FPC 2019 problem presentation; spoiler alert!

A	- Alternative	
B	ockchain	
A	gorithms	

- B Balloon Party
- C Circus Tent
- D Darts
- E -Encryptastrophy
- F Forest Run
- G Game Night
- H Hurry the Hedgehog

A - Alternative Blockchain Algorithms

- B Balloon Party
- C Circus Tent
- D Darts
- E -Encryptastrophy
- F Forest Run
- G Game Night
- H Hurry the Hedgehog

Problem description

Problem description

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog For any block in the blockchain *B* there is an id i_n , parent p_n and money m_n . To verify the blockchain, we try to show the following holds:

Problem description

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

For any block in the blockchain *B* there is an id i_n , parent p_n and money m_n . To verify the blockchain, we try to show the following holds:

$$i_n = p_{n+1} \text{ for } 0 < n < |B|$$

A - Alternative Blockchain Algorithms

- B Balloon Party
- C Circus Tent
- D Darts
- E -Encryptastrophy
- F Forest Run
- G Game Night
- H Hurry the Hedgehog

For any block in the blockchain *B* there is an id i_n , parent p_n and money m_n . To verify the blockchain, we try to show the following holds:

$$i_n = p_{n+1} \text{ for } 0 < n < |B|$$

And to check if the money never dips below 0:

Problem description

A - Alternative Blockchain Algorithms

- B Balloon Party
- C Circus Tent
- D Darts
- E -Encryptastrophy
- F Forest Run
- G Game Night
- H Hurry the Hedgehog

Problem description

For any block in the blockchain *B* there is an id i_n , parent p_n and money m_n . To verify the blockchain, we try to show the following holds:

$$i_n = p_{n+1} \text{ for } 0 < n < |B|$$

And to check if the money never dips below 0:

 $\sum_{i=1}^n m_i \geq 0 \text{ for } 0 < n < |B|$

A - Alternative Blockchain Algorithms

B - Balloon Party

Solution

- C Circus Tent
- D Darts
- E -Encryptastrophy
- F Forest Run
- G Game Night
- H Hurry the Hedgehog

A - Alternative Blockchain Algorithms

B - Balloon Party

Solution

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

FPC

2019

H - Hurry the Hedgehog Run through the program line by line, checking if each node's parent is the same as the previous node.

A - Alternative Blockchain Algorithms

B - Balloon Party

Solution

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

FPC

2019

H - Hurry the Hedgehog Run through the program line by line, checking if each node's parent is the same as the previous node. Keep a running tally of the account balance, returning "NO_MONEY" if the money ever is lower than 0.

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

FPC

2019

H - Hurry the Hedgehog Solution Run through the progr

Run through the program line by line, checking if each node's parent is the same as the previous node. Keep a running tally of the account balance, returning "NO_MONEY" if the money ever is lower than 0.

Pitfalls

- Checking whether the balance is negative only at the end of the chain
- Forgetting to check the parent of the genesis block (Which should be 0)

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

FPC

2019

H - Hurry the Hedgehog

Problem description

How much helium can be trapped under the party tent?

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Rur

G - Game Night

H - Hurry the Hedgehog

Store all tent sections that are reachable from outside in a priority queue

1	1	1	1	1
1	3	3	3	1
1	2	2	2	1
1	4	4	4	1
1	2	3	2	1

A - Alternative Blockchain Algorithms

- B Balloon Party
- C Circus Tent
- D Darts
- E -Encryptastrophy
- F Forest Rur
- G Game Night

H - Hurry the Hedgehog

Get the highest section reachable from the outside

1	1	1	1	1
1	3	3	3	1
1	2	2	2	1
1	4	4	4	1
1	2	3	2	1

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Rur

G - Game Night

H - Hurry the Hedgehog

Fill that part of the tent as far as possible, and update priority queue $% \left({{{\mathbf{r}}_{i}}} \right)$

