
BAPC 2020 Preliminaries
Preliminaries for the

2020 Benelux Algorithm Programming Contest

Problems
A Adversarial Memory
B Binary Seating
C Cutting Corners
D Ducky Debugging
E Eightgon
F Figure Skating
G Group Project
H Human Pyramid
I In-place Sorting
J Jam-packed
K Kangaroo Commotion

Copyright © 2020 by The BAPC 2020 jury. This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

Problem A: Adversarial Memory 3

A Adversarial Memory
Charlie is playing a game of memory (also known as concentra-
tion) on his own. The game consists of 2n cards, where each of
the numbers from 1 to n is written on exactly two cards. The
cards are upside down on the table. In a turn, Charlie turns
over one card, looks at it, and then turns over another card.
If the cards have the same number, they are removed from the
game. Otherwise, they are turned back over and placed back.
The goal of the game is to remove all the cards from the game in as few moves as possible.

You are a magician, and hence you are able to change the numbers on upside down cards
seamlessly. If Charlie turns over the same card twice, you need to make sure that he sees the
same number both times, or else Charlie would notice something is wrong. You also need to
make sure that for each number there will be exactly two cards on which Charlie will see that
number. Your goal is to force Charlie to need at least 2n− 1 turns to finish the game.

More formally, there are 2n indices from 1 to 2n. In a turn, Charlie chooses an index i and
turns over the card at index i. You can then decide what number Charlie will see when he
turns over the card. Then Charlie will choose a different index j and turn over the card at
index j. You can then decide what number Charlie will see when he turns over that card.
The only restrictions are that Charlie must always see the same number when he turns over
the same card, and that for each number there will be exactly two cards on which Charlie
will see that number. Note that Charlie will never choose the index of a card that is already
out of the game.

Interaction

This is an interactive problem. Your submission will be run against an interactor, which reads
the standard output of your submission and writes to the standard input of your submission.
This interaction needs to follow a specific protocol:

The interactor first sends a line containing the integer n (1 ≤ n ≤ 10 000), the number of
different values on the cards.

Following this, 2n− 1 turns will be played. Each turn consists of two parts:

• The interactor first sends a line containing an integer i (1 ≤ i ≤ 2n), denoting the index
of the first card Charlie turns over. Your program must respond with the number on
card i.

• The interactor then sends a line containing an integer j (1 ≤ j ≤ 2n), denoting the index
of the second card Charlie turns over. Your program must respond with the number on
card j.

For each turn, it is guaranteed that i and j are distinct indices of cards that are still in the
game.

4 Problem A: Adversarial Memory

Your submission should exit after it has answered 2n− 1 turns (i.e. printed 4n− 2 numbers).
Reading more input will result in a time limit exceeded and printing more output will result
in a wrong answer.

Make sure you flush the buffer after each write.

A testing tool is provided to help you develop your solution.

Read Sample Interaction 1 Write
1

1

1

2

1

Read Sample Interaction 2 Write
3

1

1

2

2

3

2

2

2

4

3

5

1

5

1

1

1

4

3

6

3

Problem B: Binary Seating 5

B Binary Seating

By Freepik on
www.flaticon.com

By accident, two rooms (room 0 and room 1) got booked for the theo-
retical exam of the B++ Applied Programming Course and both were
communicated to the students. Now students might go to either of the
rooms, and as a student assistant your job is to supervise room 1. Since
you assisted all these students during the course, you know how much
time each student will need to finish the exam. Already before the exam
you are eager to go home, but you can only leave when all of the students
in your examination room have finished. You assume that every student
chooses one of the exam rooms with equal probability, independent of
the other students. After how much time do you expect to be able to
leave?

Input

The input consists of:

• A line with an integer n (1 ≤ n ≤ 40), the number of students.

• A line with n integers t1, . . . , tn (1 ≤ ti ≤ 1000): ti is the time it takes for the ith
student to finish the exam and leave.

Output

Output the expected time before you can leave. Your answer should have an absolute or
relative error of at most 10−6.

