FPC 2019 problem presentation; spoiler alert!
E
Encryptastrophy
F - Forest Run
G - Game Night
H - Hurry the
Hedgehog

FPC 2019

Problem A - Alternative Blockchain Algorithms

A - Alternative
Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
F - Forest Run
G - Game Night
H - Hurry the
Hedgehog

FPC 2019

Problem description

Problem A - Alternative Blockchain Algorithms

E -
Encryptastrophy
F - Forest Run
G - Game Night
H - Hurry the
Hedgehog

Problem description

For any block in the blockchain B there is an id i_{n}, parent p_{n} and money m_{n}. To verify the blockchain, we try to show the following holds:

Problem A - Alternative Blockchain Algorithms

E -
Encryptastrophy

Forest Run
G - Game Night
H - Hurry the Hedgehog

Problem description

For any block in the blockchain B there is an id i_{n}, parent p_{n} and money m_{n}. To verify the blockchain, we try to show the following holds:

$$
i_{n}=p_{n+1} \text { for } 0<n<|B|
$$

Problem A - Alternative Blockchain Algorithms

E
Encryptastrophy

Forest Run
G - Game Night
H-Hurry the Hedgehog

Problem description

For any block in the blockchain B there is an id i_{n}, parent p_{n} and money m_{n}. To verify the blockchain, we try to show the following holds:

$$
i_{n}=p_{n+1} \text { for } 0<n<|B|
$$

And to check if the money never dips below 0 :

Problem A - Alternative Blockchain Algorithms

Problem description

For any block in the blockchain B there is an id i_{n}, parent p_{n} and money m_{n}. To verify the blockchain, we try to show the following holds:

$$
i_{n}=p_{n+1} \text { for } 0<n<|B|
$$

And to check if the money never dips below 0 :

$$
\sum_{i=1}^{n} m_{i} \geq 0 \text { for } 0<n<|B|
$$

Problem A - Alternative Blockchain Algorithms

A - Alternative
Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
F - Forest Run
G - Game Night
H - Hurry the
Hedgehog

FPC 2019

Solution

Problem A - Alternative Blockchain Algorithms

A - Alternative

B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
F - Forest Run
G - Game Night
H - Hurry the Hedgehog

FPC 2019

Solution

Run through the program line by line, checking if each node's parent is the same as the previous node.

Problem A - Alternative Blockchain Algorithms

Solution

Run through the program line by line, checking if each node's parent is the same as the previous node.
Keep a running tally of the account balance, returning "NO_MONEY" if the money ever is lower than 0 .

Problem A - Alternative Blockchain Algorithms

Solution

Run through the program line by line, checking if each node's parent is the same as the previous node.
Keep a running tally of the account balance, returning "NO_MONEY" if the money ever is lower than 0 .

Pitfalls

■ Checking whether the balance is negative only at the end of the chain

- Forgetting to check the parent of the genesis block (Which should be 0)

Problem B - Balloon Party (1/2)

E-
Encryptastrophy
F - Forest Run
G - Game Night
H - Hurry the
Hedgehog

FPC

 2019
Problem description

How much helium can be trapped under the party tent?

Problem B - Balloon Party (2/2)

Store all tent sections that are reachable from outside in a priority queue

$$
\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 3 & 3 & 3 & 1 \\
1 & 2 & 2 & 2 & 1 \\
1 & 4 & 4 & 4 & 1 \\
1 & 2 & 3 & 2 & 1
\end{array}
$$

Problem B - Balloon Party (2/2)

Get the highest section reachable from the outside

C - Circus Tent

Encryptastrophy
Forest Run
Game Night
H - Hurry the Hedgehog

FPC
2019
$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$
$\begin{array}{lllll}1 & 3 & 3 & 3 & 1\end{array}$
$\begin{array}{lllll}1 & 2 & 2 & 2 & 1\end{array}$
$\begin{array}{lllll}1 & 4 & 4 & 4 & 1\end{array}$
$\begin{array}{lllll}1 & 2 & 3 & 2\end{array}$

Problem B - Balloon Party (2/2)

Fill that part of the tent as far as possible, and update priority queue

$$
\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 3 & 3 & 3 & 1 \\
1 & 2 & 2 & 2 & 1 \\
1 & 4 & 4 & 4 & 1 \\
1 & 2 & 3 & 2 & 1
\end{array}
$$

Problem B - Balloon Party (2/2)

Again find highest section reachable

$$
\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 3 & 3 & 3 & 1 \\
1 & 2 & 2 & 2 & 1 \\
1 & 4 & 4 & 4 & 1 \\
1 & 2 & 3 & 2 & 1
\end{array}
$$

