
BAPC 2020
The 2020 Benelux Algorithm Programming Contest

Problems
A Aquarium Arrangement
B Balanced Breakdown
C Corrupted Contest
D Destabilized Drone
E Efficiently Elevated
F Family Fares
G Generator Grid
H Hungry Henk
I Incomplete Implementation
J Jigsaw
K Xortest Path



Copyright © 2020 by The BAPC 2020 jury. This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/


Problem A: Aquarium Arrangement 3

A Aquarium Arrangement Time limit: 2s

CC BY-SA 2.0 by Freek Henstra

You are an employee at the Benelux Aquarium for
Piranhas and Catfish. The aquarium is hoping to ex-
pand its meagre selection of aquatic life, but lacks the
funds to do so. You have been tasked to help promote
the aquarium by taking photos of the two exhibits.
Taking the first photo went swimmingly, because the
catfish were very cooperative. For the piranhas, you
have an arrangement of piranhas in mind that will
look great on the photo. However, the only way to
get the piranhas to move is by recklessly sticking your
finger into the water to lure the piranhas. Your goal
is to move the piranhas to the desired positions as quickly as possible without losing your
finger in the process.

The piranha exhibit can be divided into positions 1, . . . , n from left to right. The exhibit
contains k piranhas and every position is occupied by at most one piranha. You can stick
your finger into any unoccupied position. This will lure the nearest piranha to the left of your
finger and the nearest piranha to the right of your finger. These piranhas will swim towards
your finger, moving forward one position per second. All other piranhas simply stay in place.
A piranha will bite your finger if it reaches the same position, so you must pull your finger
away before this happens. Pulling your finger away and sticking it into a different position
does not take any time.

For example, suppose there are piranhas at positions 2, 7 and 9. If you stick your finger into
the water at position 4, the piranhas will be at positions 3, 6 and 9 after one second. You
now have to pull your finger away to prevent the piranha at position 3 from biting your finger
one second later. If you now stick your finger into the water at position 1, only the piranha
at position 3 will move and will end up at position 2 after one second.

Input

The input consists of:

• One line containing two integers n (1 ≤ n ≤ 1000), the number of positions, and k

(1 ≤ k ≤ n), the number of piranhas.

• One line containing k integers 1 ≤ p1 < . . . < pk ≤ n, the current positions of the
piranhas.

• One line containing k integers 1 ≤ d1 < . . . < dk ≤ n, the desired positions of the
piranhas.



4 Problem A: Aquarium Arrangement

Output

Output the minimum number of seconds needed to get all of the piranhas at the desired
positions. If it is impossible to do so, output “impossible”.

Sample Input 1 Sample Output 1
9 3
3 7 9
3 5 9

4

Sample Input 2 Sample Output 2
8 3
1 5 8
2 4 7

impossible

Sample Input 3 Sample Output 3
20 6
1 4 7 10 13 20
2 5 8 11 14 17

17



Problem B: Balanced Breakdown 5

B Balanced Breakdown Time limit: 1s

CC BY-SA 3.0 IGO by European Space
Agency on Wikimedia Commons, edited

For communication through space between earth and satel-
lites, one cannot simply transmit a message in the same
way as cellular communication like 4G. Because of the ex-
tremely long distance a signal travels, the message might
be distorted by noise.

Throughout the years, researchers have found ways to by-
pass this problem, and the solution lies in introducing re-
dundant data. This gives the receiver a method to test if
the received data contains an error, in which case it can
ask the sender to transmit the message again, or it might be able to recover the original
message if there was only a small error. This area of research is called Coding Theory.

The TU Delft Space Institute has asked you to research a new way of transmitting numbers
in which errors are more easily observed. The idea is as follows: given a number n, you write
it as a sum of ‘balanced numbers’. We call a number ‘balanced’ when it is non-negative and a
palindrome when written in base 10, i.e. the digits are the same when read from left to right
as when read from right to left. To send a number, you simply find a way to express it as a
sum of balanced numbers, and send each balanced number as you would normally do. The
receiver may now check if it received a number which was not balanced, in which case there
was an error.

