
NWERC 2020 presentation of solutions

NWERC 2020 Jury

• Arnar Bjarni Arnarson
Reykjavík University

• Per Austrin
KTH Royal Institute of Technology

• Jeroen Bransen
Chordify

• Alexander Dietsch
FAU Erlangen-Nürnberg

• Ragnar Groot Koerkamp
ETH Zürich

• Bjarki Ágúst Guðmundsson
Google

• Nils Gustafsson
KTH Royal Institute of Technology

• Timon Knigge
ETH Zürich

• Robin Lee
Google

• Pehr Söderman
Kattis

• Jorke de Vlas
Utrecht University

• Mees de Vries
University of Amsterdam

• Paul Wild
FAU Erlangen-Nürnberg

Big thanks to our test solvers

• Bernhard Linn Hilmarsson
ETH Zürich

• Tómas Ken Magnússon
Google

• Ludo Pulles
Leiden University

• Bergur Snorrason
University of Iceland

• Tobias Werth
Google

K: Keyboardd
Problem Author: Pehr Söderman

Problem
Given are two strings, where some characters are duplicated in the second string. Find the duplicated
characters.

Solution

• For each of the possible 27 characters, count how often they appear in both strings.

• Output all characters where the counts differ.

Python solution

A = input()
B = input()
print(’’ . join (x for x in map(chr, range(32, 127)) if A.count(x) < B.count(x)))

Statistics: 200 submissions, 118 + ? accepted

C: Contest Struggles
Problem Author: Ragnar Groot Koerkamp

Problem
For n numbers between 0 and 100 you are given the average of all numbers (d), and the average of a
subset of k of those numbers (s). Compute the average of the remaining numbers.

Solution

• The sum of all numbers is d · n.

• So the sum of the remaining numbers is d · n − s · k.

• That parts contains n − k numbers, so the average of those numbers is (d · n − s · k)/(n − k).

• When the average is < 0 or > 100, print impossible.

Gotchas

• Precision issues, e.g. answers just below 0 or just above 100

Statistics: 180 submissions, 118 + ? accepted

H: Hot Springs
Problem Author: Timon Knigge

Problem

Permute a list of n integers (n ≤ 105) such that for each 2 ≤ i ≤ n − 1 it holds that
|t′i−1 − t′i | ≤ |t′i − t′i+1|.

Solution

• Sort the array.

• The largest possible value of |tx − ty | is max(t)−min(t).

• Put max(t) in the nth place and min(t) in the n − 1th place. It is guaranteed that no other
difference will be larger.

• Repeat the same logic with the last two elements fixed and t′ as the remaining elements.

• Now the largest value of |tx − ty | is max(t′)−min(t). Put max(t′) in the n − 2nd place.

• Continue, alternating between min and max of the remaining elements.

H: Hot Springs
Problem Author: Timon Knigge

Gotchas

• Not sorting the array in advance.

Statistics: 199 submissions, 114 + ? accepted

D: Dragon Balls
Problem Author: Paul Wild

Problem
Find the seven Dragon Balls in the 2D plane. A radar interactively tells you the distances from query
points to the closest balls. Balls disappear once found. You may use the radar at most 1 000 times.

D: Dragon Balls
Problem Author: Paul Wild

Solution Type 1 – Local Search
Pick a random starting point and home in on one of the balls. Repeat.

D: Dragon Balls
Problem Author: Paul Wild

Solution Type 2 – Search Space Partitioning
Use some kind of binary search / ternary search / quadtree.

D: Dragon Balls
Problem Author: Paul Wild

Solution Type 3 – Circle Intersections
Any two adjacent points will have the same closest ball with high probability. Query the two points,
then query the intersection point of the two circles.

D: Dragon Balls
Problem Author: Paul Wild

Solution Type 4 – Sum of Squares
Query a random point. Then try all integer points at the given distance.

D: Dragon Balls
Problem Author: Paul Wild

Gotchas

• Asking more queries after all balls have been found.