Problem B - Balloon Party (2/2)

Again find that part of the tent

$$
\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 3 & 3 & 3 & 1 \\
1 & 2 & 2 & 2 & 1 \\
1 & 4 & 4 & 4 & 1 \\
1 & 2 & 3 & 2 & 1
\end{array}
$$

Problem C - Circus Tent

B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
Forest Run

- Game Night

H - Hurry the Hedgehog

Problem description

Given diameter d of inner ring and height h, calculate the surface area of a cylindrical circus tent

Solution

Radius: $r=\frac{d}{2}+5$
Area: $A=2 \pi r h+\pi r^{2}$

Pitfalls

- Not enough precision

Problem D - Darts

Problem D - Darts

Problem D - Darts

Problem description
Given vectors $\mathbf{h}, \mathbf{v}, \mathbf{p}, \mathbf{d}$, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Where is the intersection?
Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v}$.

Problem D - Darts

A - Alternative Blockchain Algorithms

B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy

Forest Run
G - Game Night
H - Hurry the Hedgehog

Problem description
Given vectors $\mathbf{h}, \mathbf{v}, \mathbf{p}, \mathbf{d}$, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Where is the intersection?
Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i}=0$ for all \mathbf{i} in $\langle\mathbf{h}, \mathbf{v}\rangle$.

Problem D - Darts

A - Alternative
Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy

Forest Run

- Game Night

H - Hurry the Hedgehog

Problem description
Given vectors $\mathbf{h}, \mathbf{v}, \mathbf{p}, \mathbf{d}$, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Where is the intersection?
Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i}=0$ for all \mathbf{i} in $\langle\mathbf{h}, \mathbf{v}\rangle$. We want $\mathbf{n} \cdot(\mathbf{p}+/ \mathbf{d})=0$,

Problem D - Darts

A - Alternative Blockchain Algorithms

B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy

Forest Run

- Game Night

H - Hurry the Hedgehog

Problem description
Given vectors $\mathbf{h}, \mathbf{v}, \mathbf{p}, \mathbf{d}$, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Where is the intersection?
Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i}=0$ for all \mathbf{i} in $\langle\mathbf{h}, \mathbf{v}\rangle$. We want $\mathbf{n} \cdot(\mathbf{p}+/ \mathbf{d})=0$, so $I=-\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$.

Problem D - Darts

A - Alternative
Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
Forest Run
G - Game Night
H - Hurry the Hedgehog

Problem description

Given vectors $\mathbf{h}, \mathbf{v}, \mathbf{p}, \mathbf{d}$, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Where is the intersection?
Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i}=0$ for all \mathbf{i} in $\langle\mathbf{h}, \mathbf{v}\rangle$. We want $\mathbf{n} \cdot(\mathbf{p}+/ \mathbf{d})=0$, so $I=-\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i}=\mathbf{p}+/ \mathbf{d}$.

Problem D - Darts

A - Alternative
Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
Forest Run
G - Game Night
H - Hurry the Hedgehog

Problem description

Given vectors $\mathbf{h}, \mathbf{v}, \mathbf{p}, \mathbf{d}$, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Where is the intersection?
Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i}=0$ for all \mathbf{i} in $\langle\mathbf{h}, \mathbf{v}\rangle$. We want $\mathbf{n} \cdot(\mathbf{p}+/ \mathbf{d})=0$, so $I=-\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i}=\mathbf{p}+/ \mathbf{d}$.

Problem D - Darts

A - Alternative
Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
Forest Run
G - Game Night
H - Hurry the Hedgehog

Problem description

Given vectors $\mathbf{h}, \mathbf{v}, \mathbf{p}, \mathbf{d}$, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Where is the intersection?
Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i}=0$ for all \mathbf{i} in $\langle\mathbf{h}, \mathbf{v}\rangle$. We want $\mathbf{n} \cdot(\mathbf{p}+/ \mathbf{d})=0$, so $I=-\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i}=\mathbf{p}+/ \mathbf{d}$.

Is the intersection inside the board?

Problem D - Darts

A - Alternative
Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
Forest Run
G - Game Night
H - Hurry the Hedgehog

FPC
2019

Problem description

Given vectors $\mathbf{h}, \mathbf{v}, \mathbf{p}, \mathbf{d}$, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Where is the intersection?
Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i}=0$ for all \mathbf{i} in $\langle\mathbf{h}, \mathbf{v}\rangle$. We want $\mathbf{n} \cdot(\mathbf{p}+/ \mathbf{d})=0$, so $I=-\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i}=\mathbf{p}+/ \mathbf{d}$.

