
BAPC 2019 Preliminaries
Preliminaries for the

2019 Benelux Algorithm Programming Contest

Problems
A Architecture
B Bracket Sequence
C Canyon Crossing
D Deceptive Dice
E Exits in Excess
F Floor Plan
G Greetings!
H Hexagonal Rooks
I Inquiry I
J Jumbled Journey
K Knapsack Packing
L Lifeguards

Copyright © 2019 by The BAPC 2019 jury. This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

Problem A: Architecture 3

A Architecture
Your brother has won an award at the recent Breakthroughs in Architectural Problems Con-
ference and has been given the once in a lifetime opportunity of redesigning the city center
of his favorite city Nijmegen. Since the most striking parts of a city’s layout are the skylines,
your brother has started by drawing ideas for how he wants the northern and eastern skylines
of Nijmegen to look. However, some of his proposals look rather outlandish, and you are
starting to wonder whether his designs are possible.

For his design, your brother has put an R × C grid on the city. Each cell of the city will
contain a building of a certain height. The eastern skyline is given by the tallest building in
each of the R rows, and the northern skyline is given by the tallest building in each of the C

columns.

A pair of your brother’s drawings of skylines is possible if and only if there exists some way
of assigning building heights to the grid cells such that the resulting skylines match these
drawings.

Figure A.1 shows a possible city with the northern and eastern skylines exactly as given in
the input of the first sample.

1 2 3 4
0 1 2 3
1 2 1 1
1 0 1 1

Figure A.1: Example city showing sample 1 has a valid solution.

Input

• The first line consists of two integers 1 ≤ R, C ≤ 100, the number of rows and columns
in the grid.

• The second line consists of R integers x1, . . . , xR describing the eastern skyline (0 ≤ xi ≤ 1000
for all i).

• The third line consists of C integers y1, . . . , yC describing the northern skyline (0 ≤ yj ≤ 1000
for all j).

Output

Output one line containing the string possible if there exists a city design that produces
the specified skyline, and impossible otherwise.

Sample Input 1 Sample Output 1
4 4
4 3 2 1
1 2 3 4

possible

4 Problem A: Architecture

Sample Input 2 Sample Output 2
4 4
1 2 3 4
1 2 3 2

impossible

Problem B: Bracket Sequence 5

B Bracket Sequence
Two great friends, Eddie John and Kris Cross, are attending
the Brackets Are Perfection Conference. They wholeheartedly
agree with the main message of the conference and they are
delighted with all the new things they learn about brackets.

One of these things is a bracket sequence. If you want to do a
computation with + and ×, you usually write it like so:

(2× (2 + 1 + 0 + 1)× 1) + 3 + 2.

The brackets are only used to group multiplications and addi-
tions together. This means that you can remove all the opera-
tors, as long as you remember that addition is used for numbers
outside any parentheses! A bracket sequence can then be shortened to

(2 (2 1 0 1) 1) 3 2.

That is much better, because it saves on writing all those operators. Reading bracket se-
quences is easy, too. Suppose you have the following bracket sequence

5 2 (3 1 (2 2) (3 3) 1).

You start with addition, so this is the same as the following:

5 + 2 + (3 1 (2 2) (3 3) 1).

You know the parentheses group a multiplication, so this is equal to

5 + 2 + (3× 1× (2 2)× (3 3)× 1).

Then there is another level of parentheses: that groups an operation within a multiplication,
so the operation must be addition.

5 + 2 + (3× 1× (2 + 2)× (3 + 3)× 1) = 5 + 2 + (3× 1× 4× 6× 1) = 5 + 2 + 72 = 79.

Since bracket sequences are so much easier than normal expressions with operators, it should
be easy to evaluate some big ones. We will even allow you to write a program to do it for
you.

Note that () is not a valid bracket sequence, nor a subsequence of any valid bracket sequence.

Input

• One line containing a single integer 1 ≤ n ≤ 3 · 105.

• One line consisting of n tokens, each being either (,), or an integer 0 ≤ x < 109 + 7.
It is guaranteed that the tokens form a bracket sequence.