Sample Input 1 Sample Output 1
2
2 3

2

Sample Input 2 Sample Output 2
5
1 4 5 2 3

4.03125

Sample Input 3 Sample Output 3
5
2 1 1 1 1

1.46875

6 Problem C: Cutting Corners

C Cutting Corners

CC BY-SA 2.0 by SixRevisions on
Flickr

A large coffee spill in the warehouse of the Busy Association of
Papercutters on Caffeine has stained the corners of all paper in
storage. In order to not waste money, it was decided that these
dirty corners should be cut off of all pieces of paper.

A few members loudly proclaim that cuts should be made di-
agonally, while other members say that cutting the corner out
as a rectangle is the better option. Both parties claim their
method is better.

You decide to end this discussion once and for all, telling the rectangle-cutters that their
method is slower. You set out to show them the following: given a piece of paper which has
a w by h corner that is stained with coffee that needs to be to cut off, how much more effort
is it to cut out the whole rectangle compared to cutting along the diagonal?

Input

The input consists of:

• A line containing two integers w and h (1 ≤ w, h ≤ 100), representing the width and
height of the corner respectively.

Output

Output how much longer you have to cut if you cut out a rectangle, compared to cutting
along the diagonal. Your answer should have an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1
3 4 2

Sample Input 2 Sample Output 2
12 7 5.107556011

Sample Input 3 Sample Output 3
1 1 0.585786438

Problem D: Ducky Debugging 7

D Ducky Debugging

CC BY-SA 3.0 By Tom Morris on
Wikipedia

You don’t know anything about programming, but nonetheless
you and your friend Bob joined the BAPC. Bob just submitted
a solution to a problem, but sadly his submission was not ac-
cepted. You will help him figure out what mistake he made. In
order to do so, he will explain what every part of the program
should do according to him. He does not want you to inter-
rupt him while he is explaining, but whenever he is unsure of
something, he will ask for confirmation. Bob is actually a very
good coder, so whenever he asks for confirmation, he is simply
right. You just need to react by nodding and saying “Quack!”.
As long as you don’t interrupt him at the wrong time, and as
long as you say “Quack!” at the right times, he will eventually
find his mistake and he will shout “I quacked the code!”.

Interaction

This is an interactive problem. Your submission will be run against an interactor, which reads
the standard output of your submission and writes to the standard input of your submission.
This interaction needs to follow a specific protocol:

The interactor sends one line of text at a time, each line being one sentence of Bob’s mono-
logue. You need to reply as follows:

• If the line ends with a question mark (“?”), your reply must be the string “Quack!”.

• If the line ends with a period (“.”), your reply must be the string “*Nod*”.

• If the line is exactly “I quacked the code!”, your submission should exit.
Reading more input will result in a time limit exceeded and printing more output will
result in a wrong answer.

Bob’s monologue will be no more than 100 sentences, with at most 10 000 characters in total.
It is guaranteed that every sentence, except the last one, ends with a question mark (“?”) or
a period (“.”).

Make sure you flush the buffer after each write.

A testing tool is provided to help you develop your solution.

Read Sample Interaction 1 Write
In the loop, I read a line of input.

Nod

The method std::getline(std::cin,

line); reads until a newline, right?

8 Problem D: Ducky Debugging

Quack!

Then I branch according to the last

character of the line of input.

Nod
When the character is an exclamation

mark, I terminate the program.

Nod
When it is a question mark, I need

to print "Quack!" right?

Quack!

In any other case, I simply print

"*Nod*".

Nod
Wait, to flush the output stream

I need to use std::endl instead of

'\n' right?

Quack!

I quacked the code!

Read Sample Interaction 2 Write
My program seems to always exit

after reading one line.

Nod
Shouldn't it only halt when a line

ends with an exclamation mark?

Quack!

After reading a line, I check the

last character using a switch.

Nod
When the character is a period, I

print "*Nod*".

Nod
When the character is a question

mark, I print "Quack!".

Nod
Wait, both get printed before the

program exits?

Quack!

I guess I forgot to add break; here

and there...

Nod
I quacked the code!

Problem E: Eightgon 9

E Eightgon
After many years you and your coauthor H. Addaway have finally developed a Theory of
Everything that explains everything: Why does time have a direction? How should quantum
mechanics be interpreted? What caused the Big Bang? What is love?

An unfortunate fact about physics is that physical theories need to be experimentally tested.
In particular, your theory rests on the discovery of so called Barely Audible Particle Clusters
(BAPCs). For this purpose you have proposed the development of a Large Eightgon Collider.
What remains is to find a suitable location to construct this scientific wonder.