To keep the communication efficient enough, the institute has added the constraint that a
number can only be broken down into the sum of at most 10 balanced numbers. Now it is up
to you to write a program which breaks a number down into balanced numbers1.

Input

The input consists of:

• One line containing a single integer n (1 ≤ n < 1018), the number you want to write as
a sum of balanced numbers.

Output

Output one line containing 1 ≤ k ≤ 10, the number of balanced numbers you need, followed
by k lines, containing the balanced numbers you want to send.

If there are multiple possible solutions, you may output any one of them.

Sample Input 1 Sample Output 1
1100000 2

645546
454454

1A recent paper has shown that every positive integer is a sum of three balanced numbers.



6 Problem B: Balanced Breakdown

Sample Input 2 Sample Output 2
1000 5

1
99
1
898
1



Problem C: Corrupted Contest 7

C Corrupted Contest Time limit: 1s

You are organizing a programming competition in which the
rank of a team is first determined by how many problems they
have solved. In case of a tie, the team with the lowest time
penalty is ranked above the other. However, contrary to the
BAPC, the time penalty is equal to t if the latest accepted
submission was submitted in the tth minute, or 0 if no problem
was solved.

For example, if team A solved their first problem in the 5th
minute, their second problem in the 10th minute and their third
problem in the 60th minute, then their time penalty is 60. If
team B also solved three problems, in the 30th, 40th and 50th minute, their time penalty is
50 and they would rank above team A.

The contest has finished and you would like to enter the final standings. However, due to a
corrupted file you have lost part of the scoreboard. In particular, the column indicating how
many problems each team has solved is gone. You do still have the time penalties of all the
teams and know that they are in the right order. You also remember how many problems the
contest had. You wonder whether, given this information, it is possible to uniquely reconstruct
the number of problems that each team has solved.

Input

The input consists of:

• One line containing two integers: n (1 ≤ n ≤ 104), the number of teams participating,
and p (1 ≤ p ≤ 104), the number of contest problems.

• n lines with on line i the time score ti in minutes (0 ≤ ti ≤ 106) of the team that is
ranked in the ith place.

A positive time score of t indicates that a team has submitted their last accepted submission
in the tth minute. A time score of 0 indicates that a team hasn’t solved any problem.

The input always originates from a valid scoreboard.

Output

If it is possible to uniquely reconstruct the scores of all the teams, output n lines containing
the number of problems that the ith team has solved on the ith line. Otherwise, output
“ambiguous”.



8 Problem C: Corrupted Contest

Sample Input 1 Sample Output 1
9 3
140
75
101
120
30
70
200
0
0

3
2
2
2
1
1
1
0
0

Sample Input 2 Sample Output 2
6 3
100
40
40
50
0
0

ambiguous



Problem D: Destabilized Drone 9

D Destabilized Drone Time limit: 2s

Your brand new drone company is planning to beat the competition with an amazing new
piece of software, called the Bank And Pitch Controller. This software will make sure the
drone is always horizontal, a must have feature for high end drones. In order to do so, it
needs to measure the bank and pitch of the drone. Since the drone already has a front facing
camera, this will be used to measure these numbers.

Given a single frame (image) from this camera, the software runs a highly advanced machine
learning model to determine whether each pixel in the frame is sky, sea, or exactly on the
horizon. The machine learning model is rather slow and can process only 900 pixels before
the next video frame comes in. To stabilize the drone quickly enough, you need to create
an efficient algorithm that can find the horizon by querying at most 900 pixels. Using this
information, the rest of the BAPC will be able to compute the bank and pitch.

Figure D.1: Visualisation of Sample 1 showing the queried pixels, including two pixels on the horizon
marked in white.

It is given that the horizon can be modelled by an exact straight line, and that at least two
pixels in the image will be classified as horizon. Furthermore, the drone is usually flying
roughly horizontal, so you may assume that the top row of the picture is always sky and that
the bottom row of the picture only contains sea pixels.

A visualisation of the first sample can be seen in Figure D.1.

