Statistics: 218 submissions, 126 accepted, 9 unknown

K: Knitpicking
Problem Author: Pehr Söderman

Problem
Given a drawer full of socks, compute how many you need to pick to be guaranteed to have a pair.

Solution

• Count the number of socks you can pick without a pair, then add 1 at the end.
• For every type of socks you can pick max(left, right, 1) socks: all socks of one side, or 1 any

sock.
• Remember to output impossible when every sock type only has left socks, right socks, or a

single any sock.

Statistics: 218 submissions, 126 accepted, 9 unknown

A: Access Denied
Problem Author: Pehr Söderman

Problem
Use the timing of a password checker to guess a password.

Solution

• First find the length: guess passwords of lengths 1 to 20. The one with the longest timeout gives
you the length.

• Once you have the length of the password, guess the letters one by one:

• Iterate over all options (lowercase letters, uppercase letters, digits) until the timeout increases.
• Then leave that letter and move on to the next one.

• This takes no more than 20 + 20× 62 = 1260 queries.
• This is more or less your only option: the timeout doesn’t give you any other information.

Statistics: 300 submissions, 118 accepted, 14 unknown

A: Access Denied
Problem Author: Pehr Söderman

Problem
Use the timing of a password checker to guess a password.

Solution

• First find the length: guess passwords of lengths 1 to 20. The one with the longest timeout gives
you the length.

• Once you have the length of the password, guess the letters one by one:

• Iterate over all options (lowercase letters, uppercase letters, digits) until the timeout increases.
• Then leave that letter and move on to the next one.

• This takes no more than 20 + 20× 62 = 1260 queries.
• This is more or less your only option: the timeout doesn’t give you any other information.

Statistics: 300 submissions, 118 accepted, 14 unknown

A: Access Denied
Problem Author: Pehr Söderman

Problem
Use the timing of a password checker to guess a password.

Solution

• First find the length: guess passwords of lengths 1 to 20. The one with the longest timeout gives
you the length.

• Once you have the length of the password, guess the letters one by one:

• Iterate over all options (lowercase letters, uppercase letters, digits) until the timeout increases.
• Then leave that letter and move on to the next one.

• This takes no more than 20 + 20× 62 = 1260 queries.
• This is more or less your only option: the timeout doesn’t give you any other information.

Statistics: 300 submissions, 118 accepted, 14 unknown

A: Access Denied
Problem Author: Pehr Söderman

Problem
Use the timing of a password checker to guess a password.

Solution

• First find the length: guess passwords of lengths 1 to 20. The one with the longest timeout gives
you the length.

• Once you have the length of the password, guess the letters one by one:
• Iterate over all options (lowercase letters, uppercase letters, digits) until the timeout increases.

• Then leave that letter and move on to the next one.

• This takes no more than 20 + 20× 62 = 1260 queries.
• This is more or less your only option: the timeout doesn’t give you any other information.

Statistics: 300 submissions, 118 accepted, 14 unknown

A: Access Denied
Problem Author: Pehr Söderman

Problem
Use the timing of a password checker to guess a password.

Solution

• First find the length: guess passwords of lengths 1 to 20. The one with the longest timeout gives
you the length.

• Once you have the length of the password, guess the letters one by one:
• Iterate over all options (lowercase letters, uppercase letters, digits) until the timeout increases.
• Then leave that letter and move on to the next one.

• This takes no more than 20 + 20× 62 = 1260 queries.
• This is more or less your only option: the timeout doesn’t give you any other information.

Statistics: 300 submissions, 118 accepted, 14 unknown

A: Access Denied
Problem Author: Pehr Söderman

Problem
Use the timing of a password checker to guess a password.

Solution

• First find the length: guess passwords of lengths 1 to 20. The one with the longest timeout gives
you the length.

• Once you have the length of the password, guess the letters one by one:
• Iterate over all options (lowercase letters, uppercase letters, digits) until the timeout increases.
• Then leave that letter and move on to the next one.

• This takes no more than 20 + 20× 62 = 1260 queries.

• This is more or less your only option: the timeout doesn’t give you any other information.

Statistics: 300 submissions, 118 accepted, 14 unknown

A: Access Denied
Problem Author: Pehr Söderman

Problem
Use the timing of a password checker to guess a password.

Solution

• First find the length: guess passwords of lengths 1 to 20. The one with the longest timeout gives
you the length.

• Once you have the length of the password, guess the letters one by one:
• Iterate over all options (lowercase letters, uppercase letters, digits) until the timeout increases.
• Then leave that letter and move on to the next one.

• This takes no more than 20 + 20× 62 = 1260 queries.
• This is more or less your only option: the timeout doesn’t give you any other information.

Statistics: 300 submissions, 118 accepted, 14 unknown

A: Access Denied
Problem Author: Pehr Söderman

Problem
Use the timing of a password checker to guess a password.

Solution

• First find the length: guess passwords of lengths 1 to 20. The one with the longest timeout gives
you the length.

• Once you have the length of the password, guess the letters one by one:
• Iterate over all options (lowercase letters, uppercase letters, digits) until the timeout increases.
• Then leave that letter and move on to the next one.

• This takes no more than 20 + 20× 62 = 1260 queries.
• This is more or less your only option: the timeout doesn’t give you any other information.

Statistics: 300 submissions, 118 accepted, 14 unknown

J: Jet Set
Problem Author: Paul Wild

Problem
Given a list of stops on a trip, determine whether it passes through every meridian.

Solution

• Observations:

• You can ignore the latitudes – they do not matter.
• If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the

answer is yes.

• Näıve solution:

• Keep an array of 720 booleans, one for each meridian and half-meridian.
• When travelling to a new longitude, loop over the array and set the visited longitudes to true.
• Finally, output yes if every element of the array is true, and no otherwise.

• This näıve solution is correct!
• Pitfalls: be careful to correctly operate on the circular array.

Statistics: 342 submissions, 81 accepted, 74 unknown

J: Jet Set
Problem Author: Paul Wild

Problem
Given a list of stops on a trip, determine whether it passes through every meridian.

Solution

• Observations:

• You can ignore the latitudes – they do not matter.
• If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the

answer is yes.
• Näıve solution:

• Keep an array of 720 booleans, one for each meridian and half-meridian.
• When travelling to a new longitude, loop over the array and set the visited longitudes to true.
• Finally, output yes if every element of the array is true, and no otherwise.

• This näıve solution is correct!
• Pitfalls: be careful to correctly operate on the circular array.

Statistics: 342 submissions, 81 accepted, 74 unknown

J: Jet Set
Problem Author: Paul Wild

Problem
Given a list of stops on a trip, determine whether it passes through every meridian.

Solution

• Observations:
• You can ignore the latitudes – they do not matter.

• If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the
answer is yes.

• Näıve solution:

• Keep an array of 720 booleans, one for each meridian and half-meridian.
• When travelling to a new longitude, loop over the array and set the visited longitudes to true.
• Finally, output yes if every element of the array is true, and no otherwise.

• This näıve solution is correct!
• Pitfalls: be careful to correctly operate on the circular array.

Statistics: 342 submissions, 81 accepted, 74 unknown

J: Jet Set
Problem Author: Paul Wild

Problem
Given a list of stops on a trip, determine whether it passes through every meridian.

Solution

• Observations:
• You can ignore the latitudes – they do not matter.
• If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the

answer is yes.

• Näıve solution:

• Keep an array of 720 booleans, one for each meridian and half-meridian.
• When travelling to a new longitude, loop over the array and set the visited longitudes to true.
• Finally, output yes if every element of the array is true, and no otherwise.

• This näıve solution is correct!
• Pitfalls: be careful to correctly operate on the circular array.

Statistics: 342 submissions, 81 accepted, 74 unknown

J: Jet Set
Problem Author: Paul Wild

Problem
Given a list of stops on a trip, determine whether it passes through every meridian.

Solution

• Observations:
• You can ignore the latitudes – they do not matter.
• If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the

answer is yes.
• Näıve solution:

• Keep an array of 720 booleans, one for each meridian and half-meridian.
• When travelling to a new longitude, loop over the array and set the visited longitudes to true.
• Finally, output yes if every element of the array is true, and no otherwise.

• This näıve solution is correct!
• Pitfalls: be careful to correctly operate on the circular array.

Statistics: 342 submissions, 81 accepted, 74 unknown

J: Jet Set
Problem Author: Paul Wild

Problem
Given a list of stops on a trip, determine whether it passes through every meridian.

Solution

• Observations:
• You can ignore the latitudes – they do not matter.
• If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the

answer is yes.
• Näıve solution:

• Keep an array of 720 booleans, one for each meridian and half-meridian.

• When travelling to a new longitude, loop over the array and set the visited longitudes to true.
• Finally, output yes if every element of the array is true, and no otherwise.

• This näıve solution is correct!
• Pitfalls: be careful to correctly operate on the circular array.

Statistics: 342 submissions, 81 accepted, 74 unknown

J: Jet Set
Problem Author: Paul Wild

Problem
Given a list of stops on a trip, determine whether it passes through every meridian.

Solution

• Observations:
• You can ignore the latitudes – they do not matter.
• If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the

answer is yes.
• Näıve solution:

• Keep an array of 720 booleans, one for each meridian and half-meridian.
• When travelling to a new longitude, loop over the array and set the visited longitudes to true.