For obvious reasons, the Large Eightgon Collider must consist of eight straight tunnels that
together form an underground cycle. Each tunnel is allowed to have a different non-zero
length. At each of the eight tunnel connections, a special detector must be built, that also
slightly deflects the particles 45 degrees to the left. Each of the eight detectors attracts many
researchers, requiring a shaft to the surface to supply them with fresh food and oxygen.

In order to save costs, they will reuse abandoned mine shafts. Given a map of all abandoned
mine shafts, your job is to find the number of possible locations to build this miracle. You
only consider locations where at least one tunnel runs parallel to the x-axis of the map.

Figure E.1 shows the second sample.

0 1 2 3 4

0

1

2

3

4

Figure E.1: Visualisation of Sample 2 showing one possible location for the Large Eightgon Collider.

Input

The input consists of:

• A line with an integer n (1 ≤ n ≤ 5000), the number of abandoned mine shafts.

• n lines, each with two integers x and y (−108 ≤ x, y ≤ 108), the coordinates of the
abandoned mine shafts.

10 Problem E: Eightgon

Output

Output the number of possible locations to build the Large Eightgon Collider.

Sample Input 1 Sample Output 1
8
0 1
1 0
0 2
2 0
3 1
1 3
3 2
2 3

1

Sample Input 2 Sample Output 2
21
0 1
0 2
0 3
1 0
1 1
1 2
1 3
1 4
2 0
2 1
2 2
2 3
2 4
3 0
3 1
3 2
3 3
3 4
4 1
4 2
4 3

15

Problem F: Figure Skating 11

F Figure Skating

CC-BY-SA 4.0 By Sandro Halank on
commons.wikimedia.org

Figure skating is a very popular sport at the Winter Olympics.
It has been on the programme the longest of all winter sports,
having even been included in the Summer Olympics before the
split in 1924. Just like in gymnastics, each contestant exe-
cutes a routine consisting of elements, which are individually
scored by a jury. This subjective aspect to judging skill al-
ways leaves room for heated discussion, but a huge scandal in
the 2002 Winter Olympics, with allegations that the game had
been fixed, caused a transition to the new scoring system IJS.
Points awarded to each element of the routine are known be-
forehand: A Lutz scores 0.60 points (but 2.10 for a double and
5.90 for a triple), a Salchow scores 0.40 (1.30 for double, 4.30 for triple), an Euler scores 0.50,
et cetera. Then, points are added or subtracted by the jury based on execution. Consequently,
a figure skater is able to estimate his or her score assuming average performance.

Olympics observers from the Bookmakers’ Association for the Prevention of Cheating are
tasked with assessing the objectivity of the jury. They will compare the predicted ranking of
the contestants with the final outcome to determine who is the jury’s favourite. The favourite
is the contestant who rose the most places between the predicted and final scoreboard. Ties
are broken by whoever ends up higher on the final scoreboard. However, if no one did better
than predicted, this raises some red flags with the observers, which is declared “suspicious”.

Input

The input consists of:

• A line containing a single integer n (1 ≤ n ≤ 1000), the number of contestants.

• n lines, the ith of which contains the name of the contestant who places ith on the
predicted scoreboard.

• n lines, the ith of which contains the name of the contestant who places ith on the final
scoreboard.

Each name consists of at most 100 lower-case and upper-case alphabetical characters. All
names are unique, and occur on both scoreboards exactly once.

Output

If the scoreboards are suspicious, output “suspicious”. Otherwise, output the name of the
jury’s favourite.

12 Problem F: Figure Skating

Sample Input 1 Sample Output 1
3
Plisetsky
Katsuki
Leroy
Leroy
Plisetsky
Katsuki

Leroy

Sample Input 2 Sample Output 2
2
Allison
Bobson
Allison
Bobson

suspicious

Sample Input 3 Sample Output 3
3
daSilva
Aziz
Peters
Aziz
Peters
daSilva

Aziz

Problem G: Group Project 13

G Group Project

CC-BY-NC 2.0 By Mark Knobil,
knobil on Flickr

The big day has finally arrived: today you are going to form
groups of two in which you will do the end-of-the-year project.
When you arrive at school, you learn that the teacher of the
other class is sick, and that your teacher, Mr. B.A.P. Cee, will
also have to make groups for the other class. Mr. B.A.P. Cee
is a smart guy and realizes that he can use these unfortunate
circumstances to his advantage.