Interaction

This is an interactive problem. Your submission will be run against an interactor, which reads
the standard output of your submission and writes to the standard input of your submission.
This interaction needs to follow a specific protocol:

The interactor first sends a line containing two integers w and h (3 ≤ w, h ≤ 1000), the width
and height of the image.



10 Problem D: Destabilized Drone

Then, your program should make at most 900 queries to determine the horizon. Each query is
made by printing a line of the form “? x y” (1 ≤ x ≤ w, 1 ≤ y ≤ h), where x is the column
of the pixel, counting from the left, and y is the row of the pixel, counting from the bottom.
In response to each query, the interactor will print one of: “sky”, “sea”, or “horizon”,
indicating whether the pixel is above, below, or on the horizon respectively.

When you have determined the horizon, print a single line of the form “! x1 y1 x2 y2”
(1 ≤ x1, x2 ≤ w, 1 ≤ y1, y2 ≤ h) containing an exclamation mark, followed by the coordinates
of two distinct pixels on the horizon. This line does not count as one of your queries. Following
this, your submission should exit and not read any more input.

If there are multiple valid solutions, you may output any one of them.

Make sure you flush the buffer after each write.

A testing tool is provided to help you develop your solution.

Read Sample Interaction 1 Write
5 5

? 2 4

sky

? 4 3

sea

? 5 4

horizon

? 2 3

sky

? 3 3

horizon

! 5 4 3 3

Read Sample Interaction 2 Write
1000 1000

? 999 999

horizon

? 2 3

horizon

! 2 3 999 999



Problem E: Efficiently Elevated 11

E Efficiently Elevated Time limit: 2s

You are an employee of the Brussels Architectural Projects Consultancy in charge of ensuring
all building designs meet the accessibility requirements. As law dictates, every part of your
building should be reachable for wheelchair users, which means elevators will have to be
installed. You are given the blueprints of the company’s current project and have to determine
the minimum number of elevators required.

The floor plan is laid out on a square grid and the blueprints tell you the number of floors
above any given square. You can place an elevator at any square, which stops at all floors
of that square. A wheelchair user can move up and down between floors using the elevators
and can freely move to any of the four adjacent squares on the same floor. Buildings do not
connect diagonally.

Figure E.1 shows the second sample input. Designs can consist of multiple buildings; this
one contains three buildings. The design requires two elevators: one for the pyramid-shaped
building and one for the tall tower. The small building of height one does not require an
elevator, since it only has a ground floor.

Figure E.1: A visualisation of the second sample input.

Input

The input consists of:

• One line containing integers h and w (1 ≤ h, w ≤ 500), the height and width of the grid.

• h lines of w integers each, where xi,j (0 ≤ xi,j ≤ 109), the jth integer on the ith line,
denotes the number of floors at position (i, j) of the grid.

Output

Output the minimum number of elevators you need to build to be able to reach every part of
the building(s) in the grid.



12 Problem E: Efficiently Elevated

Sample Input 1 Sample Output 1
3 3
1 2 3
0 0 4
7 6 5

1

Sample Input 2 Sample Output 2
6 7
0 0 0 0 0 0 0
0 1 2 3 2 1 0
0 1 2 3 2 1 0
0 0 0 0 0 0 0
0 1 0 5 0 0 0
0 0 0 0 0 0 0

2

Sample Input 3 Sample Output 3
4 4
1 1 2 1
2 2 1 2
1 2 2 1
2 1 2 2

4



Problem F: Family Fares 13

F Family Fares Time limit: 3s

Every year, your uncle organizes a get-together for the whole family. This year, he has decided
that the best place for such a gathering is the picturesque city of Delft. However, your family
is scattered across various different places in the Benelux, so everyone will have to take the
train to Delft.

Train tickets are expensive these days, so your uncle has asked you to find the best deal to get
everyone a valid ticket. Your family members have indicated that they do not like detours:
they will only want to travel on one of the shortest routes from their starting station to Delft,
so you’ll have to take that into account when buying tickets.