Is the intersection inside the board?
Linear algebra: \mathbf{h} and \mathbf{v} are orthogonal and generate $\langle\mathbf{h}, \mathbf{v}\rangle$.

Problem D - Darts

A - Alternative
Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
Forest Run
G - Game Night
H - Hurry the Hedgehog

FPC
2019

Problem description

Given vectors h, v, p, d, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Where is the intersection?
Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i}=0$ for all \mathbf{i} in $\langle\mathbf{h}, \mathbf{v}\rangle$. We want $\mathbf{n} \cdot(\mathbf{p}+/ \mathbf{d})=0$, so $I=-\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i}=\mathbf{p}+/ \mathbf{d}$.

Is the intersection inside the board?
Linear algebra: \mathbf{h} and \mathbf{v} are orthogonal and generate $\langle\mathbf{h}, \mathbf{v}\rangle$.
$\mathbf{i}=a \mathbf{h}+b \mathbf{v}$

Problem D - Darts

A - Alternative
Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
Forest Run
G - Game Night
H - Hurry the Hedgehog

FPC
2019

Problem description

Given vectors $\mathbf{h}, \mathbf{v}, \mathbf{p}, \mathbf{d}$, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Where is the intersection?
Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i}=0$ for all \mathbf{i} in $\langle\mathbf{h}, \mathbf{v}\rangle$. We want $\mathbf{n} \cdot(\mathbf{p}+/ \mathbf{d})=0$, so $I=-\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i}=\mathbf{p}+/ \mathbf{d}$.

Is the intersection inside the board?
Linear algebra: \mathbf{h} and \mathbf{v} are orthogonal and generate $\langle\mathbf{h}, \mathbf{v}\rangle$. $\mathbf{i}=a \mathbf{h}+b \mathbf{v}$ gives $\mathbf{i} \cdot \mathbf{v}=a(\mathbf{v} \cdot \mathbf{v})$,

Problem D - Darts

A - Alternative
Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
Forest Run
G - Game Night
H - Hurry the Hedgehog

FPC
2019

Problem description

Given vectors $\mathbf{h}, \mathbf{v}, \mathbf{p}, \mathbf{d}$, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Where is the intersection?
Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i}=0$ for all \mathbf{i} in $\langle\mathbf{h}, \mathbf{v}\rangle$. We want $\mathbf{n} \cdot(\mathbf{p}+/ \mathbf{d})=0$, so $I=-\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i}=\mathbf{p}+/ \mathbf{d}$.

Is the intersection inside the board?
Linear algebra: \mathbf{h} and \mathbf{v} are orthogonal and generate $\langle\mathbf{h}, \mathbf{v}\rangle$. $\mathbf{i}=a \mathbf{h}+b \mathbf{v}$ gives $\mathbf{i} \cdot \mathbf{v}=a(\mathbf{v} \cdot \mathbf{v})$, so $a=\frac{\mathrm{i} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$ and $b=\frac{\mathrm{i} \cdot \mathbf{h}}{\mathbf{h} \cdot \mathbf{h}}$.

Problem D - Darts

A - Alternative
Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
Forest Run
G - Game Night
H - Hurry the Hedgehog

FPC 2019

Problem description

Given vectors $\mathbf{h}, \mathbf{v}, \mathbf{p}, \mathbf{d}$, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Where is the intersection?
Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i}=0$ for all \mathbf{i} in $\langle\mathbf{h}, \mathbf{v}\rangle$. We want $\mathbf{n} \cdot(\mathbf{p}+/ \mathbf{d})=0$, so $I=-\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i}=\mathbf{p}+/ \mathbf{d}$.

Is the intersection inside the board?
Linear algebra: \mathbf{h} and \mathbf{v} are orthogonal and generate $\langle\mathbf{h}, \mathbf{v}\rangle$. $\mathbf{i}=a \mathbf{h}+b \mathbf{v}$ gives $\mathbf{i} \cdot \mathbf{v}=a(\mathbf{v} \cdot \mathbf{v})$, so $a=\frac{\mathbf{i} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$ and $b=\frac{\mathbf{i} \cdot \mathbf{h}}{\mathbf{h} \cdot \mathbf{h}}$. We must check $a^{2}+b^{2}<1$.