• Finally, output yes if every element of the array is true, and no otherwise.

• This näıve solution is correct!
• Pitfalls: be careful to correctly operate on the circular array.

Statistics: 342 submissions, 81 accepted, 74 unknown

J: Jet Set
Problem Author: Paul Wild

Problem
Given a list of stops on a trip, determine whether it passes through every meridian.

Solution

• Observations:
• You can ignore the latitudes – they do not matter.
• If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the

answer is yes.
• Näıve solution:

• Keep an array of 720 booleans, one for each meridian and half-meridian.
• When travelling to a new longitude, loop over the array and set the visited longitudes to true.
• Finally, output yes if every element of the array is true, and no otherwise.

• This näıve solution is correct!
• Pitfalls: be careful to correctly operate on the circular array.

Statistics: 342 submissions, 81 accepted, 74 unknown

J: Jet Set
Problem Author: Paul Wild

Problem
Given a list of stops on a trip, determine whether it passes through every meridian.

Solution

• Observations:
• You can ignore the latitudes – they do not matter.
• If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the

answer is yes.
• Näıve solution:

• Keep an array of 720 booleans, one for each meridian and half-meridian.
• When travelling to a new longitude, loop over the array and set the visited longitudes to true.
• Finally, output yes if every element of the array is true, and no otherwise.

• This näıve solution is correct!

• Pitfalls: be careful to correctly operate on the circular array.

Statistics: 342 submissions, 81 accepted, 74 unknown

J: Jet Set
Problem Author: Paul Wild

Problem
Given a list of stops on a trip, determine whether it passes through every meridian.

Solution

• Observations:
• You can ignore the latitudes – they do not matter.
• If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the

answer is yes.
• Näıve solution:

• Keep an array of 720 booleans, one for each meridian and half-meridian.
• When travelling to a new longitude, loop over the array and set the visited longitudes to true.
• Finally, output yes if every element of the array is true, and no otherwise.

• This näıve solution is correct!
• Pitfalls: be careful to correctly operate on the circular array.

Statistics: 342 submissions, 81 accepted, 74 unknown

J: Jet Set
Problem Author: Paul Wild

Problem
Given a list of stops on a trip, determine whether it passes through every meridian.

Solution

• Observations:
• You can ignore the latitudes – they do not matter.
• If the longitude ever changes by 180 in a single flight, the trip goes over one of the poles, so the

answer is yes.
• Näıve solution:

• Keep an array of 720 booleans, one for each meridian and half-meridian.
• When travelling to a new longitude, loop over the array and set the visited longitudes to true.
• Finally, output yes if every element of the array is true, and no otherwise.

• This näıve solution is correct!
• Pitfalls: be careful to correctly operate on the circular array.

Statistics: 342 submissions, 81 accepted, 74 unknown

J: Jet Set
Problem Author: Paul Wild

Edge case

Don’t forget the edge case of going around for 359◦ degrees and then turning around!

Edge case

Please read the output section carefully.

D: Dyson Circle
Problem Author: Mees de Vries

Problem
Given some stars on a grid, encircle these with as few other grid points as possible.

Solution

• Let’s look at the first sample.
• We might as well remove a “dent” in our Dyson circle.
• In fact, we can do this with all dents.
• In general, a rectangle with diagonal edges is always an

optimal solution.

D: Dyson Circle
Problem Author: Mees de Vries

Problem
Given some stars on a grid, encircle these with as few other grid points as possible.

Solution

• Let’s look at the first sample.

• We might as well remove a “dent” in our Dyson circle.
• In fact, we can do this with all dents.
• In general, a rectangle with diagonal edges is always an

optimal solution.

D: Dyson Circle
Problem Author: Mees de Vries

Problem
Given some stars on a grid, encircle these with as few other grid points as possible.

Solution

• Let’s look at the first sample.
• We might as well remove a “dent” in our Dyson circle.

• In fact, we can do this with all dents.
• In general, a rectangle with diagonal edges is always an

optimal solution.

D: Dyson Circle
Problem Author: Mees de Vries

Problem
Given some stars on a grid, encircle these with as few other grid points as possible.

Solution

• Let’s look at the first sample.
• We might as well remove a “dent” in our Dyson circle.
• In fact, we can do this with all dents.

• In general, a rectangle with diagonal edges is always an
optimal solution.

D: Dyson Circle
Problem Author: Mees de Vries

Problem
Given some stars on a grid, encircle these with as few other grid points as possible.

Solution

• Let’s look at the first sample.
• We might as well remove a “dent” in our Dyson circle.
• In fact, we can do this with all dents.
• In general, a rectangle with diagonal edges is always an

optimal solution.

D: Dyson Circle
Problem Author: Mees de Vries

Problem
Given some stars on a grid, encircle these with as few other grid points as possible.

Solution

• The only suns that matter are the four suns that touch
the edges of the rectangle: the ones that maximize
x + y , x − y , −x + y , −x − y .

• So the general answer is

4 + max
i

(xi + yi) + max
i

(xi − yi) +

max
i

(−xi + yi) + max
i

(−xi − yi).

D: Dyson Circle
Problem Author: Mees de Vries

Problem
Given some stars on a grid, encircle these with as few other grid points as possible.

Solution

• The only suns that matter are the four suns that touch
the edges of the rectangle: the ones that maximize
x + y , x − y , −x + y , −x − y .

• So the general answer is

4 + max
i

(xi + yi) + max
i

(xi − yi) +

max
i

(−xi + yi) + max
i

(−xi − yi).

D: Dyson Circle
Problem Author: Mees de Vries

Problem
Given some stars on a grid, encircle these with as few other grid points as possible.

Gotchas

• If all of the suns are on a diagonal, you need one
additional square to make the inside a contiguous region.

• However, if there is only one sun you do not need the
additional square.

Statistics: 248 submissions, 48 accepted, 99 unknown

D: Dyson Circle
Problem Author: Mees de Vries

Problem
Given some stars on a grid, encircle these with as few other grid points as possible.

Gotchas

• If all of the suns are on a diagonal, you need one
additional square to make the inside a contiguous region.

• However, if there is only one sun you do not need the
additional square.

Statistics: 248 submissions, 48 accepted, 99 unknown

D: Dyson Circle
Problem Author: Mees de Vries

Problem
Given some stars on a grid, encircle these with as few other grid points as possible.

Gotchas

• If all of the suns are on a diagonal, you need one
additional square to make the inside a contiguous region.

• However, if there is only one sun you do not need the
additional square.

Statistics: 248 submissions, 48 accepted, 99 unknown

D: Dyson Circle
Problem Author: Mees de Vries

Problem
Given some stars on a grid, encircle these with as few other grid points as possible.

Gotchas

• If all of the suns are on a diagonal, you need one
additional square to make the inside a contiguous region.

• However, if there is only one sun you do not need the
additional square.

Statistics: 248 submissions, 48 accepted, 99 unknown

G: Glossary Arrangement
Problem Author: Jorke de Vlas

Problem
Given an alphabetical list of n words, split the list up into multiple columns so that the layout is at
most w characters wide and the height is minimised.

user@pc ~/glossary $ ls
algorithm programming
contest regional
eindhoven reykjavik
icpc ru
nwerc

user@pc ~/glossary $ ls--
algorithm icpc programming ru
contest nwerc regional
eindhoven reykjavik

G: Glossary Arrangement
Problem Author: Jorke de Vlas

Solution

• The answer can be found using binary search.

• New problem: Is there a layout of height at most h?
• Given h, solve the new problem using dynamic programming:

f (i) = minimal width needed to split the first i words into columns

• Number of states is n, and there are at most h transitions from each state.
• Time complexity: O(n2 log(n)).
• Can also speed up DP for an O(n log2(n)) solution.

Statistics: 102 submissions, 35 accepted, 31 unknown

G: Glossary Arrangement
Problem Author: Jorke de Vlas

Solution

• The answer can be found using binary search.
• New problem: Is there a layout of height at most h?

• Given h, solve the new problem using dynamic programming:

f (i) = minimal width needed to split the first i words into columns

• Number of states is n, and there are at most h transitions from each state.
• Time complexity: O(n2 log(n)).
• Can also speed up DP for an O(n log2(n)) solution.

Statistics: 102 submissions, 35 accepted, 31 unknown

G: Glossary Arrangement
Problem Author: Jorke de Vlas

Solution

• The answer can be found using binary search.
• New problem: Is there a layout of height at most h?
• Given h, solve the new problem using dynamic programming:

f (i) = minimal width needed to split the first i words into columns

• Number of states is n, and there are at most h transitions from each state.
• Time complexity: O(n2 log(n)).
• Can also speed up DP for an O(n log2(n)) solution.

Statistics: 102 submissions, 35 accepted, 31 unknown

G: Glossary Arrangement
Problem Author: Jorke de Vlas

Solution

• The answer can be found using binary search.
• New problem: Is there a layout of height at most h?
• Given h, solve the new problem using dynamic programming:

f (i) = minimal width needed to split the first i words into columns

• Number of states is n, and there are at most h transitions from each state.

• Time complexity: O(n2 log(n)).
• Can also speed up DP for an O(n log2(n)) solution.