1	1	1	1	1
1	3	3	3	1
1	2	2	2	1
1	4	4	4	1
1	2	3	2	1

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Rur

G - Game Night

H - Hurry the Hedgehog

Again find highest section reachable

1	1	1	1	1
1	3	3	3	1
1	2	2	2	1
1	4	4	4	1
1	2	3	2	1

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Rur

G - Game Night

H - Hurry the Hedgehog

Again find that part of the tent

1	1	1	1	1
1	3	3	3	1
1	2	2	2	1
1	4	4	4	1
1	2	3	2	1

Problem C - Circus Tent

A - Alternative

B - Balloon Party

C - Circus Tent

FPC 2019

Problem description

Given diameter d of inner ring and height h, calculate the surface area of a cylindrical circus tent

Solution

Radius:
$$r = \frac{d}{2} + 5$$

Area: $A = 2\pi rh + \pi r^2$

Pitfalls

А

Not enough precision

Problem description

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

FPC 2019

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Where is the intersection?

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Where is the intersection?

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$.

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Where is the intersection?

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i} = 0$ for all \mathbf{i} in $\langle \mathbf{h}, \mathbf{v} \rangle$.

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Where is the intersection?

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i} = 0$ for all \mathbf{i} in $\langle \mathbf{h}, \mathbf{v} \rangle$. We want $\mathbf{n} \cdot (\mathbf{p} + /d) = 0$,

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Where is the intersection?

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i} = 0$ for all \mathbf{i} in $\langle \mathbf{h}, \mathbf{v} \rangle$. We want $\mathbf{n} \cdot (\mathbf{p} + /\mathbf{d}) = 0$, so $l = -\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$.

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Where is the intersection?

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i} = 0$ for all \mathbf{i} in $\langle \mathbf{h}, \mathbf{v} \rangle$. We want $\mathbf{n} \cdot (\mathbf{p} + /\mathbf{d}) = 0$, so $l = -\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i} = \mathbf{p} + /\mathbf{d}$.

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Where is the intersection?

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i} = 0$ for all \mathbf{i} in $\langle \mathbf{h}, \mathbf{v} \rangle$. We want $\mathbf{n} \cdot (\mathbf{p} + /\mathbf{d}) = 0$, so $l = -\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i} = \mathbf{p} + /\mathbf{d}$.

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

FPC 2019

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Where is the intersection?

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i} = 0$ for all \mathbf{i} in $\langle \mathbf{h}, \mathbf{v} \rangle$. We want $\mathbf{n} \cdot (\mathbf{p} + /\mathbf{d}) = 0$, so $l = -\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i} = \mathbf{p} + /\mathbf{d}$.

Is the intersection inside the board?

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

> **FPC** 2019

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Where is the intersection?

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i} = 0$ for all \mathbf{i} in $\langle \mathbf{h}, \mathbf{v} \rangle$. We want $\mathbf{n} \cdot (\mathbf{p} + /\mathbf{d}) = 0$, so $l = -\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i} = \mathbf{p} + /\mathbf{d}$.

Is the intersection inside the board? Linear algebra: \mathbf{h} and \mathbf{v} are orthogonal and generate $\langle \mathbf{h}, \mathbf{v} \rangle$.

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Where is the intersection?

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i} = 0$ for all \mathbf{i} in $\langle \mathbf{h}, \mathbf{v} \rangle$. We want $\mathbf{n} \cdot (\mathbf{p} + /\mathbf{d}) = 0$, so $l = -\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i} = \mathbf{p} + /\mathbf{d}$.

Is the intersection inside the board? Linear algebra: \mathbf{h} and \mathbf{v} are orthogonal and generate $\langle \mathbf{h}, \mathbf{v} \rangle$. $\mathbf{i} = a\mathbf{h} + b\mathbf{v}$

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Where is the intersection?

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i} = 0$ for all \mathbf{i} in $\langle \mathbf{h}, \mathbf{v} \rangle$. We want $\mathbf{n} \cdot (\mathbf{p} + /\mathbf{d}) = 0$, so $l = -\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i} = \mathbf{p} + /\mathbf{d}$.

Is the intersection inside the board? Linear algebra: **h** and **v** are orthogonal and generate $\langle \mathbf{h}, \mathbf{v} \rangle$. $\mathbf{i} = a\mathbf{h} + b\mathbf{v}$ gives $\mathbf{i} \cdot \mathbf{v} = a(\mathbf{v} \cdot \mathbf{v})$,

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Where is the intersection?