6 Problem B: Bracket Sequence

Output

Output the value of the given bracket sequence. Since this may be very large, you should
print it modulo 109 + 7.

Sample Input 1 Sample Output 1
2
2 3

5

Sample Input 2 Sample Output 2
8
(2 (2 1)) 3

9

Sample Input 3 Sample Output 3
4
(12 3)

36

Sample Input 4 Sample Output 4
6
(2) (3)

5

Sample Input 5 Sample Output 5
6
((2 3))

5

Sample Input 6 Sample Output 6
11
1 (0 (583920 (2839 82)))

1

Problem C: Canyon Crossing 7

C Canyon Crossing

The Bridge And Passageway Creators are responsible for making new paths through the local
mountains. They have approved your plan to build a new route through your favorite canyon.
You feverishly start working on this beautiful new path, when you realize you failed to take
into account the flow of a nearby river: the canyon is flooded! Apparently this happens once
every blue moon, making some parts of the path inaccessible. Because of this, you want
to build a path such that the lowest point on the path is as high as possible. You quickly
return to the village and use all of your money to buy rope bridges. You plan to use these to
circumvent the lowest parts of the canyon.

1 1 3

3 3 3

0 0 0

2 2 1

1 2 1

(1)

B

(2)

B

Figure C.1: Canyon and two possible paths with minimal height 1 and 2 for sample input 1. The B
indicate bridges.

Your map of the canyon consists of a rectangular grid of cells, each containing a number giving
the height of the terrain at that cell. The path will go from the south side of the canyon
(bottom on your map) to the north side (top of your map), moving through a connected
sequence of cells. Two cells are considered connected if and only if they share an edge. In
particular, two diagonally touching cells are not considered to be connected. This means that
for any cell not on the edge of the map, there are 4 other cells connected to it. The left of
figure C.1 contains the map for the first sample input.

The path through the canyon can start on any of the bottom cells of the grid, and end on
any of the cells in the top tow, like the two paths on the right in C.1. The lowest height is
given by the lowest height of any of the cells the paths goes through. Each bridge can be
used to cross exactly one cell. This cell is then not taken into account when calculating the
minimal height of the path. Note that is allowed to chain multiple bridges to use them to
cross multiple cells,

Given the map of the canyon and the number of bridges available, find the lowest height of
an optimal path.

8 Problem C: Canyon Crossing

1 1 3

3 3 3

0 0 0

2 2 1

1 2 1

(1)

B

(2)

B

Figure C.2: Canyon and an optimal path for sample input 2.

Input

• A single line containing three integers: 1 ≤ R ≤ 1000 and 1 ≤ C ≤ 1000, the size of the
map, and 0 ≤ K ≤ R− 1, the number of bridges you can build.

• This is followed by R lines each containing C integers. The j-th integer on the i-th line
corresponds to the height 0 ≤ Hi,j ≤ 109 of the canyon at point (i, j). The first line
corresponds to the northern edge of the canyon, the last line to the southern edge.

Output

Output a single integer, the lowest height of the optimal path.

Sample Input 1 Sample Output 1
5 3 1
1 1 3
3 3 3
0 0 0
2 2 1
1 2 1

2

Sample Input 2 Sample Output 2
5 3 3
2 1 1
2 1 1
1 1 1
1 1 2
1 1 2

2

Sample Input 3 Sample Output 3
3 2 2
1 1
4 4
1 2

4

Problem D: Deceptive Dice 9

D Deceptive Dice
Recently your town has been infested by swindlers who convince
unknowing tourists to play a simple dice game with them for
money. The game works as follows: given is an n-sided die,
whose sides have 1, 2, . . . , n pips, and a positive integer k. You
then roll the die, and then have to make a choice. Option 1 is
to stop rolling. Option 2 is to reroll the die, with the limitation
that the die can only be rolled k times in total. Your score is
the number of pips showing on your final roll.

Obviously the swindlers are better at this game than the
tourists are. You, proud supporter of the Battle Against Proba-
bilistic Catastrophes, decide to fight this problem not by banning the swindlers but by arming
the tourists with information.