Statistics: 102 submissions, 35 accepted, 31 unknown

G: Glossary Arrangement
Problem Author: Jorke de Vlas

Solution

• The answer can be found using binary search.
• New problem: Is there a layout of height at most h?
• Given h, solve the new problem using dynamic programming:

f (i) = minimal width needed to split the first i words into columns

• Number of states is n, and there are at most h transitions from each state.
• Time complexity: O(n2 log(n)).

• Can also speed up DP for an O(n log2(n)) solution.

Statistics: 102 submissions, 35 accepted, 31 unknown

G: Glossary Arrangement
Problem Author: Jorke de Vlas

Solution

• The answer can be found using binary search.
• New problem: Is there a layout of height at most h?
• Given h, solve the new problem using dynamic programming:

f (i) = minimal width needed to split the first i words into columns

• Number of states is n, and there are at most h transitions from each state.
• Time complexity: O(n2 log(n)).
• Can also speed up DP for an O(n log2(n)) solution.

Statistics: 102 submissions, 35 accepted, 31 unknown

G: Glossary Arrangement
Problem Author: Jorke de Vlas

Solution

• The answer can be found using binary search.
• New problem: Is there a layout of height at most h?
• Given h, solve the new problem using dynamic programming:

f (i) = minimal width needed to split the first i words into columns

• Number of states is n, and there are at most h transitions from each state.
• Time complexity: O(n2 log(n)).
• Can also speed up DP for an O(n log2(n)) solution.

Statistics: 102 submissions, 35 accepted, 31 unknown

H: Heating Up
Problem Author: Alexander Dietsch

Problem
Given a pizza with many slices, each having its own spiciness level. Eating a slice with a certain
spiciness is only possible if you have enough tolerance, and it increases this tolerance by the spiciness
level of the slice.

You are allowed to start at any slice but after every slice, you must continue with one of the
neighbouring slices. Which initial minimal tolerance is needed to finish the pizza.

H: Heating Up
Problem Author: Alexander Dietsch

Solution

• Problem can be solved with binary search. (If tolerance x is enough, x + 1 works as well)

• New problem: Does tolerance x suffice to eat the whole pizza?
• Use a cyclic linked list, each element holds the spiciness level to finish the element and the

increase in tolerance it gives. Initially 1 slice = 1 element.
• Visit all elements; on a visit:

• Check if the initial tolerance is high enough to finish the element.
• If so, check if the resulting tolerance is enough to finish a neighbouring element.
• If that is the case, merge the elements. The spiciness level to finish the new element is the minimum,

the increase in tolerance is the sum of both elements.

• If the linked list can be merged into a single element, the initial tolerance is enough to finish the
pizza.

Statistics: 252 submissions, 29 accepted, 124 unknown

H: Heating Up
Problem Author: Alexander Dietsch

Solution

• Problem can be solved with binary search. (If tolerance x is enough, x + 1 works as well)
• New problem: Does tolerance x suffice to eat the whole pizza?

• Use a cyclic linked list, each element holds the spiciness level to finish the element and the
increase in tolerance it gives. Initially 1 slice = 1 element.

• Visit all elements; on a visit:

• Check if the initial tolerance is high enough to finish the element.
• If so, check if the resulting tolerance is enough to finish a neighbouring element.
• If that is the case, merge the elements. The spiciness level to finish the new element is the minimum,

the increase in tolerance is the sum of both elements.

• If the linked list can be merged into a single element, the initial tolerance is enough to finish the
pizza.

Statistics: 252 submissions, 29 accepted, 124 unknown

H: Heating Up
Problem Author: Alexander Dietsch

Solution

• Problem can be solved with binary search. (If tolerance x is enough, x + 1 works as well)
• New problem: Does tolerance x suffice to eat the whole pizza?
• Use a cyclic linked list, each element holds the spiciness level to finish the element and the

increase in tolerance it gives. Initially 1 slice = 1 element.

• Visit all elements; on a visit:

• Check if the initial tolerance is high enough to finish the element.
• If so, check if the resulting tolerance is enough to finish a neighbouring element.
• If that is the case, merge the elements. The spiciness level to finish the new element is the minimum,

the increase in tolerance is the sum of both elements.

• If the linked list can be merged into a single element, the initial tolerance is enough to finish the
pizza.

Statistics: 252 submissions, 29 accepted, 124 unknown

H: Heating Up
Problem Author: Alexander Dietsch

Solution

• Problem can be solved with binary search. (If tolerance x is enough, x + 1 works as well)
• New problem: Does tolerance x suffice to eat the whole pizza?
• Use a cyclic linked list, each element holds the spiciness level to finish the element and the

increase in tolerance it gives. Initially 1 slice = 1 element.
• Visit all elements; on a visit:

• Check if the initial tolerance is high enough to finish the element.
• If so, check if the resulting tolerance is enough to finish a neighbouring element.
• If that is the case, merge the elements. The spiciness level to finish the new element is the minimum,

the increase in tolerance is the sum of both elements.

• If the linked list can be merged into a single element, the initial tolerance is enough to finish the
pizza.

Statistics: 252 submissions, 29 accepted, 124 unknown

H: Heating Up
Problem Author: Alexander Dietsch

Solution

• Problem can be solved with binary search. (If tolerance x is enough, x + 1 works as well)
• New problem: Does tolerance x suffice to eat the whole pizza?
• Use a cyclic linked list, each element holds the spiciness level to finish the element and the

increase in tolerance it gives. Initially 1 slice = 1 element.
• Visit all elements; on a visit:

• Check if the initial tolerance is high enough to finish the element.

• If so, check if the resulting tolerance is enough to finish a neighbouring element.
• If that is the case, merge the elements. The spiciness level to finish the new element is the minimum,

the increase in tolerance is the sum of both elements.

• If the linked list can be merged into a single element, the initial tolerance is enough to finish the
pizza.

Statistics: 252 submissions, 29 accepted, 124 unknown

H: Heating Up
Problem Author: Alexander Dietsch

Solution

• Problem can be solved with binary search. (If tolerance x is enough, x + 1 works as well)
• New problem: Does tolerance x suffice to eat the whole pizza?
• Use a cyclic linked list, each element holds the spiciness level to finish the element and the

increase in tolerance it gives. Initially 1 slice = 1 element.
• Visit all elements; on a visit:

• Check if the initial tolerance is high enough to finish the element.
• If so, check if the resulting tolerance is enough to finish a neighbouring element.

• If that is the case, merge the elements. The spiciness level to finish the new element is the minimum,
the increase in tolerance is the sum of both elements.

• If the linked list can be merged into a single element, the initial tolerance is enough to finish the
pizza.

Statistics: 252 submissions, 29 accepted, 124 unknown

H: Heating Up
Problem Author: Alexander Dietsch

Solution

• Problem can be solved with binary search. (If tolerance x is enough, x + 1 works as well)
• New problem: Does tolerance x suffice to eat the whole pizza?
• Use a cyclic linked list, each element holds the spiciness level to finish the element and the

increase in tolerance it gives. Initially 1 slice = 1 element.
• Visit all elements; on a visit:

• Check if the initial tolerance is high enough to finish the element.
• If so, check if the resulting tolerance is enough to finish a neighbouring element.
• If that is the case, merge the elements. The spiciness level to finish the new element is the minimum,

the increase in tolerance is the sum of both elements.

• If the linked list can be merged into a single element, the initial tolerance is enough to finish the
pizza.

Statistics: 252 submissions, 29 accepted, 124 unknown

H: Heating Up
Problem Author: Alexander Dietsch

Solution

• Problem can be solved with binary search. (If tolerance x is enough, x + 1 works as well)
• New problem: Does tolerance x suffice to eat the whole pizza?
• Use a cyclic linked list, each element holds the spiciness level to finish the element and the

increase in tolerance it gives. Initially 1 slice = 1 element.
• Visit all elements; on a visit:

• Check if the initial tolerance is high enough to finish the element.
• If so, check if the resulting tolerance is enough to finish a neighbouring element.
• If that is the case, merge the elements. The spiciness level to finish the new element is the minimum,

the increase in tolerance is the sum of both elements.

• If the linked list can be merged into a single element, the initial tolerance is enough to finish the
pizza.

Statistics: 252 submissions, 29 accepted, 124 unknown

H: Heating Up
Problem Author: Alexander Dietsch

Solution

• Problem can be solved with binary search. (If tolerance x is enough, x + 1 works as well)
• New problem: Does tolerance x suffice to eat the whole pizza?
• Use a cyclic linked list, each element holds the spiciness level to finish the element and the

increase in tolerance it gives. Initially 1 slice = 1 element.
• Visit all elements; on a visit:

• Check if the initial tolerance is high enough to finish the element.
• If so, check if the resulting tolerance is enough to finish a neighbouring element.
• If that is the case, merge the elements. The spiciness level to finish the new element is the minimum,

the increase in tolerance is the sum of both elements.

• If the linked list can be merged into a single element, the initial tolerance is enough to finish the
pizza.

Statistics: 252 submissions, 29 accepted, 124 unknown

F: Flatland Olympics
Problem Author: Harry Smit

Problem
Given a line segment s and a set of n points p1, . . . , pn. Find the number of pairs of points pi , pj

(i < j) such that both points lie on the same side of s and the line through pi and pj intersects s.