Statistics: 337 submissions, 70 + ? accepted

A: Atomic Energy
Problem Author: Jorke de Vlas

Problem
Given are the ‘explodification’ rules for an atom with a certain amount of neutrons:

• An atom with k ≤ n neutrons will be converted into ak units of energy.

• An atom with k > n will be decomposed into parts i , j ≥ 1 with i + j = k, which are then
recursively explodificated.

Given an atom with a fixed number of neutrons, what is the minimum energy released?

Observations
Since the decomposition is arbitrary, we have to assume the worst case – for k > n define:

ak := min
1≤i≤k−1

ai + ak−i .

There are upto 105 queries with k upto 109, so we cannot naively compute all values ai upto this
maximum. Naive computation requires O(k2) time for the first k values.

A: Atomic Energy
Problem Author: Jorke de Vlas

Observation 1
Our first crucial observation is that optimal solutions have a recursive structure. We can write any
explodification sequence as a binary tree. This is the first sample, k = 8:

a8 = 13

a2 = 3 a6 = 10

a3 = 5 a3 = 5

Recall this sample had a1,...,4 = {2, 3, 5, 7}.

A: Atomic Energy
Problem Author: Jorke de Vlas

Observation 1
For a given query k, imagine recursively following the decomposition ak = ai + ak−i until we end up
with a decomposition:

ak =
m∑
j=1

aij subj. to k =
m∑
j=1

ij , with ij ∈ {1, . . . , n}.

So the leaves of the decomposition tree are a collection of indices ij that sum to k. Is any
decomposition (ij) satisfying the right hand side realizable?

No – to actually construct this explodification sequence we need to end with some ax , ay with
x + y > n. If x + y ≤ n, there is no guarantee that ax+y = ax + ay . (Example: for n� 1, a sequence
of all a1’s is generally impossible.)

A sequence is realizable if it contains two x , y with x + y > n. After that, we can ‘add’ new atoms aij
inductively to construct the explodification tree. In fact any ‘prefix’ of such a sequence is optimal.

A: Atomic Energy
Problem Author: Jorke de Vlas

Faster computation

Now we can improve the computation of the first k values from O(k2) to O(nk):

ak = min
1≤i≤n

ai + ak−i .

Of course this is still not fast enough with k upto 109.

A: Atomic Energy
Problem Author: Jorke de Vlas

Observation 2
Let m ∈ {1, . . . , n} minimize am/m. When a query k is large enough, most of the terms in the
decomposition will be am. Indeed, if after removing the two distinguished values ax , ay from the
sequence we still have m or more values in the tree that are not am, by the pigeonhole principle there
must be a subset of them that have indices that sum up to a multiple of m, and we can replace them
by am’s to get a decomposition that is not worse.

Hence, any decomposition can be written in such a way that there are at most m + 1 terms that are
not am. In fact we can rearrange the sequence to have these terms in the front, and then fill in the
gap with am-terms.

A: Atomic Energy
Problem Author: Jorke de Vlas

Full solution
Let m minimize ai/i over all i ∈ {1, . . . , n}, and use the O(nk) algorithm from earlier to construct
the first (m + 1)n terms in time O(n3).

For each query k, find the smallest j ≥ 0 such that k − jm ∈ {1, . . . , (m + 1)n}, and output with
ak−jm + j · am.

Final runtime O(n3 + q). Efficient implementations of e.g. O(n4 + q) could also work.

Statistics: 421 submissions, 51 + ? accepted

F: Flight Collision
Problem Author: Jorke de Vlas

Problem
Some drones are flying along a straight line at constant speed. Simulate the crashes and report the
survivors.

Insight
At any moment, the next crash is going to be between two adjacent drones.

F: Flight Collision
Problem Author: Jorke de Vlas

Solution

• Maintain a set of potential crash events, sorted by time.

• The crash times can be found by solving linear equations.

• When processing a crash, add a new event for the two drones that become adjacent.

• Time complexity: O(n log n).

Gotchas

• Use fractions or long double to avoid precision errors.

• Only consider crashes at times t > 0.

