
A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

FPC 2020 problem presentation; spoiler alert!

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem A - Alien Journey (1/3)

Problem description
Searching for the smallest height, such that a squared shape
UFO could travel from top left to bottom right of a map.
Along the path, the height of the UFO should be greater
than all the cells beneath.

Solution Part 1
First intution:
Have a method Check()

Check whether (height = h)
Is h high enough for the ship to travel?

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem A - Alien Journey (2/3)

Solution Part 2
Checking for all possible h takes took much time!, h ≤ 109!
Binary search (or PQ)!

Solution Part 3
To implement Check(h) there are multiple ways:
2D sliding window
RMQ
Segment tree

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem A - Alien Journey (3/3)

Pitfalls
Allow UFO to go outside the map
Height is very large so trying every height will not work

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem B - Banitsa (1/3)

Problem description
How many toppings do you need, so that all given pairs do
not have the same topping?

Observation
Using graph coloring theory, we know we need at most three
toppings (“colors”)

Solution
DFS, while using two alternating “colors” to color the nodes

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem B - Banitsa (2/3)

Problem description
How many toppings do you need, so that all given pairs do
not have the same topping?

Solution
DFS, while using two alternating “colors” to color the nodes

1

23

4

5 6

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem B - Banitsa (2/3)

Problem description
How many toppings do you need, so that all given pairs do
not have the same topping?

Solution
DFS, while using two alternating “colors” to color the nodes

1

23

4

5 6

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem B - Banitsa (2/3)

Problem description
How many toppings do you need, so that all given pairs do
not have the same topping?

Solution
DFS, while using two alternating “colors” to color the nodes

1

23

4

5 6

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem B - Banitsa (2/3)

Problem description
How many toppings do you need, so that all given pairs do
not have the same topping?

Solution
DFS, while using two alternating “colors” to color the nodes

1

23

4

5 6

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem B - Banitsa (2/3)

Problem description
How many toppings do you need, so that all given pairs do
not have the same topping?

Solution
DFS, while using two alternating “colors” to color the nodes

1

23

4

5 6

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem B - Banitsa (2/3)

Problem description
How many toppings do you need, so that all given pairs do
not have the same topping?

Solution
DFS, while using two alternating “colors” to color the nodes

1

23

4

5 6

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem B - Banitsa (2/3)

Problem description
How many toppings do you need, so that all given pairs do
not have the same topping?

Solution
DFS, while using two alternating “colors” to color the nodes

1

23

4

5 6

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem B - Banitsa (3/3)

Problem description
How many toppings do you need, so that all given pairs do
not have the same topping?

Solution
DFS, while using two alternating “colors” to color the nodes

1

2
3

4
5

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem B - Banitsa (3/3)

Problem description
How many toppings do you need, so that all given pairs do
not have the same topping?

Solution
DFS, while using two alternating “colors” to color the nodes

1

2
3

4
5

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem B - Banitsa (3/3)

Problem description
How many toppings do you need, so that all given pairs do
not have the same topping?

Solution
DFS, while using two alternating “colors” to color the nodes

1

2
3

4
5

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem B - Banitsa (3/3)

Problem description
How many toppings do you need, so that all given pairs do
not have the same topping?

Solution
DFS, while using two alternating “colors” to color the nodes

1

2
3

4
5

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem C - Chill and Netflix (1/4)

Problem description
Given a set of numbers, how many integers <= n (given)
can be written as a sum of numbers from the set. Using each
number any times and using at least one number.

Solution
2 known solutions, one with heuristics and one with graph
modelling

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem C - Chill and Netflix (2/4)

Solution Graph Modelling Part 1
First observation: if integer m can be reached then for any k
from the set with buttons, any number m’ can be reached if
(m’ mod k) == (m mod k) (by adding k an arbitrary number
of times)

Solution Graph Modelling Part 2
Find smallest number x from the buttons set and find for all
the numbers [0,1...x-1], smallest number m that could be
reached st m mod x equals that number. If m can be reached
then m+x, m+2*x.. can be reached. So we only need, for
each possible modulo, to find smallest reachable integer m

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem C - Chill and Netflix (3/4)

Solution Graph Modelling Part 3
Think of modulos as nodes, and buttons as edges to get from
a modulo to another Apply Dijkstra for getting smallest m
for each possible value modulo x. Go through all modulos
and calculate biggest k st. m+k*x < total number of second
Dense Graph with x nodes where x is min(buttons)

Pitfalls
Recursive solutions are too slow, they try all possible
combinations which are a lot Some teams modelled the
problem as a graph but insead of modulos, nodes where
actual reachable moments.