Example

−30 −20 −10 10 20 30 40 50 60 70 80 90 100 110 120 130

−30

−20

−10

10

20

30

x

y

1

2

3

4

5

F: Flatland Olympics
Problem Author: Harry Smit

observation

• Observe how the relation of two points changes while moving from one end to the other of the
line segment s:

F: Flatland Olympics
Problem Author: Harry Smit

observation

• Observe how the relation of two points changes while moving from one end to the other of the
line segment s:

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

x

y

F: Flatland Olympics
Problem Author: Harry Smit

observation

• Observe how the relation of two points changes while moving from one end to the other of the
line segment s:

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

x

y

F: Flatland Olympics
Problem Author: Harry Smit

observation

• Observe how the relation of two points changes while moving from one end to the other of the
line segment s:

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

x

y

F: Flatland Olympics
Problem Author: Harry Smit

Solution

• Separate the points above and below s in two different sets.

• For each set:
• Sort the points around the start of s.
• Sort the points around the end of s.
• A pair of points has to be counted if their order in these two sequences differ.

• We need to find the number of inversions between two permutations.
• This can be done in O(n log(n)).

Gotcha

• Points lying along the line through s.
• Multiple points collinear with the start or the end of s.

Statistics: 179 submissions, 12 accepted, 86 unknown

F: Flatland Olympics
Problem Author: Harry Smit

Solution

• Separate the points above and below s in two different sets.
• For each set:

• Sort the points around the start of s.
• Sort the points around the end of s.
• A pair of points has to be counted if their order in these two sequences differ.

• We need to find the number of inversions between two permutations.
• This can be done in O(n log(n)).

Gotcha

• Points lying along the line through s.
• Multiple points collinear with the start or the end of s.

Statistics: 179 submissions, 12 accepted, 86 unknown

F: Flatland Olympics
Problem Author: Harry Smit

Solution

• Separate the points above and below s in two different sets.
• For each set:

• Sort the points around the start of s.
• Sort the points around the end of s.
• A pair of points has to be counted if their order in these two sequences differ.

• We need to find the number of inversions between two permutations.
• This can be done in O(n log(n)).

Gotcha

• Points lying along the line through s.
• Multiple points collinear with the start or the end of s.

Statistics: 179 submissions, 12 accepted, 86 unknown

F: Flatland Olympics
Problem Author: Harry Smit

Solution

• Separate the points above and below s in two different sets.
• For each set:

• Sort the points around the start of s.
• Sort the points around the end of s.
• A pair of points has to be counted if their order in these two sequences differ.

• We need to find the number of inversions between two permutations.
• This can be done in O(n log(n)).

Gotcha

• Points lying along the line through s.
• Multiple points collinear with the start or the end of s.

Statistics: 179 submissions, 12 accepted, 86 unknown

E: Exchange Students
Problem Author: Nils Gustafsson

Problem
Given two permutations g and h of size n ≤ 300 000, turn g into h by swapping pairs of elements
with only smaller elements in between them. How many moves are needed and find the first up to
200 000 moves.

Solution

• Observation: in an optimal solution, you can reorder the swaps to first do all swaps involving the
shortest students.

• When doing swaps involving the shortest students, they always move one step at a time.
• After the shortest students are in place, they do not affect any of the other swaps, and you can

remove them from the sequence.
• Now your sequence has one fewer height, and you can repeat.

E: Exchange Students
Problem Author: Nils Gustafsson

Problem
Given two permutations g and h of size n ≤ 300 000, turn g into h by swapping pairs of elements
with only smaller elements in between them. How many moves are needed and find the first up to
200 000 moves.

Solution

• Observation: in an optimal solution, you can reorder the swaps to first do all swaps involving the
shortest students.

• When doing swaps involving the shortest students, they always move one step at a time.
• After the shortest students are in place, they do not affect any of the other swaps, and you can

remove them from the sequence.
• Now your sequence has one fewer height, and you can repeat.

E: Exchange Students
Problem Author: Nils Gustafsson

Problem
Given two permutations g and h of size n ≤ 300 000, turn g into h by swapping pairs of elements
with only smaller elements in between them. How many moves are needed and find the first up to
200 000 moves.

Solution

• Observation: in an optimal solution, you can reorder the swaps to first do all swaps involving the
shortest students.

• When doing swaps involving the shortest students, they always move one step at a time.

• After the shortest students are in place, they do not affect any of the other swaps, and you can
remove them from the sequence.

• Now your sequence has one fewer height, and you can repeat.

E: Exchange Students
Problem Author: Nils Gustafsson

Problem
Given two permutations g and h of size n ≤ 300 000, turn g into h by swapping pairs of elements
with only smaller elements in between them. How many moves are needed and find the first up to
200 000 moves.

Solution

• Observation: in an optimal solution, you can reorder the swaps to first do all swaps involving the
shortest students.

• When doing swaps involving the shortest students, they always move one step at a time.
• After the shortest students are in place, they do not affect any of the other swaps, and you can

remove them from the sequence.

• Now your sequence has one fewer height, and you can repeat.

E: Exchange Students
Problem Author: Nils Gustafsson

Problem
Given two permutations g and h of size n ≤ 300 000, turn g into h by swapping pairs of elements
with only smaller elements in between them. How many moves are needed and find the first up to
200 000 moves.

Solution

• Observation: in an optimal solution, you can reorder the swaps to first do all swaps involving the
shortest students.

• When doing swaps involving the shortest students, they always move one step at a time.
• After the shortest students are in place, they do not affect any of the other swaps, and you can

remove them from the sequence.
• Now your sequence has one fewer height, and you can repeat.

E: Exchange Students
Problem Author: Nils Gustafsson

Solution

• If the shortest students are in locations a1, . . . , ak in g and b1, . . . , bk in h, then it takes

k∑
i=1

|ai − bi |

steps to get them into the right location.

• When removing the shortest students, use a Segment or Fenwick tree to keep track of locations of
the other students in the new sequence.

• Do the reconstruction while you count the steps, as long as you have not reached the number of
steps you have to output.

• Take care to not swap with equal elements. From 1, 1, 2 to 2, 1, 1, the first 1 needs to go right,
but that is only possible by swapping the 2 to the left.

E: Exchange Students
Problem Author: Nils Gustafsson

Solution

• If the shortest students are in locations a1, . . . , ak in g and b1, . . . , bk in h, then it takes

k∑
i=1

|ai − bi |

steps to get them into the right location.
• When removing the shortest students, use a Segment or Fenwick tree to keep track of locations of

the other students in the new sequence.

• Do the reconstruction while you count the steps, as long as you have not reached the number of
steps you have to output.

• Take care to not swap with equal elements. From 1, 1, 2 to 2, 1, 1, the first 1 needs to go right,
but that is only possible by swapping the 2 to the left.

E: Exchange Students
Problem Author: Nils Gustafsson

Solution

• If the shortest students are in locations a1, . . . , ak in g and b1, . . . , bk in h, then it takes

k∑
i=1

|ai − bi |

steps to get them into the right location.
• When removing the shortest students, use a Segment or Fenwick tree to keep track of locations of

the other students in the new sequence.
• Do the reconstruction while you count the steps, as long as you have not reached the number of

steps you have to output.

• Take care to not swap with equal elements. From 1, 1, 2 to 2, 1, 1, the first 1 needs to go right,
but that is only possible by swapping the 2 to the left.

E: Exchange Students
Problem Author: Nils Gustafsson

Solution

• If the shortest students are in locations a1, . . . , ak in g and b1, . . . , bk in h, then it takes

k∑
i=1

|ai − bi |

steps to get them into the right location.
• When removing the shortest students, use a Segment or Fenwick tree to keep track of locations of

the other students in the new sequence.
• Do the reconstruction while you count the steps, as long as you have not reached the number of

steps you have to output.
• Take care to not swap with equal elements. From 1, 1, 2 to 2, 1, 1, the first 1 needs to go right,

but that is only possible by swapping the 2 to the left.

E: Exchange Students
Problem Author: Nils Gustafsson

Solution

• Challenge: Can you do it in O(n lg n + moves)?

• Challenge: Can you do it in O(n lg n + moves lg n), but by processing all elements in random order?

Statistics: 24 submissions, 4 accepted, 13 unknown

E: Exchange Students
Problem Author: Nils Gustafsson

Solution

• Challenge: Can you do it in O(n lg n + moves)?
• Challenge: Can you do it in O(n lg n + moves lg n), but by processing all elements in random order?

Statistics: 24 submissions, 4 accepted, 13 unknown

E: Exchange Students
Problem Author: Nils Gustafsson

Solution

• Challenge: Can you do it in O(n lg n + moves)?
• Challenge: Can you do it in O(n lg n + moves lg n), but by processing all elements in random order?

Statistics: 24 submissions, 4 accepted, 13 unknown

I: IXth Problem
Problem Author: Paul Wild

Problem
Given a specific number of each of the letters M, D, C, L, X, V, I, what is the least number of Roman
numerals that can be formed while using exactly the required number of each letter?

Insight
We can use binary search on the answer. New subproblem: Given an integer n, can we form at most
n numerals using all the tiles?

I: IXth Problem
Problem Author: Paul Wild

Problem
Given a specific number of each of the letters M, D, C, L, X, V, I, what is the least number of Roman
numerals that can be formed while using exactly the required number of each letter?