After some quick research you find that there are two types of tickets: an individual ticket
and a group ticket. Individual tickets are straightforward: the price of an individual ticket
between two stations is equal to the shortest distance in kilometers between them. Group
tickets are slightly more complicated. When you buy a group ticket, you indicate two stations
and the names of any number of people. As long as all the people mentioned on the ticket
are present, the group ticket allows them to travel between the two stations. This costs g

euros per person, regardless of the distance between the stations. Due to strange regulations,
you can only buy one group ticket in total, so you cannot divide the family into two or more
groups. Note that a person can use both individual tickets and a group ticket on their journey.

What is the least you have to spend to get all of your family members valid tickets to Delft?

1 2 3 4

5

6 7

100 100 10

10

5

80 30

Figure F.1: Visualisation of Sample 2 showing the optimal way of buying tickets for your family
members. The thick lines indicate the trajectory of the group ticket and the dashed colored lines

show the individual tickets that you need to buy.

Input

The input consists of:

• One line containing four integers: n (2 ≤ n ≤ 1000), the number of train stations, m

(n− 1 ≤ m ≤ 105), the number of connections between train stations, p (1 ≤ p ≤ 100),
the number of family members, and g (1 ≤ g ≤ 106), the cost per person of a group
ticket.



14 Problem F: Family Fares

• The next line contains p integers vi (1 ≤ vi ≤ n), the ith of which indicates that family
member i starts at station vi.

• Then follow m lines that each contain three integers a, b, and c (1 ≤ a, b ≤ n, a 6= b,
and 1 ≤ c ≤ 106), indicating that there is a bidirectional connection between stations a

and b with a length of c kilometers.

There is at most one direct connection between any pair of distinct stations and every station
can be reached from any other station.

The station of Delft is always numbered 1.

Output

Output the total cost of the cheapest valid tickets so that every family member can travel
from their starting station to Delft.

Sample Input 1 Sample Output 1
6 5 3 10
4 5 6
1 2 10
2 3 10
3 4 10
4 5 2
4 6 3

35

Sample Input 2 Sample Output 2
7 7 4 10
5 4 4 7
1 2 100
2 3 100
3 4 10
1 5 80
3 5 30
3 6 10
6 7 5

145

Sample Input 3 Sample Output 3
4 5 2 10
2 4
1 2 20
2 4 5
1 3 20
3 4 5
1 4 30

25



Problem G: Generator Grid 15

G Generator Grid Time limit: 2s

CC BY-SA 2.0 By Oran Viriyincy on
Flickr

The volcanic island of Fleeland has never had a proper electric
net, but finally the Biomass Alternative Power Conglomerate
(BAPC) has agreed to build the island’s power plants and net-
work.

On the island’s coast are its n cities. The BAPC has surveyed
the cities and proposed m of them as possible locations for a
power plant, with the ith proposal stating that the company
can build a plant in city ci for cost ai.

These power plants are very modern and a single plant could power the whole island, but the
volcano makes building power lines across the island a dangerous affair. For 1 ≤ i < n, the
company can build power lines between cities i and i + 1 for a cost of bi, and between cities
n and 1 for a cost of bn. A city will receive power if it contains a power plant or is connected
to a city with a power plant via power lines.

What is the cheapest way to power all the cities on the island?

Input

The input consists of:

• One line containing two integers n (3 ≤ n ≤ 105) and m (1 ≤ m ≤ n), the number of
cities and the number of possible locations for a power plant.

• Then follow m lines, the ith of which contains ci (1 ≤ ci ≤ n) and ai (1 ≤ ai ≤ 109),
the ith possible location for a power plant, and the cost to build it.

• Then follows a line containing n integers bi (1 ≤ bi ≤ 109), the costs of building the
power lines.

The values of c1, . . . , cm are unique and given in strictly increasing order.

Output

Output the minimal cost of powering all cities on the island.