Statistics: 421 submissions, 46 + ? accepted

E: Endgame
Problem Author: Nils Gustafsson

Problem

Given the location of a piece on an n × n playing board and n types of moves (n ≤ 105). Find a
position on the board that the piece cannot reach within two moves.

Solution

• Simpler question: Given a specific position, can the piece reach that position within two moves?
• BFS/DFS will take O(n2) time, which is too slow.
• Bidirectional search:

• F : the set of positions that the piece can reach within one move.
• B: the set of positions that can reach the target position within one move.
• F and B intersect iff. the piece can reach the position within two moves.
• These sets can be constructed and intersected in O(n log n) time.

• Asking this question for all n2 positions on the board is way too slow.
• Do we have to try all of them?

E: Endgame
Problem Author: Nils Gustafsson

Solution

• In the worst case, the piece can reach at most approx. n2/2 positions on the board within two
moves.

• If we pick a random position on the board, the piece can reach that position within two moves
with probability at most 1/2.

• Repeating this k times, the probability that the piece can reach all of them within two moves is at
most 1/2k , which quickly tends to 0.

• Run bidirectional search on 30 random positions.

Gotchas

• The piece is not allowed to move off the playing board.

• When n ∈ {2, 3}, the piece may be able to reach all the positions within two moves.

Statistics: 210 submissions, 37 + ? accepted

I: Island Tour
Problem Author: Jeroen Bransen

Problem
Three people start in three places on a cycle graph and walk around according to a timer. Where can
you place them so that they won’t ever be in the same place at the same time?

Solution

• A simple solution tries all O(n3) placements for Tijmen, Annemarie, and Imme and then simulates
the O(n) steps recording when each person arrives and departs at the nodes to compare with the
others for overlap.

• However, O(n4) is too slow. We need to do some pre-calculation.

• Conflicts are between two people rather than three. We only need to answer the question
does_intersect(a, b, sa, sb) for each pair of people a and b.

• So, for each pair of people a and b, try all O(n2) combinations and run the O(n) simulation.
Store the result in a table compatible[a][b][x][y] for later.

• Using the table, we can try all O(n3) possibilities in O(1) time each. This is fast enough.

I: Island Tour
Problem Author: Jeroen Bransen

Statistics: 113 submissions, 36 + ? accepted

G: Great Expectations
Problem Author: Mees de Vries

Problem
Determine the most efficient method to break the record in a speedrun. You may reset at any point.

Insights
During a run, you have r − n − 1 time margin to make errors.
Optimally, the only place where you reset is immediately after failing a trick.

G: Great Expectations
Problem Author: Mees de Vries

Solution attempt

• Use dynamic programming!

• DP[i , j] := the expected time until a record when you are just before trick i and have used j

margin for error. We are interested in DP[0, 0].

• When you complete trick i , the rest of the run takes (ti+1 − ti) + DP[i + 1, j] time.

• When you fail the trick, you either reset (taking DP[0, 0] time) or continue (taking
di + (ti+1 − ti) + DP[i + 1, j + di] time).

• This gives a DP relation:

DP[i , j] =
pi · ((ti+1 − ti) + DP[i + 1, j]) +

(1− pi) · min(DP[0, 0], di + (ti+1 − ti) + DP[i + 1, j + di])

• We can use DP[m][j] = 0 as the base cases for the DP.

G: Great Expectations
Problem Author: Mees de Vries

Catch
We now have a DP relation, but we need to know DP[0, 0] in order to use it.

Solution

• Consider making some guess P for the value of DP[0, 0]. We can use this value to fill the DP
table.

• When the resulting DP[0, 0] is larger than P, the guess was too low. When DP[0, 0] is smaller
than P, the guess was too high.

• Use binary search to determine the optimal value of P, and thus the actual value of DP[0, 0].

Statistics: 61 submissions, 8 + ? accepted

J: Joint Excavation
Problem Author: Timon Knigge

Problem
A connected graph is to be split into multiple connected components by a non-self-intersecting path.
The components are then to be distributed into two groups A and B such that the number of nodes
in both groups are the same.
Find a path and distribution that satisfy these requirements.