Insight
We can use binary search on the answer. New subproblem: Given an integer n, can we form at most
n numerals using all the tiles?

I: IXth Problem
Problem Author: Paul Wild

Solution for subproblem
Start with n empty strings and add the digits in order from M to I.

M× 4 D× 1 C× 7 L× 1 X× 3 V× 1 I× 3
1.
2.

• Distribute M, C, X and I in groups of three, and D, L and V on their own.
• If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
• Fill up later letters from the first available slot.
• If you run out of letters or room at any point, abort.
• As the numbers are huge, speed it up by grouping equal numbers together.

Statistics: 34 submissions, 2 accepted, 20 unknown

I: IXth Problem
Problem Author: Paul Wild

Solution for subproblem
Start with n empty strings and add the digits in order from M to I.

M× 0 D× 1 C× 7 L× 1 X× 3 V× 1 I× 3
1. MMM

2. M

• Distribute M, C, X and I in groups of three, and D, L and V on their own.

• If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
• Fill up later letters from the first available slot.
• If you run out of letters or room at any point, abort.
• As the numbers are huge, speed it up by grouping equal numbers together.

Statistics: 34 submissions, 2 accepted, 20 unknown

I: IXth Problem
Problem Author: Paul Wild

Solution for subproblem
Start with n empty strings and add the digits in order from M to I.

M× 0 D× 0 C× 7 L× 1 X× 3 V× 1 I× 3
1. MMMD

2. M

• Distribute M, C, X and I in groups of three, and D, L and V on their own.

• If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
• Fill up later letters from the first available slot.
• If you run out of letters or room at any point, abort.
• As the numbers are huge, speed it up by grouping equal numbers together.

Statistics: 34 submissions, 2 accepted, 20 unknown

I: IXth Problem
Problem Author: Paul Wild

Solution for subproblem
Start with n empty strings and add the digits in order from M to I.

M× 0 D× 0 C× 1 L× 1 X× 3 V× 1 I× 3
1. MMMDCCC

2. MCCC

• Distribute M, C, X and I in groups of three, and D, L and V on their own.

• If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
• Fill up later letters from the first available slot.
• If you run out of letters or room at any point, abort.
• As the numbers are huge, speed it up by grouping equal numbers together.

Statistics: 34 submissions, 2 accepted, 20 unknown

I: IXth Problem
Problem Author: Paul Wild

Solution for subproblem
Start with n empty strings and add the digits in order from M to I.

M× 0 D× 0 C× 0 L× 1 X× 2 V× 1 I× 3
1. MMMDCCCXC

2. MCCC

• Distribute M, C, X and I in groups of three, and D, L and V on their own.
• If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.

• Fill up later letters from the first available slot.
• If you run out of letters or room at any point, abort.
• As the numbers are huge, speed it up by grouping equal numbers together.

Statistics: 34 submissions, 2 accepted, 20 unknown

I: IXth Problem
Problem Author: Paul Wild

Solution for subproblem
Start with n empty strings and add the digits in order from M to I.

M× 0 D× 0 C× 0 L× 0 X× 2 V× 1 I× 3
1. MMMDCCCXC

2. MCCCL

• Distribute M, C, X and I in groups of three, and D, L and V on their own.
• If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
• Fill up later letters from the first available slot.

• If you run out of letters or room at any point, abort.
• As the numbers are huge, speed it up by grouping equal numbers together.

Statistics: 34 submissions, 2 accepted, 20 unknown

I: IXth Problem
Problem Author: Paul Wild

Solution for subproblem
Start with n empty strings and add the digits in order from M to I.

M× 0 D× 0 C× 0 L× 0 X× 0 V× 1 I× 3
1. MMMDCCCXC

2. MCCCLXX

• Distribute M, C, X and I in groups of three, and D, L and V on their own.
• If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
• Fill up later letters from the first available slot.

• If you run out of letters or room at any point, abort.
• As the numbers are huge, speed it up by grouping equal numbers together.

Statistics: 34 submissions, 2 accepted, 20 unknown

I: IXth Problem
Problem Author: Paul Wild

Solution for subproblem
Start with n empty strings and add the digits in order from M to I.

M× 0 D× 0 C× 0 L× 0 X× 0 V× 0 I× 3
1. MMMDCCCXCV

2. MCCCLXX

• Distribute M, C, X and I in groups of three, and D, L and V on their own.
• If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
• Fill up later letters from the first available slot.

• If you run out of letters or room at any point, abort.
• As the numbers are huge, speed it up by grouping equal numbers together.

Statistics: 34 submissions, 2 accepted, 20 unknown

I: IXth Problem
Problem Author: Paul Wild

Solution for subproblem
Start with n empty strings and add the digits in order from M to I.

M× 0 D× 0 C× 0 L× 0 X× 0 V× 0 I× 0
1. MMMDCCCXCVIII

2. MCCCLXX

• Distribute M, C, X and I in groups of three, and D, L and V on their own.
• If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
• Fill up later letters from the first available slot.

• If you run out of letters or room at any point, abort.
• As the numbers are huge, speed it up by grouping equal numbers together.

Statistics: 34 submissions, 2 accepted, 20 unknown

I: IXth Problem
Problem Author: Paul Wild

Solution for subproblem
Start with n empty strings and add the digits in order from M to I.

M× 0 D× 0 C× 0 L× 0 X× 0 V× 0 I× 0
1. MMMDCCCXCVIII

2. MCCCLXX

• Distribute M, C, X and I in groups of three, and D, L and V on their own.
• If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
• Fill up later letters from the first available slot.
• If you run out of letters or room at any point, abort.

• As the numbers are huge, speed it up by grouping equal numbers together.

Statistics: 34 submissions, 2 accepted, 20 unknown

I: IXth Problem
Problem Author: Paul Wild

Solution for subproblem
Start with n empty strings and add the digits in order from M to I.

M× 0 D× 0 C× 0 L× 0 X× 0 V× 0 I× 0
1. MMMDCCCXCVIII

2. MCCCLXX

• Distribute M, C, X and I in groups of three, and D, L and V on their own.
• If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
• Fill up later letters from the first available slot.
• If you run out of letters or room at any point, abort.
• As the numbers are huge, speed it up by grouping equal numbers together.

Statistics: 34 submissions, 2 accepted, 20 unknown

I: IXth Problem
Problem Author: Paul Wild

Solution for subproblem
Start with n empty strings and add the digits in order from M to I.

M× 0 D× 0 C× 0 L× 0 X× 0 V× 0 I× 0
1. MMMDCCCXCVIII

2. MCCCLXX

• Distribute M, C, X and I in groups of three, and D, L and V on their own.
• If there is not enough room for all M, C or X, try filling up with copies of CM, XC or IX.
• Fill up later letters from the first available slot.
• If you run out of letters or room at any point, abort.
• As the numbers are huge, speed it up by grouping equal numbers together.

Statistics: 34 submissions, 2 accepted, 20 unknown

B: Boredom Buster
Problem Author: Nils Gustafsson

Problem
Play a single player version of the game Memory (aka Concentration), where the cards are randomly
shuffled before and after reveal.

Solution

• First attempt: Revealing the cards with indices i and j will give you the card numbers x and y . If
you now query (j, k) and you get result (x , z) for some different z, you can deduce that ci = y .

• Repeating this logic n − 1 times, n − 2 cards will be known. We still have to take care of the last
two, but this is too many queries.

• Insight: We have to exploit the fact that there are many duplicates in the deck.

B: Boredom Buster
Problem Author: Nils Gustafsson

Problem
Play a single player version of the game Memory (aka Concentration), where the cards are randomly
shuffled before and after reveal.

Solution

• First attempt: Revealing the cards with indices i and j will give you the card numbers x and y . If
you now query (j, k) and you get result (x , z) for some different z, you can deduce that ci = y .

• Repeating this logic n − 1 times, n − 2 cards will be known. We still have to take care of the last
two, but this is too many queries.

• Insight: We have to exploit the fact that there are many duplicates in the deck.

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• Attempt 2: Query for (1, 2), (3, 4), (5, 6), · · · . This gives you n
2 tuples on the form (i , j, x , y)

meaning that the cards on positions i and j have values x , y .

• Take two tuples on the form (i1, j1, x , y), (i2, j2, y , z) and query (i1, i2).

• With 75% probability the answer will be different numbers (e.g. (x , z)). This will give you two card
positions and creates another tuple (i1, i2, x , z).

• With 25% probability the answer will be (y , y) which gives you all four cards.

• By naively pairing up the tuples to get these collisions and executing the above strategy, you will
solve the problem with around 15

16 n queries. But this is still not enough!

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• Attempt 2: Query for (1, 2), (3, 4), (5, 6), · · · . This gives you n
2 tuples on the form (i , j, x , y)

meaning that the cards on positions i and j have values x , y .
• Take two tuples on the form (i1, j1, x , y), (i2, j2, y , z) and query (i1, i2).

• With 75% probability the answer will be different numbers (e.g. (x , z)). This will give you two card
positions and creates another tuple (i1, i2, x , z).

• With 25% probability the answer will be (y , y) which gives you all four cards.

• By naively pairing up the tuples to get these collisions and executing the above strategy, you will
solve the problem with around 15

16 n queries. But this is still not enough!

