
BAPC 2019 Preliminaries
Solutions presentation

September 22, 2019

BAPC 2019 Preliminaries — September 22, 2019 1

Architecture

Does there exist a city with the two given skylines?

Let the tallest building have height h.
The maximal height in the eastern skyline is h.
The maximal height in the northern skyline is h.
A necessary condition is that max xi = h = max yj .
It is also sufficient:
Find r and c with xr = yc = h and set hrj = yj and hic = xi .

0 0 3 0
4 1 6 3
0 0 1 0
0 0 2 0

BAPC 2019 Preliminaries — September 22, 2019 2

Architecture

Does there exist a city with the two given skylines?
Let the tallest building have height h.
The maximal height in the eastern skyline is h.
The maximal height in the northern skyline is h.

A necessary condition is that max xi = h = max yj .
It is also sufficient:
Find r and c with xr = yc = h and set hrj = yj and hic = xi .

0 0 3 0
4 1 6 3
0 0 1 0
0 0 2 0

BAPC 2019 Preliminaries — September 22, 2019 2

Architecture

Does there exist a city with the two given skylines?
Let the tallest building have height h.
The maximal height in the eastern skyline is h.
The maximal height in the northern skyline is h.
A necessary condition is that max xi = h = max yj .

It is also sufficient:
Find r and c with xr = yc = h and set hrj = yj and hic = xi .

0 0 3 0
4 1 6 3
0 0 1 0
0 0 2 0

BAPC 2019 Preliminaries — September 22, 2019 2

Architecture

Does there exist a city with the two given skylines?
Let the tallest building have height h.
The maximal height in the eastern skyline is h.
The maximal height in the northern skyline is h.
A necessary condition is that max xi = h = max yj .
It is also sufficient:
Find r and c with xr = yc = h and set hrj = yj and hic = xi .

0 0 3 0
4 1 6 3
0 0 1 0
0 0 2 0

BAPC 2019 Preliminaries — September 22, 2019 2

Architecture

input ()
if max ([int(x) for x in input ().split ()])

== max ([int(x) for x in input ().split ()]):
print(" possible ")

else:
print(" impossible ")

BAPC 2019 Preliminaries — September 22, 2019 3

Bracket Sequence

Build an expression tree and evaluate it.
Be careful to put the + and × at the right levels!

Implement using recursion, a stack, or linked lists.
Instead of computing levels ‘outside-in’, you can also compute the value of each
subexpression for both the + and × case and decide which one you need at the
end.

Python eval goes a long way, but stackoverflows.

BAPC 2019 Preliminaries — September 22, 2019 4

Bracket Sequence

Build an expression tree and evaluate it.
Be careful to put the + and × at the right levels!
Implement using recursion, a stack, or linked lists.
Instead of computing levels ‘outside-in’, you can also compute the value of each
subexpression for both the + and × case and decide which one you need at the
end.

Python eval goes a long way, but stackoverflows.

BAPC 2019 Preliminaries — September 22, 2019 4

Canyon Crossing

What is the lowest height where we can make a path using at most k bridges?
If we can do it with minimal height h, we can also do it for all h′ ≥ h.

Binary search for h.
For each h, we can do a BFS where for each cell we store the number of bridges
needed to get there.
If we can reach the other side with at most k bridges: answer ≤ h. Else:
answer > h.
Dijkstra instead of BFS will be too slow.

BAPC 2019 Preliminaries — September 22, 2019 5

Canyon Crossing

What is the lowest height where we can make a path using at most k bridges?
If we can do it with minimal height h, we can also do it for all h′ ≥ h.
Binary search for h.

For each h, we can do a BFS where for each cell we store the number of bridges
needed to get there.
If we can reach the other side with at most k bridges: answer ≤ h. Else:
answer > h.
Dijkstra instead of BFS will be too slow.

BAPC 2019 Preliminaries — September 22, 2019 5

Canyon Crossing

What is the lowest height where we can make a path using at most k bridges?
If we can do it with minimal height h, we can also do it for all h′ ≥ h.
Binary search for h.
For each h, we can do a BFS where for each cell we store the number of bridges
needed to get there.
If we can reach the other side with at most k bridges: answer ≤ h. Else:
answer > h.

Dijkstra instead of BFS will be too slow.