You create pamphlets on which tourists can find the maximum expected score for many values
of n and k. You are sure that the swindlers will soon stop their swindling if the tourists are
better prepared than they are!

The layout of the flyers is done, and you have distribution channels set up. All that is left to
do is to calculate the numbers to put on the pamphlet.

Given the number of sides of the die and the number of times you are allowed to roll, calculate
the expected (that is, average) score when the game is played optimally.

Input

• A single line with two integers 1 ≤ n ≤ 100, the number of sides of the die, and
1 ≤ k ≤ 100, the number of times the die may be rolled.

Output

Output the expected score when playing optimally. Your answer should have an absolute or
relativ eerror of at most 10−7.

Sample Input 1 Sample Output 1
1 1 1

Sample Input 2 Sample Output 2
2 3 1.875

Sample Input 3 Sample Output 3
6 2 4.25

10 Problem D: Deceptive Dice

Sample Input 4 Sample Output 4
8 9 7.268955230712891

Problem E: Exits in Excess 11

E Exits in Excess

Via nikkvalentine on flickr

You own a disco called the Boogie Always Persists Club.
The club is famous for its multiple interconnected rooms to
twist and shout in. The rooms and the corridors between
them form a maze-like structure and for added bonus you
have made all the corridors one-way. However, it turns
out not everyone is as happy with your club as you are.
Recently the fire safety inspectors came by and they were
not amused by what they saw: if a fire were to break out in
one of the rooms, people would have great difficulty finding
the fire exits and might even start running around in circles! They find this completely
unacceptable and order you to improve things as quickly as possible. They insist that you
have to make sure that no one can run around in circles in the club by removing some of the
corridors between the rooms.

You, on the other hand, want to retain the attractiveness of the rooms. You do not want to
remove too many corridors, because then people will no longer visit your club. You decide
that at most half of the corridors may be removed.

Given the layout of the club, remove at most half of the corridors so that no cycles remain.

Input

• One line containing the number of rooms 1 ≤ n ≤ 105 and the number of corridors
0 ≤ m ≤ 2 · 105.

• Then follow m lines, each containing two different 1-based integers u and v indicating
a corridor from room u to room v. There will be no corridor from a room to itself, nor
will there be more than one corridor from one room to any other single room.

Output

• On the first line, print a single integer 0 ≤ r ≤ m/2, the number of corridors to be
removed.

• Then print r lines containing the 1-based indices of the corridors that need to be removed
to ensure that dancers cannot go around in circles in the disco anymore.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1
2 2
1 2
2 1

1
2

12 Problem E: Exits in Excess

Sample Input 2 Sample Output 2
3 3
1 2
2 3
3 1

1
1

Sample Input 3 Sample Output 3
4 5
1 2
1 3
3 2
2 4
3 4

0

Sample Input 4 Sample Output 4
4 5
1 2
2 3
2 4
3 1
4 1

2
4
5

Sample Input 5 Sample Output 5
4 3
1 2
2 3
3 4

1
2

Problem F: Floor Plan 13

F Floor Plan

Via Gisela Giardino on flickr

You are an architect and you have just been appointed to
build a new swimming hall. The organisation behind these
plans has acquired funding for a swimming pool and sur-
rounding building as large as they want, but unfortunately
they could not find anyone willing to pay for the floor sur-
rounding the pool. They decided to pay for the floor tiles
out of their own pocket. Because this has already cost
them an arm and a leg, they want you to use all the floor
tiles in your proposed plan.

Being an architect, you care for aesthetics. You see it as
absolutely vital that both the swimming pool and the sur-
rounding building are perfect squares. This raises an in-
teresting problem: how can you make sure that the square shapes are guaranteed, while still
using all the floor tiles the organisation bought?

Given the number of tiles n, find the length of the side of the building m and and the length
of the side of the pool k such that n = m2 − k2, or print impossible if no suitable m and
k exist.

Input

• One line containing a single integer 1 ≤ n ≤ 109.

Output

Print two non-negative integers m, k such that n = m2−k2, or print impossible if no such
integers exist. If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1
7 4 3

Sample Input 2 Sample Output 2
10 impossible

Sample Input 3 Sample Output 3
15 4 1

This page is intentionally left blank.