Solution

• Assign each node to group A.

• Run a Depth–First–Search starting at any node.

• Whenever the DFS visits a new node N, remove N from A and add it to the path.

• Whenever the DFS backtracks from node N∗, remove N∗ from the path and add it to B.

• Repeat until |A| = |B|.

• The DFS guarantees that A and B never have neighbouring nodes.

B: Bulldozer
Problem Author: Mees de Vries

Problem
Given a row of stack of blocks, how many ’bulldoze’ operations are needed to level all the blocks.

Observations

• Each block can be ’buried’ in two moves: push the bottom of the stack right, push the block left.

• It’s never worse to do all burying operations at the end.

• All other blocks that start non-grounded end at an initially empty stack.

• Number the non-grounded blocks from left to right, where each stack is numbered bottom to top.

• The final solution has stretches of blocks that move left, stretches of blocks that move right,
mixed with stretches of blocks that are buried.

• We have infinite space on the left and right, and the stretches of blocks that go there contain full
stacks of blocks only.

B: Bulldozer
Problem Author: Mees de Vries

C

B

A

D E

F

G

H

I

B: Bulldozer
Problem Author: Mees de Vries

C

B

A

D E

F

G

H

I

B: Bulldozer
Problem Author: Mees de Vries

C

B

A

D E

F

G

H

I

B: Bulldozer
Problem Author: Mees de Vries

C

B

A

D E

F

G

H

I

B: Bulldozer
Problem Author: Mees de Vries

CB

A D E

F

G

H

I

B: Bulldozer
Problem Author: Mees de Vries

D E

F

G

H

I

CBA

B: Bulldozer
Problem Author: Mees de Vries

D

E

F G

H

I

CBA

B: Bulldozer
Problem Author: Mees de Vries

D G

H

I

CBA E F

B: Bulldozer
Problem Author: Mees de Vries

D G H

I

CBA E F

B: Bulldozer
Problem Author: Mees de Vries

D G

HCBA

I

E F

B: Bulldozer
Problem Author: Mees de Vries

D G

HCBA IE F

B: Bulldozer
Problem Author: Mees de Vries

D

G HCBA IE F

B: Bulldozer
Problem Author: Mees de Vries

G H

D

CBA IE F

B: Bulldozer
Problem Author: Mees de Vries

G HDCBA IE F

B: Bulldozer
Problem Author: Mees de Vries

Solution

• Make a weighted directed graph on the initial state of the blocks, with a start vertex on the far
left and an end vertex on the far right. The shortest path will be the answer.

• For each empty stack S, find the block X that would end there when moving blocks from the left.
Add an edge from X to S of cost K, the required number of moves for this.

• Similarly, find the block Y that would end at S when moving blocks from the right. Add an edge
from S to Y of cost K.

• When block X ends in empty stack Y after K moves, all blocks in between are already levelled.

• Add an edge from the start vertex to the top of each stack: the cost of moving all in between
blocks left.

• Add an edge from the bottom of each stack to the end vertex: the cost of moving all in between
blocks right.

• For burying, add an edge between consecutive blocks of cost 2, but merge adjacent edges when
possible to prevent adding 2 · 1014 edges.

B: Bulldozer
Problem Author: Mees de Vries

Statistics: 12 submissions, 0 + ? accepted

Random facts

Jury work

• 616 git commits.

• 252 jury solutions with 11577 lines in total, about 46 lines on average.

• The number of lines the jury needed to solve all problems is

12+ 44+ 5+ 26+ 24+ 33+ 16+ 5+ 20+ 31+ 4 = 220

On average 20 lines per problem.

• 682 test cases, on average 46 per problem.

• Last test cases added yesterday evening, at least 2 submissions failed on only those.

Random facts

Timelimits

• Just lucky:

• Just unlucky (different problem and team):

Language stats

c cpp java kotlin python3
0

100

200

300

400
Accepted
Wrong Answer
Time Limit
Runtime Error
Pending