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• Attempt 2: Query for (1, 2), (3, 4), (5, 6), · · · . This gives you n
2 tuples on the form (i , j, x , y)

meaning that the cards on positions i and j have values x , y .
• Take two tuples on the form (i1, j1, x , y), (i2, j2, y , z) and query (i1, i2).

• With 75% probability the answer will be different numbers (e.g. (x , z)). This will give you two card
positions and creates another tuple (i1, i2, x , z).

• With 25% probability the answer will be (y , y) which gives you all four cards.

• By naively pairing up the tuples to get these collisions and executing the above strategy, you will
solve the problem with around 15

16 n queries. But this is still not enough!

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• Attempt 2: Query for (1, 2), (3, 4), (5, 6), · · · . This gives you n
2 tuples on the form (i , j, x , y)

meaning that the cards on positions i and j have values x , y .
• Take two tuples on the form (i1, j1, x , y), (i2, j2, y , z) and query (i1, i2).

• With 75% probability the answer will be different numbers (e.g. (x , z)). This will give you two card
positions and creates another tuple (i1, i2, x , z).

• With 25% probability the answer will be (y , y) which gives you all four cards.

• By naively pairing up the tuples to get these collisions and executing the above strategy, you will
solve the problem with around 15

16 n queries. But this is still not enough!

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• Attempt 2: Query for (1, 2), (3, 4), (5, 6), · · · . This gives you n
2 tuples on the form (i , j, x , y)

meaning that the cards on positions i and j have values x , y .
• Take two tuples on the form (i1, j1, x , y), (i2, j2, y , z) and query (i1, i2).

• With 75% probability the answer will be different numbers (e.g. (x , z)). This will give you two card
positions and creates another tuple (i1, i2, x , z).

• With 25% probability the answer will be (y , y) which gives you all four cards.

• By naively pairing up the tuples to get these collisions and executing the above strategy, you will
solve the problem with around 15

16 n queries. But this is still not enough!

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• How to cause many collisions using the idea on the previous slide?

• Let’s model the problem as a graph with n
2 vertices, one for each card number.

• For every tuple (i , j, x , y) add an edge between x and y . This gives components which are either
cycles or paths.

• Querying for pairs of adjacent edges has a chance of eliminating both edges.

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• How to cause many collisions using the idea on the previous slide?
• Let’s model the problem as a graph with n

2 vertices, one for each card number.

• For every tuple (i , j, x , y) add an edge between x and y . This gives components which are either
cycles or paths.

• Querying for pairs of adjacent edges has a chance of eliminating both edges.

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• How to cause many collisions using the idea on the previous slide?
• Let’s model the problem as a graph with n

2 vertices, one for each card number.
• For every tuple (i , j, x , y) add an edge between x and y . This gives components which are either

cycles or paths.

• Querying for pairs of adjacent edges has a chance of eliminating both edges.

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• How to cause many collisions using the idea on the previous slide?
• Let’s model the problem as a graph with n

2 vertices, one for each card number.
• For every tuple (i , j, x , y) add an edge between x and y . This gives components which are either

cycles or paths.
• Querying for pairs of adjacent edges has a chance of eliminating both edges.

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• How to cause many collisions using the idea on the previous slide?
• Let’s model the problem as a graph with n

2 vertices, one for each card number.
• For every tuple (i , j, x , y) add an edge between x and y . This gives components which are either

cycles or paths.
• Querying for pairs of adjacent edges has a chance of eliminating both edges.

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• Make cycles into paths by querying two adjacent edges.

• Greedily query edges at the endpoints of paths, as long as they exist.
• Save components of size 2 for last.
• This gives a solution with around 11

12 n queries, which is good enough.
• More details that need to be taken care of:

• Cycles of length 2 are special, they have a 50% chance of being unaffected.
• At the end one tuple (i , j, x , y) will remain. To take care of it, find another index k with value x , and

randomly query pairs in {i , j, k} until a collision happens.

Statistics: 23 submissions, 1 accepted, 8 unknown

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• Make cycles into paths by querying two adjacent edges.
• Greedily query edges at the endpoints of paths, as long as they exist.

• Save components of size 2 for last.
• This gives a solution with around 11

12 n queries, which is good enough.
• More details that need to be taken care of:

• Cycles of length 2 are special, they have a 50% chance of being unaffected.
• At the end one tuple (i , j, x , y) will remain. To take care of it, find another index k with value x , and

randomly query pairs in {i , j, k} until a collision happens.

Statistics: 23 submissions, 1 accepted, 8 unknown

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• Make cycles into paths by querying two adjacent edges.
• Greedily query edges at the endpoints of paths, as long as they exist.
• Save components of size 2 for last.

• This gives a solution with around 11
12 n queries, which is good enough.

• More details that need to be taken care of:

• Cycles of length 2 are special, they have a 50% chance of being unaffected.
• At the end one tuple (i , j, x , y) will remain. To take care of it, find another index k with value x , and

randomly query pairs in {i , j, k} until a collision happens.

Statistics: 23 submissions, 1 accepted, 8 unknown

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• Make cycles into paths by querying two adjacent edges.
• Greedily query edges at the endpoints of paths, as long as they exist.
• Save components of size 2 for last.
• This gives a solution with around 11

12 n queries, which is good enough.

• More details that need to be taken care of:

• Cycles of length 2 are special, they have a 50% chance of being unaffected.
• At the end one tuple (i , j, x , y) will remain. To take care of it, find another index k with value x , and

randomly query pairs in {i , j, k} until a collision happens.

Statistics: 23 submissions, 1 accepted, 8 unknown

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• Make cycles into paths by querying two adjacent edges.
• Greedily query edges at the endpoints of paths, as long as they exist.
• Save components of size 2 for last.
• This gives a solution with around 11

12 n queries, which is good enough.
• More details that need to be taken care of:

• Cycles of length 2 are special, they have a 50% chance of being unaffected.
• At the end one tuple (i , j, x , y) will remain. To take care of it, find another index k with value x , and

randomly query pairs in {i , j, k} until a collision happens.

Statistics: 23 submissions, 1 accepted, 8 unknown

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• Make cycles into paths by querying two adjacent edges.
• Greedily query edges at the endpoints of paths, as long as they exist.
• Save components of size 2 for last.
• This gives a solution with around 11

12 n queries, which is good enough.
• More details that need to be taken care of:

• Cycles of length 2 are special, they have a 50% chance of being unaffected.

• At the end one tuple (i , j, x , y) will remain. To take care of it, find another index k with value x , and
randomly query pairs in {i , j, k} until a collision happens.

Statistics: 23 submissions, 1 accepted, 8 unknown

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• Make cycles into paths by querying two adjacent edges.
• Greedily query edges at the endpoints of paths, as long as they exist.
• Save components of size 2 for last.
• This gives a solution with around 11

12 n queries, which is good enough.
• More details that need to be taken care of:

• Cycles of length 2 are special, they have a 50% chance of being unaffected.
• At the end one tuple (i , j, x , y) will remain. To take care of it, find another index k with value x , and

randomly query pairs in {i , j, k} until a collision happens.

Statistics: 23 submissions, 1 accepted, 8 unknown

B: Boredom Buster
Problem Author: Nils Gustafsson

Solution

• Make cycles into paths by querying two adjacent edges.
• Greedily query edges at the endpoints of paths, as long as they exist.
• Save components of size 2 for last.
• This gives a solution with around 11

12 n queries, which is good enough.
• More details that need to be taken care of:

• Cycles of length 2 are special, they have a 50% chance of being unaffected.
• At the end one tuple (i , j, x , y) will remain. To take care of it, find another index k with value x , and

randomly query pairs in {i , j, k} until a collision happens.

Statistics: 23 submissions, 1 accepted, 8 unknown

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Problem
Given is a list of n shirts. We choose k integers l1, . . . , lk uniformly at random and then randomly
permute the first lj shirts for j ∈ {1, . . . , k}. What is the expected position of the shirt that started
at position i (1-based)?

First idea

• Calculate the probability pa that your lucky shirt ends up at position a for all a ∈ {1, . . . , n}.
• The answer is

n∑
a=1

a · pa.

• However, pa does not have a nice formula.

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Problem
Given is a list of n shirts. We choose k integers l1, . . . , lk uniformly at random and then randomly
permute the first lj shirts for j ∈ {1, . . . , k}. What is the expected position of the shirt that started
at position i (1-based)?

First idea

• Calculate the probability pa that your lucky shirt ends up at position a for all a ∈ {1, . . . , n}.

• The answer is
n∑

a=1

a · pa.

• However, pa does not have a nice formula.

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Problem
Given is a list of n shirts. We choose k integers l1, . . . , lk uniformly at random and then randomly
permute the first lj shirts for j ∈ {1, . . . , k}. What is the expected position of the shirt that started
at position i (1-based)?

First idea

• Calculate the probability pa that your lucky shirt ends up at position a for all a ∈ {1, . . . , n}.
• The answer is

n∑
a=1

a · pa.

• However, pa does not have a nice formula.

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Problem
Given is a list of n shirts. We choose k integers l1, . . . , lk uniformly at random and then randomly
permute the first lj shirts for j ∈ {1, . . . , k}. What is the expected position of the shirt that started
at position i (1-based)?

First idea

• Calculate the probability pa that your lucky shirt ends up at position a for all a ∈ {1, . . . , n}.
• The answer is

n∑
a=1

a · pa.