Problem G: Greetings! 15

G Greetings!
Now that Snapchat and Slingshot are soooo 2018, the
teenagers of the world have all switched to the new hot
app called BAPC (Bidirectional and Private Communi-
cation). This app has some stricter social rules than
previous iterations. For example, if someone says good-
bye using Later!, the other person is expected to re-
ply with Alligator!. You can not keep track of all
these social conventions and decide to automate any neces-
sary responses, starting with the most important one: the
greetings. When your conversational partner opens with
he...ey, you have to respond with hee...eey as well,
but using twice as many e’s!

Given a string of the form he...ey of length at most 1000,
print the greeting you will respond with, containing twice
as many e’s.

Input

• The input consists of one line containing a single string s as specified, of length at least
3 and at most 1000.

Output

Output the required response.

Sample Input 1 Sample Output 1
hey heey

Sample Input 2 Sample Output 2
heeeeey heeeeeeeeeey

This page is intentionally left blank.

Problem H: Hexagonal Rooks 17

H Hexagonal Rooks

It is game night and Alice and Bob are playing chess. After beating Bob at chess several times,
Alice suggests they should play a chess variant instead called hexagonal chess. Although the
game is very rarely played nowadays, Alice knows the rules very well and has obtained a
hexagonal chessboard from her subscription to the magazine of Bizarre Artifacts for Playing
Chess.

Figure H.1: The field naming of the hexagonal chess board and the directions in which a rook can
move.

The hexagonal chess board, shown above, consists of 91 hexagonal cells arranged in the shape
of a hexagon with side length 6 as depicted in the above diagrams. The board is divided into
11 columns, each called a file, and the files are labeled a to k from left to right. It is also
divided into 11 v-shaped rows, each called a rank, which are labeled 1 to 11 from bottom to
top. The unique cell in file x and rank y is then denoted by the coordinate xy. For example,
rank 11 contains only a single cell f11 and rank 7 is occupied entirely by the black player’s
pawns.

Alice begins by explaining how all the pieces move. The simplest piece is the rook, which
can move an arbitrary positive number of steps in a straight line in the direction of any of
its 6 adjacent cells, as depicted in the figure on the right. Bob immediately realises that the
hexagonal rook already is more difficult to work with than its regular chess counterpart.

In order to attack one of the opponents pieces, it is useful to know which cells his rook can
move to such that it attacks the opposing piece. The more of these cells there are, the more
valuable the current position of his rook is. However, calculating this number is too much
for Bob. After losing so many games of regular chess, Alice allows Bob to use a program to
assist in his rook placement. While Alice explains the rest of the game you get busy coding.

18 Problem H: Hexagonal Rooks

As a small simplification, Bob will compute the number of ways his rook can move to the
destination cell assuming there are no other pieces on the board, not even the piece he wants
to attack.

Input

• The input consists of one line, containing two different coordinates on the hexagonal
chess board, the current positions of your rook and the piece you want to attack.

Output

Output a single integer, the number of ways the rook can move from its current position to
the position of the piece it wants to attack in exactly two moves, assuming there are no other
pieces on the board.

Sample Input 1 Sample Output 1
c4 h4 6

Sample Input 2 Sample Output 2
a1 a2 5

Problem I: Inquiry I 19

I Inquiry I
The Bureau for Artificial Problems in Competitions wants you to solve the following problem:
Given n positive integers a1, . . . , an, what is the maximal value of(

a2
1 + · · ·+ a2

k

)
· (ak+1 + · · ·+ an)?

Input

• A single line containing an integer 2 ≤ n ≤ 106.

• Then follow n lines, the ith of which contains the integer 1 ≤ ai ≤ 100.

Output

Output the maximal value of the given expression.

Sample Input 1 Sample Output 1
5
2
1
4
3
5

168

Sample Input 2 Sample Output 2
2
1
1

1

Sample Input 3 Sample Output 3
10
8
5
10
9
1
4
12
6
3
13

10530

This page is intentionally left blank.