Ending up with groups of one should be avoided at all cost, so
mixing the students of the two classes may avoid this situation.
However, while it is easy to pair up two students from the same
class, it is more difficult to match up students from different
classes. Throughout the years there has been a lot of rivalry
between the two groups, and many students dislike students in
the other class. Mr. B.A.P. Cee knows which pairs of students
will result in a fight and a failed project.

You are given a list of pairs of students who cannot work together. How many disjoint groups
of two can Mr. B.A.P. Cee make that will not result in a failed project?

Input

The input consists of:

• A line with two integers n (1 ≤ n ≤ 105), the number of students, and m (0 ≤ m ≤ 2 · 105),
the number of pairs of students who cannot work together.

• m lines, each with two distinct integers i and j (1 ≤ i, j ≤ n, i 6= j), giving a pair of
students who cannot work together.

Students are identified by the numbers 1 through n. It is guaranteed that it is possible to
split the students into two classes in such a way that all students from the same class get
along.

Output

Output the number of pairs of students Mr. B.A.P. Cee can make without making any pair
of students who cannot work together.

Sample Input 1 Sample Output 1
3 2
1 2
3 1

1

14 Problem G: Group Project

Sample Input 2 Sample Output 2
5 6
1 4
2 4
3 4
1 5
2 5
3 5

2

Sample Input 3 Sample Output 3
6 6
1 4
2 5
3 6
1 5
3 5
2 6

3

Problem H: Human Pyramid 15

H Human Pyramid

CC BY-SA 3.0 by Xzenia Witehira on
Wikipedia

The Barefooted Acrobatics People’s Club wants to make a
group photo in an original way. For the photo, they want to
make a human pyramid, where each person rests on the ground
or rests on the shoulders of two people below him or her.

Making a human pyramid demands a lot from the acrobats
involved, so the club selected a group consisting of strong people
of which they are assured that these people can carry enough
weight. The others are ‘agile’ and to make sure everyone is
comfortable during the photo, there can only be agile people
directly above an agile person.

The photographer wants to make a photo of a pyramid with h

people on the floor, h−1 on the second layer, h−2 on the third
layer, and so on, with a single person on the hth layer. You have
s strong people at your disposal, and the other 1

2h(h + 1) − s

people are agile. What is the number of ways you can arrange
the pyramid satisfying the demands of the photographer? Since
this number may be large, you should find it modulo 109 + 7.

Two pyramids P1 and P2 are different if there exists a location where P1 has an agile person
and P2 a strong person, or vice versa.

Input

The input consists of:

• A line containing two integers h (1 ≤ h ≤ 100) and s (0 ≤ s ≤ 1
2h(h + 1)), the number

of layers in the pyramid and the number of strong people.

Output

Output the number of possible ways to build a pyramid with the given constraints, modulo
109 + 7.

Sample Input 1 Sample Output 1
3 3 3

Sample Input 2 Sample Output 2
5 3 14

16 Problem I: In-place Sorting

I In-place Sorting

CC BY-SA 4.0 by Balu Ertl on
Wikimedia

Woe is you – for your algorithms class you have to write a
sorting algorithm, but you missed the relevant lecture! The
subject was in-place sorting algorithms, which you deduce must
be algorithms that leave each input number in its place and yet
somehow also sort the sequence.

Of course you cannot change any of the numbers either, then
the result would just be a different sequence. But then it hits
you: if you flip a 6 upside-down, it becomes a 9, and vice versa!
Certainly no one can complain about this since you changed
none of the digits! The deadline to hand in the exercise is in
five hours. Try to implement this sorting algorithm before then!

Input

The input consists of:

• A line with an integer n (2 ≤ n ≤ 10 000), the number of integers in the input sequence.

• n lines, the ith of which contains a positive integer xi (1 ≤ xi ≤ 1018), the ith number
of the sequence.