Problem D - Darts

A - Alternative Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts

Encryptastrophy
Forest Run
G - Game Night
H - Hurry the Hedgehog

Problem description

Given vectors $\mathbf{h}, \mathbf{v}, \mathbf{p}, \mathbf{d}$, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Solution

Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v} . l:=-\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i}=\mathbf{p}+/ \mathbf{d} . a=\frac{\mathbf{i} \cdot \mathbf{v}}{\mathrm{v} \cdot \mathbf{v}}$ and $b=\frac{\mathrm{i} \cdot \mathrm{h}}{\mathrm{h} \cdot \mathrm{h}}$. We must check $a^{2}+b^{2}<1$.

Problem D - Darts

A - Alternative Blockchain Algorithms

B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy

Forest Run
G - Game Night
H - Hurry the Hedgehog

Problem description

Given vectors $\mathbf{h}, \mathbf{v}, \mathbf{p}, \mathbf{d}$, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Solution

Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v} . l:=-\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i}=\mathbf{p}+/ \mathbf{d} . a=\frac{\mathbf{i} \cdot \mathbf{v}}{\mathrm{v} \cdot \mathrm{v}}$ and $b=\frac{\mathrm{i} \cdot \mathrm{h}}{\mathrm{h} \cdot \mathrm{h}}$. We must check $a^{2}+b^{2}<1$.

Pitfalls

Problem D - Darts

A - Alternative Blockchain Algorithms

B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
Forest Run
G - Game Night
H - Hurry the Hedgehog

Problem description

Given vectors $\mathbf{h}, \mathbf{v}, \mathbf{p}, \mathbf{d}$, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Solution

Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v} . l:=-\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i}=\mathbf{p}+/ \mathbf{d} . a=\frac{\mathbf{i} \cdot \mathbf{v}}{\mathrm{v} \cdot \mathrm{v}}$ and $b=\frac{\mathrm{i} \cdot \mathrm{h}}{\mathrm{h} \cdot \mathrm{h}}$. We must check $a^{2}+b^{2}<1$.

Pitfalls

FPC

- What if $\mathbf{n} \cdot \mathbf{d}=0$?

Problem D - Darts

A - Alternative
Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
Forest Run
G - Game Night
H - Hurry the Hedgehog

Problem description

Given vectors $\mathbf{h}, \mathbf{v}, \mathbf{p}, \mathbf{d}$, determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v}.

Solution

Determine $\mathbf{n}:=\mathbf{h} \times \mathbf{v} . l:=-\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i}=\mathbf{p}+/ \mathbf{d} . a=\frac{\mathbf{i} \cdot \mathbf{v}}{\mathrm{v} \cdot \mathrm{v}}$ and $b=\frac{\mathrm{i} \cdot \mathrm{h}}{\mathrm{h} \cdot \mathrm{h}}$. We must check $a^{2}+b^{2}<1$.

Pitfalls

- What if $\mathbf{n} \cdot \mathbf{d}=0$?

Problem E - Encryptastrophy

B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
F - Forest Run
G - Game Night
H - Hurry the
Hedgehog

FPC 2019

Problem description

Problem E - Encryptastrophy

Problem description

The ciphertext definition can be given by the following equations:

$$
\begin{array}{ll}
c_{0}=p_{0}+k_{0} & \bmod 26 \\
c_{n}=p_{n}+k_{n} & \bmod 26
\end{array}
$$

Problem E - Encryptastrophy

Problem description

The ciphertext definition can be given by the following equations:

$$
\begin{array}{ll}
c_{0}=p_{0}+k_{0} & \bmod 26 \\
c_{n}=p_{n}+k_{n} & \bmod 26
\end{array}
$$

As $k_{n}=p_{n-1}$, we can rewrite this to:

Problem E - Encryptastrophy

A - Alternative

Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts

F - Forest Run
G - Game Night
H - Hurry the Hedgehog

Problem description

The ciphertext definition can be given by the following equations:

$$
\begin{array}{ll}
c_{0}=p_{0}+k_{0} & \bmod 26 \\
c_{n}=p_{n}+k_{n} & \bmod 26
\end{array}
$$

As $k_{n}=p_{n-1}$, we can rewrite this to:

$$
c_{n}=p_{n}+p_{n-1} \quad \bmod 26
$$

Problem E - Encryptastrophy

Problem description

The ciphertext definition can be given by the following equations:

$$
\begin{array}{ll}
c_{0}=p_{0}+k_{0} & \bmod 26 \\
c_{n}=p_{n}+k_{n} & \bmod 26
\end{array}
$$

As $k_{n}=p_{n-1}$, we can rewrite this to:

$$
\begin{aligned}
& c_{n}=p_{n}+p_{n-1} \quad \bmod 26 \\
& p_{n-1}=c_{n}-p_{n} \quad \bmod 26
\end{aligned}
$$