Sample Input 1 Sample Output 1
3 2
1 100
2 200
150 300 150

400



16 Problem G: Generator Grid

Sample Input 2 Sample Output 2
3 2
1 100
2 200
300 300 150

450



Problem H: Hungry Henk 17

H Hungry Henk Time limit: 1s

CC BY 2.0 by Christian Cable on
Flickr, cropped

Henk is hungry. He has not eaten anything in the past 42
minutes. His belly is rumbling and he is craving some good
food. Luckily for Henk, this is not the first time that he is
hungry, so he knows exactly which combinations of dishes can
make his belly feel full again. Henk, along with many others,
calls these combinations of dishes meals. Unfortunately, Henk
is very indecisive, so he wants somebody else to make a choice
for him. He hands you a list of meals of which he knows that
they will make his belly full, and asks you to recommend him
exactly one complete meal from this list.

Input

The input consists of:

• One line containing a single integer 1 ≤ n ≤ 100, the number of meals.

• n lines, one for each meal. Each of these lines contains a single integer 1 ≤ d ≤ 42,
followed by a list of d dishes that the meal consists of.

Each dish is described using at most 20 lowercase English characters.

Output

Output one line containing m, the number of dishes that you recommend, followed by m lines,
containing the dishes you recommend.

If there are multiple possible solutions, you may output any one of them.

Sample Input 1 Sample Output 1
3
2 bigburger fries
2 pizza garlicbread
2 macaroni cheese

2
garlicbread
pizza

Sample Input 2 Sample Output 2
4
2 pasta pizza
3 icecream sweets pasta
1 megapizza
2 icecream pizza

3
pasta
icecream
sweets



This page socially distances the two surrounding
problems.



Problem I: Incomplete Implementation 19

I Incomplete Implementation Time limit: 2s

Merge sort is a sorting algorithm. It works by splitting an array in half, sorting both halves
recursively and then merging those halves together to sort the entire array. Your friend is
working on an implementation of the merge sort algorithm, but unfortunately he is not quite
there yet: he can only sort half of the array! In great despair he turns to you for help: can
you use his unfinished code to write an algorithm that sorts an array completely?

In its current state, your friend’s code is a sorting function that can be run on arbitrary
subarrays, as long as it is precisely half as long as the original array. It then correctly sorts
this subarray. Note that a subarray does not have to be contiguous, it can be any subset of
the original array!

You decide to play around with this function. You start with a jumbled array and try to
sort it (see Figure I.1). After choosing 3 subarrays and using them as input for the sorting
function, you end up with a sorted array. Interestingly, it seems that no matter what the
original array is, you can always sort it completely by invoking your friend’s sorting function
only 3 times. You decide that this makes for a good challenge: you want to extend the code
to work for a full array, making at most three calls to the sorting function.

Now you need to figure out which subarrays to sort! Given an array of length n, output at
most three subarrays of length 1

2n so that sorting these subarrays in order will result in a
sorted array. It is guaranteed that this is always possible.

3 8 4 7 1 5 2 6 =⇒ 3 4 5 7 1 6 2 8
↓ ↑

8 4 5 6 −→ 4 5 6 8

Figure I.1: First sorting step of Sample output 1

Input

The input consists of:

• One line containing a single integer n (4 ≤ n ≤ 105) divisible by 4, the length of the
array.

• One line containing n unique integers ai (1 ≤ ai ≤ n), the array to be sorted.

Output

The output consists of:

• One line containing the number of function calls f (0 ≤ f ≤ 3).



20 Problem I: Incomplete Implementation

• f lines, each containing 1
2n unique integers bi (1 ≤ bi ≤ n), the indices determining the

subarray to be sorted at each of the function calls.

If there are multiple valid solutions, you may output any one of them. You do not have to
minimize f .

Sample Input 1 Sample Output 1
8
3 8 4 7 1 5 2 6

3
2 3 6 8
1 3 4 5
2 4 5 7

Sample Input 2 Sample Output 2
4
1 4 3 2

3
3 4
2 3
3 4

Sample Input 3 Sample Output 3
8
1 4 8 7 5 6 3 2

2
6 5 3 8
4 3 7 2



Problem J: Jigsaw 21

J Jigsaw Time limit: 1s

You have found an old jigsaw puzzle in the attic of your house,
left behind by the previous occupants. Because you like puzzles,
you decide to put this one together. But before you start, you
want to know whether this puzzle was left behind for a reason.
Maybe it is incomplete? Maybe the box contains pieces from
multiple puzzles?