Output

If the sequence cannot be sorted in non-decreasing order by flipping some of the digits 6 or 9
in the input1, output “impossible”. Otherwise, output “possible” followed by the sorted
sequence – each number on its own line.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1
4
9
7
7
9

possible
6
7
7
9

Sample Input 2 Sample Output 2
4
97
96
66
160

possible
67
69
99
190

1Flipping any of the digits of n is not allowed.

Problem I: In-place Sorting 17

Sample Input 3 Sample Output 3
3
80
97
79

impossible

Sample Input 4 Sample Output 4
2
197
166

possible
167
169

18 Problem J: Jam-packed

J Jam-packed

CC-BY-SA 2.0 By treehouse1977 on
Flickr

The fruit harvest has been good this year, which means that
your jam-selling company, which produces the price-winning
Berry Artisanal and Pure Compote, is shipping out jam left
and right! A customer has recently placed a huge order of n

jars of jam. To ship these jars, you put them into boxes, each
of which can hold up to k jars.

As is always the case with fragile goods, the jars might break
in the process of being delivered. You want to avoid the jars
bouncing around in their boxes too much, as that significantly increases the chance that they
break. To circumvent this, you want to avoid having boxes that are too empty: that would
inevitably result in the uncontrolled bouncing around, and subsequently breaking, of the jars.
In particular, you want the box with the least number of jars to be as full as possible. In
order to estimate the risk you are taking with your precious jars, you would like to know:
how many jars does this box contain?

Input

The input consists of:

• A line with two integers n (1 ≤ n ≤ 1018), the number of jars that need to be packed,
and k (1 ≤ k ≤ 1018), the number of jars a single box can hold.

Output

Output the number of jars that the least filled box contains.

Sample Input 1 Sample Output 1
10 3 2

Sample Input 2 Sample Output 2
16 4 4

Sample Input 3 Sample Output 3
1 2 1

Problem K: Kangaroo Commotion 19

K Kangaroo Commotion
Bushfires are threatening your habitat! Being a kangaroo, you must inform the other kanga-
roos in your troop as fast as possible and flee to a safe area.

You are currently standing still, and you will jump to the other kangaroos’ locations. You
will visit the other kangaroos in a specific order so that all of them have sufficient time to
escape. After visiting all other kangaroos you must continue jumping to the safe area, where
you should come to a stop.

With each jump you move a (possibly negative) integer distance north and/or east. Because
of your limited muscle power, you are only able to accelerate or decelerate at most 1 in each
direction each jump. Formally, if jump i moves you vx,i to the north and vy,i to the east, the
next jump i + 1 must satisfy |vx,i+1 − vx,i| ≤ 1 and |vy,i+1 − vy,i| ≤ 1.

Find the minimal number of jumps needed to go from your current position to the safe area
via all other kangaroos, without leaving the grid. It is very important to come to a full stop
at the end, so the last jump must both start and end at the safe area.

The first sample is shown in figure K.1.

Figure K.1: Visualisation of Sample 1 showing one possible way to get to the safe area using 9 jumps.

Input

The input consists of:

• A line containing three integers r, c (1 ≤ r, c ≤ 50), the number of rows and columns of
the grid, and k (1 ≤ k ≤ 5), the number of other kangaroos you need to warn.

• r lines each consisting of c characters. A “.” indicates an open space and a “#” indicates
a bush where you can’t jump.

20 Problem K: Kangaroo Commotion

Your start position is indicated by a “0” and the characters “1” to k indicate the
positions of the other kangaroos you need to warn in this order.

The position indicated by k +1 indicates the safe area where you should come to a stop.

Output

If it is possible to reach the safe area, then output the minimal number of steps needed to
reach the safe area. Otherwise, output “impossible”.

Sample Input 1 Sample Output 1
5 5 1
0..2.
.###.
.....
.....
.#.#1

9

Sample Input 2 Sample Output 2
2 2 2
03
12

4

Sample Input 3 Sample Output 3
1 5 1
.0#21

8

Sample Input 4 Sample Output 4
3 4 1
#0##
#.#2
1###

impossible

	Problems
	Adversarial Memory
	Binary Seating
	Cutting Corners
	Ducky Debugging
	Eightgon
	Figure Skating
	Group Project
	Human Pyramid
	In-place Sorting
	Jam-packed
	Kangaroo Commotion