BAPC 2019 Preliminaries — September 22, 2019 5

Canyon Crossing

What is the lowest height where we can make a path using at most k bridges?
If we can do it with minimal height h, we can also do it for all h′ ≥ h.
Binary search for h.
For each h, we can do a BFS where for each cell we store the number of bridges
needed to get there.
If we can reach the other side with at most k bridges: answer ≤ h. Else:
answer > h.
Dijkstra instead of BFS will be too slow.

BAPC 2019 Preliminaries — September 22, 2019 5

Deceptive Dice
Given: a die with n sides, k rolls.
Using our best strategy, what is our expected score?

Example: given n = 20 sides and k = 1 roll, our expected score is
1 + 2 + · · ·+ 19 + 20

20 = 101
2 .

If we have k = 2 rolls, we want to reroll if our first result < 101
2 . So our expected

score is
11 + 12 + · · ·+ 20

20 +
10× 101

2
20 = 13.

So for k = 3 rolls, we reroll if our first result < 13. Score for 3 rolls:
14 + · · ·+ 20

20 + 13× 13
20 = 142

5 .

And so on, until we reach k rolls.
A linear solution is possible by computing the sums in constant time.

BAPC 2019 Preliminaries — September 22, 2019 6

Deceptive Dice
Given: a die with n sides, k rolls.
Using our best strategy, what is our expected score?
Example: given n = 20 sides and k = 1 roll, our expected score is

1 + 2 + · · ·+ 19 + 20
20 = 101

2 .

If we have k = 2 rolls, we want to reroll if our first result < 101
2 . So our expected

score is
11 + 12 + · · ·+ 20

20 +
10× 101

2
20 = 13.

So for k = 3 rolls, we reroll if our first result < 13. Score for 3 rolls:
14 + · · ·+ 20

20 + 13× 13
20 = 142

5 .

And so on, until we reach k rolls.
A linear solution is possible by computing the sums in constant time.

BAPC 2019 Preliminaries — September 22, 2019 6

Deceptive Dice
Given: a die with n sides, k rolls.
Using our best strategy, what is our expected score?
Example: given n = 20 sides and k = 1 roll, our expected score is

1 + 2 + · · ·+ 19 + 20
20 = 101

2 .

If we have k = 2 rolls, we want to reroll if our first result < 101
2 . So our expected

score is
11 + 12 + · · ·+ 20

20 +
10× 101

2
20 = 13.

So for k = 3 rolls, we reroll if our first result < 13. Score for 3 rolls:
14 + · · ·+ 20

20 + 13× 13
20 = 142

5 .

And so on, until we reach k rolls.
A linear solution is possible by computing the sums in constant time.

BAPC 2019 Preliminaries — September 22, 2019 6

Deceptive Dice
Given: a die with n sides, k rolls.
Using our best strategy, what is our expected score?
Example: given n = 20 sides and k = 1 roll, our expected score is

1 + 2 + · · ·+ 19 + 20
20 = 101

2 .

If we have k = 2 rolls, we want to reroll if our first result < 101
2 . So our expected

score is
11 + 12 + · · ·+ 20

20 +
10× 101

2
20 = 13.

So for k = 3 rolls, we reroll if our first result < 13. Score for 3 rolls:
14 + · · ·+ 20

20 + 13× 13
20 = 142

5 .

And so on, until we reach k rolls.

A linear solution is possible by computing the sums in constant time.

BAPC 2019 Preliminaries — September 22, 2019 6

Deceptive Dice
Given: a die with n sides, k rolls.
Using our best strategy, what is our expected score?
Example: given n = 20 sides and k = 1 roll, our expected score is

1 + 2 + · · ·+ 19 + 20
20 = 101

2 .

If we have k = 2 rolls, we want to reroll if our first result < 101
2 . So our expected

score is
11 + 12 + · · ·+ 20

20 +
10× 101

2
20 = 13.

So for k = 3 rolls, we reroll if our first result < 13. Score for 3 rolls:
14 + · · ·+ 20

20 + 13× 13
20 = 142

5 .

And so on, until we reach k rolls.
A linear solution is possible by computing the sums in constant time.

BAPC 2019 Preliminaries — September 22, 2019 6

Exits in Excess

Given a directed graph, remove at most half the edges so that it becomes acyclic.

Lots of ways to do this. Here is one way:
Partition the edges into two sets U and D such that both are acyclic.
For each edge u → v :

If u < v , put it in U.
If u > v , put it in D.

If U is smaller, output all edges in U. Otherwise, output all edges in D.
There cannot be cycles in U: along every edge the number of the node goes up.
And vice versa for D.