Problem J: Jumbled Journey 21

J Jumbled Journey
Together with some friends you are planning a holiday to the Beautiful Authentic Parks
Centre. While there, you want to visit the parks as much as you can. As part of the
preparation you, together with your best friend, decided to make an extensive map of the
parks, the roads between them, and the lengths of these roads. To ensure that the visitors to
the Parks Centre do not circle endlessly through the gorgeous parks, the routes between the
parks are one-way only and are made such that it is impossible to visit a park more than once
(that is, the corresponding graph is acyclic). Together you spend the entire day to create an
incredibly detailed and admittedly rather large map of the Parks Centre.

1

2 3

4

2 4

6

4

4

Figure J.1: The map of the parks corresponding to sample input 1.

The next day disaster strikes: your friend happily announces that he got rid of the cumber-
some map! Instead, he decided to replace it with a simple table containing only the average
distances between the parks, weighing each route equally. Thus, he would give you an average
distance of 8 between park 1 and park 4 as in figure J.1, because there are 3 paths and their
average length is (6 + 8 + 10)/3 = 8. You feel defeated, and you dread the thought of making
the map all over again. Perhaps it might be easier to try and use the table of average distances
your friend made in order to reconstruct the original map. One thing you remember, is that
the roads on the map were never inefficient. If there was a direct road between two parks,
then every path via at least one other park was strictly longer. This condition holds for the
first sample input because, for example, the road from 1 to 4 has length 6, which is shorter
than the length of any other path from 1 to 4.

Given an input of average distances between parks, output the original map: a weighted
directed acyclic graph for which these average distances hold.

Input

• The first line contains an integer 1 ≤ n ≤ 100, the number of vertices (parks).

• The next n lines contain the average distance from vertex i to vertex j as the jth number
on the ith line, or −1 in case there is no path from vertex i to vertex j. All distances
are either −1 or non-negative integers, at most 1015.

You know the following facts about the map (the original graph):

22 Problem J: Jumbled Journey

• There is no way to follow the roads and return to a park once you have left it. That is,
the graph is acyclic.

• The lengths of the roads in the original graph are all integers.

• Between any two parks, there are at most 1000 distinct paths you can take from one to
the other.

• Direct roads are always efficient: if there is a direct road from park i to park j, every
other path from i to j is strictly longer than that direct road.

Output

Print n lines each containing n integers. The jth number on the ith line should be the positive
length of the edge from vertex i to vertex j, or −1 if there is no such edge. It is guaranteed
that a solution exists.

Sample Input 1 Sample Output 1
4
0 2 5 8
-1 0 4 8
-1 -1 0 4
-1 -1 -1 0

-1 2 4 6
-1 -1 4 -1
-1 -1 -1 4
-1 -1 -1 -1

Sample Input 2 Sample Output 2
6
0 -1 48 -1 132 -1
24 0 84 36 153 108
-1 -1 0 -1 84 -1
-1 -1 60 0 116 72
-1 -1 -1 -1 0 -1
-1 -1 -1 -1 96 0

-1 -1 48 -1 -1 -1
24 -1 -1 36 -1 -1
-1 -1 -1 -1 84 -1
-1 -1 60 -1 36 72
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 96 -1

Problem K: Knapsack Packing 23

K Knapsack Packing
One of the most difficult things about going on a holiday
is making sure your luggage does not exceed the maximum
weight. You, chairman of the Backpacker’s Association for
Packing Carry-ons, are faced with exactly this problem.
You are going on a lovely holiday with one of your friends,
but now most of your time is spent in frustration while
trying to pack your backpack. In order to optimize this
process, you and your friend have independently set upon
trying to find better ways to pack.

After some time you have a serious breakthrough! Somehow you managed to solve the Knap-
sack problem in polynomial time, defying expectations everywhere. You are not interested in
any theoretical applications, so you immediately return to your friend’s apartment in order
to now quickly pack your backpack optimally.

When you arrive there, you find that your friend has set upon her own solution, namely to
enumerate all possible packings. This means that all items you possibly wanted to bring are
scattered across the entire apartment, and it would take a really long time to get all the items
back together.