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i} = 0$ for all \mathbf{i} in $\langle \mathbf{h}, \mathbf{v} \rangle$. We want $\mathbf{n} \cdot (\mathbf{p} + /\mathbf{d}) = 0$, so $l = -\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i} = \mathbf{p} + /\mathbf{d}$.

Is the intersection inside the board?

Linear algebra: **h** and **v** are orthogonal and generate $\langle \mathbf{h}, \mathbf{v} \rangle$. $\mathbf{i} = a\mathbf{h} + b\mathbf{v}$ gives $\mathbf{i} \cdot \mathbf{v} = a(\mathbf{v} \cdot \mathbf{v})$, so $a = \frac{\mathbf{i} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$ and $b = \frac{\mathbf{i} \cdot \mathbf{h}}{\mathbf{h} \cdot \mathbf{h}}$.

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Where is the intersection?

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$. Then $\mathbf{n} \cdot \mathbf{i} = 0$ for all \mathbf{i} in $\langle \mathbf{h}, \mathbf{v} \rangle$. We want $\mathbf{n} \cdot (\mathbf{p} + /\mathbf{d}) = 0$, so $l = -\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i} = \mathbf{p} + /\mathbf{d}$.

Is the intersection inside the board?

Linear algebra: **h** and **v** are orthogonal and generate $\langle \mathbf{h}, \mathbf{v} \rangle$. $\mathbf{i} = a\mathbf{h} + b\mathbf{v}$ gives $\mathbf{i} \cdot \mathbf{v} = a(\mathbf{v} \cdot \mathbf{v})$, so $a = \frac{\mathbf{i} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$ and $b = \frac{\mathbf{i} \cdot \mathbf{h}}{\mathbf{h} \cdot \mathbf{h}}$. We must check $a^2 + b^2 < 1$.

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Solution

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$. $I := -\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i} = \mathbf{p} + I\mathbf{d}$. $a = \frac{\mathbf{i} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$ and $b = \frac{\mathbf{i} \cdot \mathbf{h}}{\mathbf{h} \cdot \mathbf{h}}$. We must check $a^2 + b^2 < 1$.

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Solution

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$. $l := -\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i} = \mathbf{p} + l\mathbf{d}$. $a = \frac{\mathbf{i} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$ and $b = \frac{\mathbf{i} \cdot \mathbf{h}}{\mathbf{h} \cdot \mathbf{h}}$. We must check $a^2 + b^2 < 1$.

Pitfalls

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

FPC 2019

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Solution

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$. $l := -\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i} = \mathbf{p} + l\mathbf{d}$. $a = \frac{\mathbf{i} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$ and $b = \frac{\mathbf{i} \cdot \mathbf{h}}{\mathbf{h} \cdot \mathbf{h}}$. We must check $a^2 + b^2 < 1$.

Pitfalls

• What if $\mathbf{n} \cdot \mathbf{d} = 0$?

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

Given vectors \mathbf{h} , \mathbf{v} , \mathbf{p} , \mathbf{d} , determine whether the (half-)line from \mathbf{p} in direction \mathbf{d} intersects the ellipse with axes \mathbf{h} and \mathbf{v} .

Solution

Determine $\mathbf{n} := \mathbf{h} \times \mathbf{v}$. $l := -\frac{\mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{d}}$. This gives the intersection point $\mathbf{i} = \mathbf{p} + l\mathbf{d}$. $a = \frac{\mathbf{i} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$ and $b = \frac{\mathbf{i} \cdot \mathbf{h}}{\mathbf{h} \cdot \mathbf{h}}$. We must check $a^2 + b^2 < 1$.

Pitfalls

- What if $\mathbf{n} \cdot \mathbf{d} = 0$?
- What if *I* < 0?