If it looks like a complete puzzle, you also need to know how
big your work surface needs to be. Nothing worse than having to start a jigsaw over because
you started on a small table.

The box does not tell you the dimensions w× h of the puzzle, but you can quickly count the
three types of pieces in the box:

• Corner pieces, which touch two of the edges of the puzzle.

• Edge pieces, which touch one of the edges of the puzzle.

• Center pieces, which touch none of the edges of the puzzle.

Do these pieces add up to a complete jigsaw puzzle? If so, what was the original size of the
jigsaw puzzle?

Input

The input consists of:

• One line containing three integers c, e, and m (0 ≤ c, e, m ≤ 109), the number of corner
pieces, edge pieces, and center pieces respectively.

Output

If there exist numbers w and h satisfying w ≥ h ≥ 2 such that the original size of the jigsaw
puzzle could have been w×h, then output a single line containing w and h. Otherwise, output
“impossible”.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1
4 8 4 4 4

Sample Input 2 Sample Output 2
4 10 14 impossible



22 Problem J: Jigsaw

Sample Input 3 Sample Output 3
4 12 6 impossible

Sample Input 4 Sample Output 4
4 2048 195063 773 255



Problem K: Xortest Path 23

K Xortest Path Time limit: 5s

By DariuszSankowski on Pixabay

Rules and regulations about mileage reimbursement for employ-
ees are very clear: the employee should be refunded an amount
of money proportional to the shortest distance between their
home and office. This causes your X-mas Ornaments Retailer a
great deal of pain: every year more and more money is spent on
reimbursement and this means your companies have less profit!
This obviously has to be stopped and so you delve deep into
the regulations about reimbursement, hoping to find a loophole
so you do not have to give as much money to your employees.

However, the rules seem pretty strict. As long as the employees keep track of the distances they
have travelled, you are forced to reimburse them. Suddenly you have a flash of inspiration:
nowhere does it say that you have to use the Euclidean distances! You start working on more
subtle distance functions and now you have a first prototype: XOR distance. The length of a
path is defined as the XOR of the lengths of the edges on the path (as opposed to the sum).
The distance between two locations is defined as the length of the shortest path between
them. You hope that the authorities will not notice that this does not define a metric, but
before you send them your proposal you want to experiment with this distance first.

You cook up a simple connected weighted undirected graph with this distance function, and
you ask yourself q questions about this graph, each asking about the shortest XOR distance
between two nodes.

Input

The input consists of:

• One line containing three integers n (2 ≤ n ≤ 104), m (n − 1 ≤ m ≤ 105), and q

(1 ≤ q ≤ 105), the number of nodes, edges, and questions respectively.

• m lines describing an edge. Each line consists of three integers x, y, w (1 ≤ x, y ≤ n,
x 6= y and 0 ≤ w ≤ 1018), indicating that there is an undirected edge of length w

between nodes x and y.

• q lines describing a question. Each line consists of two integers a, b (1 ≤ a, b ≤ n) asking
for the shortest distance between nodes a and b.

There is at most one edge between any pair of distinct nodes and every node can be reached
from any other node.

Output

For every question, output one line containing the shortest distance between nodes a and b.



24 Problem K: Xortest Path

Sample Input 1 Sample Output 1
3 3 3
1 2 2
1 3 2
2 3 3
1 2
1 3
2 3

1
1
0

Sample Input 2 Sample Output 2
7 10 5
1 2 45
2 3 11
2 4 46
3 4 28
3 5 59
3 6 12
3 7 3
4 5 11
5 6 23
6 7 20
1 4
2 6
3 5
1 7
5 5

1
5
0
5
0




	Problems
	Aquarium Arrangement
	Balanced Breakdown
	Corrupted Contest
	Destabilized Drone
	Efficiently Elevated
	Family Fares
	Generator Grid
	Hungry Henk
	Incomplete Implementation
	Jigsaw
	Xortest Path