Luckily you can use the work your friend has done. For every possible subset of items that
you can possibly bring, she has written down the total weight of these items. Alas, she did
not write down what items were part of this total, so you do not know what items contributed
to each total weight. If the original weights of the items formed a collection (a1, . . . , an) of
non-negative integers, then your friend has written down the multiset

S
(
(a1, . . . , an)

)
:=
{∑

i∈I

ai

∣∣∣∣∣ I ⊆ {1, . . . , n}
}

.

For example, if your friend had two items, and the weights of those two items are 2, 3, then
your friend has written down

• 0, corresponding to the empty set {};

• 2, corresponding to the subset {2};

• 3, corresponding to the subset {3};

• 5, corresponding to the subset {2, 3}.

You want to reconstruct the weights of all the individual items so you can start using your
Knapsack algorithm. It might have happened that your friend made a mistake in adding all
these weights, so it might happen that her list is not consistent.

24 Problem K: Knapsack Packing

Input

• One line containing a single integer 1 ≤ n ≤ 18 the number of items.

• 2n lines each containing a single integer 0 ≤ w ≤ 228, the combined weight of a subset
of the items. Every subset occurs exactly once.

Output

Output non-negative integers a1, . . . , an on n lines in non-decreasing order such that S
(
(a1, . . . , an)

)
=

{b1, . . . , b2n}, provided that such integers exist. Otherwise, output a single line containing
impossible.

Sample Input 1 Sample Output 1
1
0
5

5

Sample Input 2 Sample Output 2
3
7
5
2
4
1
6
3
0

1
2
4

Sample Input 3 Sample Output 3
2
0
1
2
4

impossible

Sample Input 4 Sample Output 4
2
0
1
1
2

1
1

Problem L: Lifeguards 25

L Lifeguards

Via Joshua Lynch on flickr

Lifeguards have a very important job. They prevent people
from drowning and allow millions of people every year to ex-
perience the joys of water. You are one of these lifeguards,
and you take your job very seriously. If regulations were up to
you, everyone would have to wear life vests when in the water,
which is why you are part of the Buoyancy Activists Promot-
ing Change. As a result of your persistent lobbying, the pool at
which you are a lifeguard has decided to hire a second lifeguard.
You are very happy with the increased security at your local swimming pool.

You get along quite well with the new lifeguard, but you discover you have not prepared
his arrival properly; on the first day of working together you have some trouble figuring out
who is supposed to watch which swimmers. This is completely unacceptable and could lead
to casualties! You immediately start working on this problem: following the mantra “shared
responsibility is no responsibility”, you try to divide the people in the swimming pool into two
groups as follows: any swimmer is the responsibility of the lifeguard closest to this swimmer.
Thus, knowing the exact positions of all swimmers, you and your coworker both find a position
such that both of you are responsible for the exact same number of swimmers. Furthermore,
you want at most one swimmer for whom the distance to you and your coworker is equal.
This swimmer counts for both lifeguards.

As you and your coworker are amazing sprinters, you do not care for the actual distance
between you and the swimmers, only that the swimmers are divided nicely into two equally
sized groups.

Input

• The first line contains an integer 2 ≤ n ≤ 105, the number of swimmers.

• Each of the next n lines contains two integers −109 ≤ x ≤ 109 and −109 ≤ y ≤ 109, the
position of the swimmer.

Output

Print two lines, both containing integers x and y with −1018 ≤ x, y ≤ 1018, the locations of
you and your coworker.

If there are multiple valid solutions, you may output any one of them.

26 Problem L: Lifeguards

Sample Input 1 Sample Output 1
5
0 0
0 1
1 0
0 -1
-1 0

-3 -1
3 1

Sample Input 2 Sample Output 2
4
2 4
6 -1
3 5
-1 -1

3 4
3 -1

Sample Input 3 Sample Output 3
4
5 5
5 -5
-5 5
-5 -5

1 2
-1 2

	Problems
	Architecture
	Bracket Sequence
	Canyon Crossing
	Deceptive Dice
	Exits in Excess
	Floor Plan
	Greetings!
	Hexagonal Rooks
	Inquiry I
	Jumbled Journey
	Knapsack Packing
	Lifeguards