A - Alternative Blockchain Algorithms

- B Balloon Party
- C Circus Tent
- D Darts

E -Encryptastrophy

- F Forest Run
- G Game Night
- H Hurry the Hedgehog

Problem description

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

The ciphertext definition can be given by the following equations:

 $c_0 = p_0 + k_0 \mod 26$ $c_n = p_n + k_n \mod 26$

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

The ciphertext definition can be given by the following equations:

 $c_0 = p_0 + k_0 \mod 26$ $c_n = p_n + k_n \mod 26$

As $k_n = p_{n-1}$, we can rewrite this to:

Problem description

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

FPC 2019

The ciphertext definition can be given by the following equations:

 $c_0 = p_0 + k_0 \mod 26$ $c_n = p_n + k_n \mod 26$

As $k_n = p_{n-1}$, we can rewrite this to:

$$c_n = p_n + p_{n-1} \mod 26$$

Problem description

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

The ciphertext definition can be given by the following equations:

 $c_0 = p_0 + k_0 \mod 26$ $c_n = p_n + k_n \mod 26$

As $k_n = p_{n-1}$, we can rewrite this to:

 $c_n = p_n + p_{n-1} \mod 26$

 $p_{n-1} = c_n - p_n \mod 26$

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Solution

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Solution

For a string *c* with length *l*, we are given p_{l-1} , therefore:

A - Alternative Blockchain Algorithms

B - Balloon Party

Solution

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

 $p_{l-2} = c_{l-1} - p_{l-1} \mod 26$

A - Alternative Blockchain Algorithms

B - Balloon Party

Solution

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

For a string *c* with length *l*, we are given p_{l-1} , therefore:

 $p_{l-2} = c_{l-1} - p_{l-1} \mod 26$

 $p_{l-3} = c_{l-2} - p_{l-3} \mod 26$

A - Alternative Blockchain Algorithms

B - Balloon Party

Solution

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

For a string *c* with length *l*, we are given p_{l-1} , therefore:

 $p_{l-2} = c_{l-1} - p_{l-1} \mod 26$

 $p_{l-3} = c_{l-2} - p_{l-3} \mod 26$

...

A - Alternative Blockchain Algorithms

B - Balloon Party

Solution

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

For a string *c* with length *l*, we are given p_{l-1} , therefore:

 $p_{l-2} = c_{l-1} - p_{l-1} \mod 26$

$$p_{l-3} = c_{l-2} - p_{l-3} \mod 26$$

 $p_0 = c_1 - p_1 \mod 26$

...

A - Alternative Blockchain Algorithms

B - Balloon Party

Solution

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

For a string *c* with length *l*, we are given p_{l-1} , therefore:

 $p_{l-2} = c_{l-1} - p_{l-1} \mod 26$

$$p_{l-3} = c_{l-2} - p_{l-3} \mod 26$$

 $p_0 = c_1 - p_1 \mod 26$

...

A - Alternative Blockchain Algorithms

B - Balloon Party

Pitfalls

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Modulo with a negative number returns a negative number.
 Use (x % n + n) % n

Problem F - Forest Run (1/3)

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

FPC

2019

H - Hurry the Hedgehog

Problem description

Traverse the trees in the forest from root to every leaf and back and sum the distance.

Solution

- Start at the leaves, give them length 0 and width 1
- For the parent nodes, sum the lengths of the children, and add the width of the children

Problem F - Forest Run (2/3)

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Solution

- Start at the leaves, give them length 0 and width 1
- For the parent nodes, sum the lengths of the children, and add the width of the children

Problem F - Forest Run (3/3)

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

FPC

2019

H - Hurry the Hedgehog

Solution

- Start at the leaves, give them length 0 and width 1
- For the parent nodes, sum the lengths of the children, and add the width of the children

Pitfalls

For Java and C++: int is too small, use long instead
Recursion gives stack overflow, use your own stack.

Problem G - Game Night

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

Problem description

How many letters can be re-used between two (pass)words?

Solution

- Keep a tally per letter that counts the amount of occurrences for each letter for both words
- Count how many letters are different between the two words

Pitfalls

- Input can be large (up to one million characters), solution must run in O(n).
- Letters can be used multiple times.

Problem H - Hurry the Hedgehog

A - Alternative Blockchain Algorithms

B - Balloon Party

C - Circus Tent

D - Darts

E -Encryptastrophy

F - Forest Run

G - Game Night

H - Hurry the Hedgehog

FPC 2019

Problem description

- Given a graph, find shortest path from v_1 to v_n
- Only use vertices that have a "Super Mushroom"

Solution

- A simple breadth-first search suffices
- Need to remember length of path

Pitfalls

• The case for n = 1.