• However, pa does not have a nice formula.

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Solution (1/2)

• Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.

• Only M := maxj lj is relevant! We distinguish two simple cases.
• Case 1: the shirt never moves during the process.

• This happens exactly when M < i .
• The (expected) position of the shirt is i .

• Case 2: the shirt is shuffled at least once.

• This happens exactly when M ≥ i .
• You cannot distinguish the lucky shirt from any of the other first M shirts
• The (expected) position of the shirt is (M + 1)/2.

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Solution (1/2)

• Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
• Only M := maxj lj is relevant! We distinguish two simple cases.

• Case 1: the shirt never moves during the process.

• This happens exactly when M < i .
• The (expected) position of the shirt is i .

• Case 2: the shirt is shuffled at least once.

• This happens exactly when M ≥ i .
• You cannot distinguish the lucky shirt from any of the other first M shirts
• The (expected) position of the shirt is (M + 1)/2.

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Solution (1/2)

• Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
• Only M := maxj lj is relevant! We distinguish two simple cases.
• Case 1: the shirt never moves during the process.

• This happens exactly when M < i .
• The (expected) position of the shirt is i .

• Case 2: the shirt is shuffled at least once.

• This happens exactly when M ≥ i .
• You cannot distinguish the lucky shirt from any of the other first M shirts
• The (expected) position of the shirt is (M + 1)/2.

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Solution (1/2)

• Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
• Only M := maxj lj is relevant! We distinguish two simple cases.
• Case 1: the shirt never moves during the process.

• This happens exactly when M < i .

• The (expected) position of the shirt is i .
• Case 2: the shirt is shuffled at least once.

• This happens exactly when M ≥ i .
• You cannot distinguish the lucky shirt from any of the other first M shirts
• The (expected) position of the shirt is (M + 1)/2.

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Solution (1/2)

• Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
• Only M := maxj lj is relevant! We distinguish two simple cases.
• Case 1: the shirt never moves during the process.

• This happens exactly when M < i .
• The (expected) position of the shirt is i .

• Case 2: the shirt is shuffled at least once.

• This happens exactly when M ≥ i .
• You cannot distinguish the lucky shirt from any of the other first M shirts
• The (expected) position of the shirt is (M + 1)/2.

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Solution (1/2)

• Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
• Only M := maxj lj is relevant! We distinguish two simple cases.
• Case 1: the shirt never moves during the process.

• This happens exactly when M < i .
• The (expected) position of the shirt is i .

• Case 2: the shirt is shuffled at least once.

• This happens exactly when M ≥ i .
• You cannot distinguish the lucky shirt from any of the other first M shirts
• The (expected) position of the shirt is (M + 1)/2.

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Solution (1/2)

• Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
• Only M := maxj lj is relevant! We distinguish two simple cases.
• Case 1: the shirt never moves during the process.

• This happens exactly when M < i .
• The (expected) position of the shirt is i .

• Case 2: the shirt is shuffled at least once.
• This happens exactly when M ≥ i .

• You cannot distinguish the lucky shirt from any of the other first M shirts
• The (expected) position of the shirt is (M + 1)/2.

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Solution (1/2)

• Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
• Only M := maxj lj is relevant! We distinguish two simple cases.
• Case 1: the shirt never moves during the process.

• This happens exactly when M < i .
• The (expected) position of the shirt is i .

• Case 2: the shirt is shuffled at least once.
• This happens exactly when M ≥ i .
• You cannot distinguish the lucky shirt from any of the other first M shirts

• The (expected) position of the shirt is (M + 1)/2.

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Solution (1/2)

• Key observation: once the lucky shirt is shuffled, its location is uniform among the shuffled shirts.
• Only M := maxj lj is relevant! We distinguish two simple cases.
• Case 1: the shirt never moves during the process.

• This happens exactly when M < i .
• The (expected) position of the shirt is i .

• Case 2: the shirt is shuffled at least once.
• This happens exactly when M ≥ i .
• You cannot distinguish the lucky shirt from any of the other first M shirts
• The (expected) position of the shirt is (M + 1)/2.

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Solution (2/2)

• Thus the answer equals

i · P(M < i) +
n∑

a=i

a + 1
2 · P(M = a).

• As the lj are chosen uniformly at random (and independent of one another),

P(M < i) =
(i − 1

n
)k

, and

P(M = a) = P(M < a + 1)− P(M < a) =
(a

n
)k −

(a − 1
n
)k

.

Statistics: 30 submissions, 1 accepted, 25 unknown

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Solution (2/2)

• Thus the answer equals

i · P(M < i) +
n∑

a=i

a + 1
2 · P(M = a).

• As the lj are chosen uniformly at random (and independent of one another),

P(M < i) =
(i − 1

n
)k

, and

P(M = a) = P(M < a + 1)− P(M < a) =
(a

n
)k −

(a − 1
n
)k

.

Statistics: 30 submissions, 1 accepted, 25 unknown

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Solution (2/2)

• Thus the answer equals

i · P(M < i) +
n∑

a=i

a + 1
2 · P(M = a).

• As the lj are chosen uniformly at random (and independent of one another),

P(M < i) =
(i − 1

n
)k

, and

P(M = a) = P(M < a + 1)− P(M < a) =
(a

n
)k −

(a − 1
n
)k

.

Statistics: 30 submissions, 1 accepted, 25 unknown

L: Lucky Shirt
Problem Author: Ragnar Groot Koerkamp

Solution (2/2)

• Thus the answer equals

i · P(M < i) +
n∑

a=i

a + 1
2 · P(M = a).

• As the lj are chosen uniformly at random (and independent of one another),

P(M < i) =
(i − 1

n
)k

, and

P(M = a) = P(M < a + 1)− P(M < a) =
(a

n
)k −

(a − 1
n
)k

.

Statistics: 30 submissions, 1 accepted, 25 unknown

C: Cutting Edge
Problem Author: Paul Wild

Problem
Given a desired volume v/6, find a set of integer-valued points whose convex hull has this volume.

General idea

• Start with a cuboid and cut away tetrahedra
from four of the corners.

• Take a cuboid with size a × b × c (assume
wlog a ≤ b ≤ c), where
ab(c − 1) ≤ v/6 ≤ abc.

• A tetrahedron with edge sizes u, v and w has
volume uvw/6, and we can cut off four
tetrahedra that don’t interfere with one
another.

C: Cutting Edge
Problem Author: Paul Wild

Problem
Given a desired volume v/6, find a set of integer-valued points whose convex hull has this volume.

General idea

• Start with a cuboid and cut away tetrahedra
from four of the corners.

• Take a cuboid with size a × b × c (assume
wlog a ≤ b ≤ c), where
ab(c − 1) ≤ v/6 ≤ abc.

• A tetrahedron with edge sizes u, v and w has
volume uvw/6, and we can cut off four
tetrahedra that don’t interfere with one
another.

C: Cutting Edge
Problem Author: Paul Wild

Problem
Given a desired volume v/6, find a set of integer-valued points whose convex hull has this volume.

General idea

• Start with a cuboid and cut away tetrahedra
from four of the corners.

• Take a cuboid with size a × b × c (assume
wlog a ≤ b ≤ c), where
ab(c − 1) ≤ v/6 ≤ abc.

• A tetrahedron with edge sizes u, v and w has
volume uvw/6, and we can cut off four
tetrahedra that don’t interfere with one
another.

C: Cutting Edge
Problem Author: Paul Wild

Problem
Given a desired volume v/6, find a set of integer-valued points whose convex hull has this volume.

General idea

• Start with a cuboid and cut away tetrahedra
from four of the corners.

• Take a cuboid with size a × b × c (assume
wlog a ≤ b ≤ c), where
ab(c − 1) ≤ v/6 ≤ abc.

• A tetrahedron with edge sizes u, v and w has
volume uvw/6, and we can cut off four
tetrahedra that don’t interfere with one
another.

C: Cutting Edge
Problem Author: Paul Wild

Problem
Given a desired volume v/6, find a set of integer-valued points whose convex hull has this volume.

General idea

• Start with a cuboid and cut away tetrahedra
from four of the corners.

• Take a cuboid with size a × b × c (assume
wlog a ≤ b ≤ c), where
ab(c − 1) ≤ v/6 ≤ abc.

• A tetrahedron with edge sizes u, v and w has
volume uvw/6, and we can cut off four
tetrahedra that don’t interfere with one
another.

C: Cutting Edge
Problem Author: Paul Wild

Finding the right tetrahedra

• We need to cut off a total volume of abc − v/6 from the cuboid. Let r := 6abc − v . Note
0 ≤ r ≤ 6ab.

• Can we find four tetrahedra with the desired volume, that is, does the set

S := {uvw | 0 ≤ u ≤ a, 0 ≤ v ≤ b, 0 ≤ w ≤ c}

contain four elements that sum to r?
• If c ≥ 6, this is easily done with (at most) three polyhedra:

• For the first one, take u0 = a, v0 = b, w0 = b r
ab c

• For the second one, take u1 = a, v1 = b r−u0v0w0
a c, w1 = 1

• For the last one, take u2 = r − u0v0w0 − u1v1w1, v2 = 1, w2 = 1.

• If c ≤ 5, then so are a and b, which implies that |S| is small (at most 31).
• Brute force all combinations to check if r can be written as a sum of four elements in S.