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem C - Chill and Netflix (4/4)

Solution: Brute force
Keep a boolean array of all timestamps
For every button, iterate over array and set timestamps you
can reach to true

But, this is too slow

Observations
Divide all buttons and movie length by their GCD
Start with the two smallest buttons that are relatively prime
to each other

Example, take 3 and 5: from this point on, you know that you
reach all seconds after second 15

Thus, we can do the brute force on a really small size!

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem D - Ducks and Sharks

Problem description
Calculate a ranking based on a list of matches.

Solution
Process the matches one by one, keeping track of the scores
per team in a HashMap or dictionary, pretty straight-forward.

Pitfalls
Only print the top 5
Sort alphabetically

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem E - Excursion (1/2)

Problem description
Given a tree with values in each node calculate the maximum
sum you can get by following a path in the tree

Solution
Recursively calculate the maximum sum S1 achievable by
starting at that node and moving to the children.
Also calculate the maximum path sum S2 which only
contains the current node (doesn’t have to start here).
Take the two highest S1 values among the children
The answer is the maximum value among the S2 sums,
which we can also keep track along the way.

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem E - Excursion (2/2)

Problem description
Given a tree with values in each node calculate the maximum
sum you can get by following a path in the tree

Solution
Recursion for the win!

Pitfalls
Always need to select one city even though all values may
be negative
Take into account that the result may not fall in int range

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem F - Family Tree (1/2)

Problem description
Calculate the “width” of the given tree.

Fun Fact
Based on events in real life!

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem F - Family Tree (1/2)

Problem description
Calculate the “width” of the given tree.

Fun Fact
Based on events in real life!

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem F - Family Tree (1/2)

Problem description
Calculate the “width” of the given tree.

Fun Fact
Based on events in real life!

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem F - Family Tree (1/2)

Problem description
Calculate the “width” of the given tree.

Fun Fact
Based on events in real life!

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem F - Family Tree (1/2)

Problem description
Calculate the “width” of the given tree.

Fun Fact
Based on events in real life!

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem F - Family Tree (2/2)

Problem description
Calculate the “width” of the given tree.

Solution
1 First, read in the full tree (lines are not in order)
2 Create a list of nodes L, initially only containing the root
3 While L is not empty:

1 Retrieve all children of all nodes in L
2 Set L to this list of all children

4 Return the maximum size of L

Pitfalls
The lines are not necessarily in order

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem G - Group Activities (1/2)

Problem description
Find the smallest number of people that you can divide into
all of the given group sizes.

Solution
Find the Least Common Multiple (LCM) of all numbers.

def gcd(a, b): # recursive
if b == 0:

return a
return gcd(b, a % b)

def gcd(a, b): # iterative
while b != 0:

a, b = b, a % b
return a

def lcm(a, b):
return a * b / gcd(a, b)

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem G - Group Activities (2/2)

Problem description
Find the smallest number of people that you can divide into
all of the given group sizes.

Solution
Find the Least Common Multiple (LCM) of all numbers.

Pitfalls
For Java and C++: do not multiply over the long limit
Also: Scanner.nextInt() does not accept longs
Do not use floating-point numbers

(e.g. Math.pow in Java or a / b in Python)

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

H - Halt and Catch Fire (1/2)

Problem description
Very straightforward: Create an interpreter that runs the
provided program. Buffer each line of code, then run through
them and run the instructions.

Solution
Store program into buffer, create map for registers
As long as $pc is within bounds:

Parse the instruction, taking into account immediate values
and registers.
Run the instruction
Increment the $pc register

Output $out to stdout

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

H - Halt and Catch Fire (2/2)

Pitfalls
Not buffering lines: Can’t jump backward!
Not using $pc as a register: Something like mov 1 $pc
won’t work
$pc can be less than zero! Stop the program if this is the
case.

A - Alien Journey

B - Banitsa

C - Chill and
Netflix

D - Ducks and
Sharks

E - Excursion

F - Family Tree

G - Group
Activities

H - Halt and
Catch Fire

I - Integrity
Overflow

Problem I - Integrity Overflow

Problem description
Check whether a list of passwords is correct, allowing at most
one character to be wrong.

Solution
Check each password character-by-character and count the
number of characters that are different.
Count equal to 0 or 1? X

Count 2 or more? X

Pitfalls
With a correct password being DENIED, system is insecure
Passwords are not always of same length

	A - Alien Journey
	B - Banitsa
	C - Chill and Netflix
	D - Ducks and Sharks
	E - Excursion
	F - Family Tree
	G - Group Activities
	H - Halt and Catch Fire
	I - Integrity Overflow