Problem E - Encryptastrophy

Solution

Problem E - Encryptastrophy

Solution
For a string c with length I, we are given p_{I-1}, therefore:

Problem E - Encryptastrophy

Solution

For a string c with length I, we are given p_{I-1}, therefore:

$$
p_{I-2}=c_{l-1}-p_{I-1} \quad \bmod 26
$$

Problem E - Encryptastrophy

B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
Forest Run

- Game Night

H - Hurry the Hedgehog

FPC
2019

Solution

For a string c with length I, we are given p_{I-1}, therefore:

$$
\begin{aligned}
& p_{I-2}=c_{I-1}-p_{I-1} \quad \bmod 26 \\
& p_{I-3}=c_{I-2}-p_{I-3} \quad \bmod 26
\end{aligned}
$$

Problem E - Encryptastrophy

B - Balloon Party
C - Circus Tent
D - Darts

Forest Run

- Game Night

H - Hurry the Hedgehog

Solution

For a string c with length I, we are given p_{I-1}, therefore:

$$
\begin{aligned}
& p_{I-2}=c_{I-1}-p_{I-1} \bmod 26 \\
& p_{I-3}=c_{l-2}-p_{I-3} \bmod 26
\end{aligned}
$$

Problem E - Encryptastrophy

A - Alternative

Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
Forest Run

- Game Night

H - Hurry the Hedgehog

FPC
2019

Solution

For a string c with length I, we are given p_{I-1}, therefore:

$$
\begin{gathered}
p_{I-2}=c_{I-1}-p_{I-1} \bmod 26 \\
p_{I-3}=c_{I-2}-p_{I-3} \quad \bmod 26 \\
\cdots \\
p_{0}=c_{1}-p_{1} \quad \bmod 26
\end{gathered}
$$

Problem E - Encryptastrophy

A - Alternative

Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
Forest Run

- Game Night

H - Hurry the Hedgehog

FPC
2019

Solution

For a string c with length I, we are given p_{I-1}, therefore:

$$
\begin{gathered}
p_{I-2}=c_{I-1}-p_{I-1} \bmod 26 \\
p_{I-3}=c_{I-2}-p_{I-3} \quad \bmod 26 \\
\cdots \\
p_{0}=c_{1}-p_{1} \quad \bmod 26
\end{gathered}
$$

Problem E - Encryptastrophy

A - Alternative

B - Balloon Party
C - Circus Tent
D - Darts

- Modulo with a negative number returns a negative number. Use ($\mathrm{x} \% \mathrm{n}+\mathrm{n}$) \% n

Problem F - Forest Run (1/3)

A - Alternative
Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
F - Forest Run
G - Game Night
H - Hurry the Hedgehog

Problem description

Traverse the trees in the forest from root to every leaf and back and sum the distance.

Solution

- Start at the leaves, give them length 0 and width 1
- For the parent nodes, sum the lengths of the children, and add the width of the children

Problem F - Forest Run (2/3)

A - Alternative

Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy

F - Forest Run
G - Game Night
H - Hurry the Hedgehog

FPC
2019

Solution

- Start at the leaves, give them length 0 and width 1
- For the parent nodes, sum the lengths of the children, and add the width of the children

Problem F - Forest Run (3/3)

A - Alternative
Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
F - Forest Run
G - Game Night
H - Hurry the Hedgehog

Solution

- Start at the leaves, give them length 0 and width 1
- For the parent nodes, sum the lengths of the children, and add the width of the children

Pitfalls

■ For Java and C++: int is too small, use long instead

- Recursion gives stack overflow, use your own stack.

Problem G - Game Night

A - Alternative
Blockchain
Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
Forest Run
G - Game Night
H - Hurry the Hedgehog

Problem description

How many letters can be re-used between two (pass)words?

Solution

- Keep a tally per letter that counts the amount of occurrences for each letter for both words
- Count how many letters are different between the two words

Pitfalls

- Input can be large (up to one million characters), solution must run in $\mathcal{O}(n)$.
■ Letters can be used multiple times.

Problem H - Hurry the Hedgehog

A - Alternative Blockchain Algorithms
B - Balloon Party
C - Circus Tent
D - Darts
E
Encryptastrophy
F - Forest Run
G - Game Night
H - Hurry the Hedgehog

FPC

- The case for $n=1$.

Problem description

Solution

Pitfalls

- Given a graph, find shortest path from v_{1} to v_{n}

■ Only use vertices that have a "Super Mushroom"

- A simple breadth-first search suffices
- Need to remember length of path