C: Cutting Edge
Problem Author: Paul Wild

Finding the right tetrahedra

• We need to cut off a total volume of abc − v/6 from the cuboid. Let r := 6abc − v . Note
0 ≤ r ≤ 6ab.

• Can we find four tetrahedra with the desired volume, that is, does the set

S := {uvw | 0 ≤ u ≤ a, 0 ≤ v ≤ b, 0 ≤ w ≤ c}

contain four elements that sum to r?

• If c ≥ 6, this is easily done with (at most) three polyhedra:

• For the first one, take u0 = a, v0 = b, w0 = b r
ab c

• For the second one, take u1 = a, v1 = b r−u0v0w0
a c, w1 = 1

• For the last one, take u2 = r − u0v0w0 − u1v1w1, v2 = 1, w2 = 1.

• If c ≤ 5, then so are a and b, which implies that |S| is small (at most 31).
• Brute force all combinations to check if r can be written as a sum of four elements in S.

C: Cutting Edge
Problem Author: Paul Wild

Finding the right tetrahedra

• We need to cut off a total volume of abc − v/6 from the cuboid. Let r := 6abc − v . Note
0 ≤ r ≤ 6ab.

• Can we find four tetrahedra with the desired volume, that is, does the set

S := {uvw | 0 ≤ u ≤ a, 0 ≤ v ≤ b, 0 ≤ w ≤ c}

contain four elements that sum to r?
• If c ≥ 6, this is easily done with (at most) three polyhedra:

• For the first one, take u0 = a, v0 = b, w0 = b r
ab c

• For the second one, take u1 = a, v1 = b r−u0v0w0
a c, w1 = 1

• For the last one, take u2 = r − u0v0w0 − u1v1w1, v2 = 1, w2 = 1.

• If c ≤ 5, then so are a and b, which implies that |S| is small (at most 31).
• Brute force all combinations to check if r can be written as a sum of four elements in S.

C: Cutting Edge
Problem Author: Paul Wild

Finding the right tetrahedra

• We need to cut off a total volume of abc − v/6 from the cuboid. Let r := 6abc − v . Note
0 ≤ r ≤ 6ab.

• Can we find four tetrahedra with the desired volume, that is, does the set

S := {uvw | 0 ≤ u ≤ a, 0 ≤ v ≤ b, 0 ≤ w ≤ c}

contain four elements that sum to r?
• If c ≥ 6, this is easily done with (at most) three polyhedra:

• For the first one, take u0 = a, v0 = b, w0 = b r
ab c

• For the second one, take u1 = a, v1 = b r−u0v0w0
a c, w1 = 1

• For the last one, take u2 = r − u0v0w0 − u1v1w1, v2 = 1, w2 = 1.

• If c ≤ 5, then so are a and b, which implies that |S| is small (at most 31).
• Brute force all combinations to check if r can be written as a sum of four elements in S.

C: Cutting Edge
Problem Author: Paul Wild

Finding the right tetrahedra

• We need to cut off a total volume of abc − v/6 from the cuboid. Let r := 6abc − v . Note
0 ≤ r ≤ 6ab.

• Can we find four tetrahedra with the desired volume, that is, does the set

S := {uvw | 0 ≤ u ≤ a, 0 ≤ v ≤ b, 0 ≤ w ≤ c}

contain four elements that sum to r?
• If c ≥ 6, this is easily done with (at most) three polyhedra:

• For the first one, take u0 = a, v0 = b, w0 = b r
ab c

• For the second one, take u1 = a, v1 = b r−u0v0w0
a c, w1 = 1

• For the last one, take u2 = r − u0v0w0 − u1v1w1, v2 = 1, w2 = 1.

• If c ≤ 5, then so are a and b, which implies that |S| is small (at most 31).
• Brute force all combinations to check if r can be written as a sum of four elements in S.

C: Cutting Edge
Problem Author: Paul Wild

Finding the right tetrahedra

• We need to cut off a total volume of abc − v/6 from the cuboid. Let r := 6abc − v . Note
0 ≤ r ≤ 6ab.

• Can we find four tetrahedra with the desired volume, that is, does the set

S := {uvw | 0 ≤ u ≤ a, 0 ≤ v ≤ b, 0 ≤ w ≤ c}

contain four elements that sum to r?
• If c ≥ 6, this is easily done with (at most) three polyhedra:

• For the first one, take u0 = a, v0 = b, w0 = b r
ab c

• For the second one, take u1 = a, v1 = b r−u0v0w0
a c, w1 = 1

• For the last one, take u2 = r − u0v0w0 − u1v1w1, v2 = 1, w2 = 1.

• If c ≤ 5, then so are a and b, which implies that |S| is small (at most 31).
• Brute force all combinations to check if r can be written as a sum of four elements in S.

C: Cutting Edge
Problem Author: Paul Wild

Finding the right tetrahedra

• We need to cut off a total volume of abc − v/6 from the cuboid. Let r := 6abc − v . Note
0 ≤ r ≤ 6ab.

• Can we find four tetrahedra with the desired volume, that is, does the set

S := {uvw | 0 ≤ u ≤ a, 0 ≤ v ≤ b, 0 ≤ w ≤ c}

contain four elements that sum to r?
• If c ≥ 6, this is easily done with (at most) three polyhedra:

• For the first one, take u0 = a, v0 = b, w0 = b r
ab c

• For the second one, take u1 = a, v1 = b r−u0v0w0
a c, w1 = 1

• For the last one, take u2 = r − u0v0w0 − u1v1w1, v2 = 1, w2 = 1.

• If c ≤ 5, then so are a and b, which implies that |S| is small (at most 31).

• Brute force all combinations to check if r can be written as a sum of four elements in S.

C: Cutting Edge
Problem Author: Paul Wild

Finding the right tetrahedra

• We need to cut off a total volume of abc − v/6 from the cuboid. Let r := 6abc − v . Note
0 ≤ r ≤ 6ab.

• Can we find four tetrahedra with the desired volume, that is, does the set

S := {uvw | 0 ≤ u ≤ a, 0 ≤ v ≤ b, 0 ≤ w ≤ c}

contain four elements that sum to r?
• If c ≥ 6, this is easily done with (at most) three polyhedra:

• For the first one, take u0 = a, v0 = b, w0 = b r
ab c

• For the second one, take u1 = a, v1 = b r−u0v0w0
a c, w1 = 1

• For the last one, take u2 = r − u0v0w0 − u1v1w1, v2 = 1, w2 = 1.

• If c ≤ 5, then so are a and b, which implies that |S| is small (at most 31).
• Brute force all combinations to check if r can be written as a sum of four elements in S.

C: Cutting Edge
Problem Author: Paul Wild

Leftover cases
This solves all cases except for two:

• The case where a = b = c = 1 and v = 1. This is the first sample.

• The case where a = b = c = 2 and v = 25. Then r = 23. This is the third sample.

Statistics: 4 submissions, 0 accepted, 4 unknown

C: Cutting Edge
Problem Author: Paul Wild

Leftover cases
This solves all cases except for two:

• The case where a = b = c = 1 and v = 1. This is the first sample.
• The case where a = b = c = 2 and v = 25. Then r = 23. This is the third sample.

Statistics: 4 submissions, 0 accepted, 4 unknown

C: Cutting Edge
Problem Author: Paul Wild

Leftover cases
This solves all cases except for two:

• The case where a = b = c = 1 and v = 1. This is the first sample.
• The case where a = b = c = 2 and v = 25. Then r = 23. This is the third sample.

Statistics: 4 submissions, 0 accepted, 4 unknown

Random facts

Jury work

• 632 commits

• 681 secret test cases (last year: 486) (≈ 57 per problem!)
• 248 jury solutions (last year: 232)
• The minimum1 number of lines the jury needed to solve all problems is

10 + 114 + 27 + 5 + 64 + 51 + 42 + 32 + 43 + 23 + 10 + 6 = 427

On average 35.5 lines per problem, up from 9.6 in the BAPC

1After codegolfing

Random facts

Jury work

• 632 commits
• 681 secret test cases (last year: 486) (≈ 57 per problem!)

• 248 jury solutions (last year: 232)
• The minimum1 number of lines the jury needed to solve all problems is

10 + 114 + 27 + 5 + 64 + 51 + 42 + 32 + 43 + 23 + 10 + 6 = 427

On average 35.5 lines per problem, up from 9.6 in the BAPC

1After codegolfing

Random facts

Jury work

• 632 commits
• 681 secret test cases (last year: 486) (≈ 57 per problem!)
• 248 jury solutions (last year: 232)

• The minimum1 number of lines the jury needed to solve all problems is

10 + 114 + 27 + 5 + 64 + 51 + 42 + 32 + 43 + 23 + 10 + 6 = 427

On average 35.5 lines per problem, up from 9.6 in the BAPC

1After codegolfing

Random facts

Jury work

• 632 commits
• 681 secret test cases (last year: 486) (≈ 57 per problem!)
• 248 jury solutions (last year: 232)
• The minimum1 number of lines the jury needed to solve all problems is

10 + 114 + 27 + 5 + 64 + 51 + 42 + 32 + 43 + 23 + 10 + 6 = 427

On average 35.5 lines per problem, up from 9.6 in the BAPC

1After codegolfing