BAPC 2019 Preliminaries — September 22, 2019 7

Exits in Excess

Given a directed graph, remove at most half the edges so that it becomes acyclic.
Lots of ways to do this. Here is one way:

Partition the edges into two sets U and D such that both are acyclic.
For each edge u → v :

If u < v , put it in U.
If u > v , put it in D.

If U is smaller, output all edges in U. Otherwise, output all edges in D.
There cannot be cycles in U: along every edge the number of the node goes up.
And vice versa for D.

BAPC 2019 Preliminaries — September 22, 2019 7

Exits in Excess

Given a directed graph, remove at most half the edges so that it becomes acyclic.
Lots of ways to do this. Here is one way:
Partition the edges into two sets U and D such that both are acyclic.

For each edge u → v :
If u < v , put it in U.
If u > v , put it in D.

If U is smaller, output all edges in U. Otherwise, output all edges in D.
There cannot be cycles in U: along every edge the number of the node goes up.
And vice versa for D.

BAPC 2019 Preliminaries — September 22, 2019 7

Exits in Excess

Given a directed graph, remove at most half the edges so that it becomes acyclic.
Lots of ways to do this. Here is one way:
Partition the edges into two sets U and D such that both are acyclic.
For each edge u → v :

If u < v , put it in U.
If u > v , put it in D.

If U is smaller, output all edges in U. Otherwise, output all edges in D.
There cannot be cycles in U: along every edge the number of the node goes up.
And vice versa for D.

BAPC 2019 Preliminaries — September 22, 2019 7

Exits in Excess

Given a directed graph, remove at most half the edges so that it becomes acyclic.
Lots of ways to do this. Here is one way:
Partition the edges into two sets U and D such that both are acyclic.
For each edge u → v :

If u < v , put it in U.
If u > v , put it in D.

If U is smaller, output all edges in U. Otherwise, output all edges in D.

There cannot be cycles in U: along every edge the number of the node goes up.
And vice versa for D.

BAPC 2019 Preliminaries — September 22, 2019 7

Exits in Excess

Given a directed graph, remove at most half the edges so that it becomes acyclic.
Lots of ways to do this. Here is one way:
Partition the edges into two sets U and D such that both are acyclic.
For each edge u → v :

If u < v , put it in U.
If u > v , put it in D.

If U is smaller, output all edges in U. Otherwise, output all edges in D.
There cannot be cycles in U: along every edge the number of the node goes up.
And vice versa for D.

BAPC 2019 Preliminaries — September 22, 2019 7

Floor Plan
Given 1 ≤ n ≤ 109, find two integers m and k solving

n = m2 − k2.

Linear solution: Try all m between
√

n and 2n.

Takes > 109 steps, so too slow!
Let’s try some simple examples:

(m + 1)2 −m2 = 2m + 1.

So we can make all odd numbers this way.

(m + 2)2 −m2 = 4m + 4.

So we can make all multiples of 4 this way.
What about if n is even but not divisible by 2?

n = m2 − k2 = (m − k)(m + k).

If n is even, then at least one of m − k, m + k is even. But then they are both
even, so 4 | n. Conclusion: impossible.

BAPC 2019 Preliminaries — September 22, 2019 8

Floor Plan
Given 1 ≤ n ≤ 109, find two integers m and k solving

n = m2 − k2.

Linear solution: Try all m between
√

n and 2n. Takes > 109 steps, so too slow!

Let’s try some simple examples:

(m + 1)2 −m2 = 2m + 1.

So we can make all odd numbers this way.

(m + 2)2 −m2 = 4m + 4.

So we can make all multiples of 4 this way.
What about if n is even but not divisible by 2?

n = m2 − k2 = (m − k)(m + k).

If n is even, then at least one of m − k, m + k is even. But then they are both
even, so 4 | n. Conclusion: impossible.

BAPC 2019 Preliminaries — September 22, 2019 8

Floor Plan
Given 1 ≤ n ≤ 109, find two integers m and k solving

n = m2 − k2.

Linear solution: Try all m between
√

n and 2n. Takes > 109 steps, so too slow!
Let’s try some simple examples:

(m + 1)2 −m2 = 2m + 1.

So we can make all odd numbers this way.

(m + 2)2 −m2 = 4m + 4.

So we can make all multiples of 4 this way.
What about if n is even but not divisible by 2?

n = m2 − k2 = (m − k)(m + k).

If n is even, then at least one of m − k, m + k is even. But then they are both
even, so 4 | n. Conclusion: impossible.

BAPC 2019 Preliminaries — September 22, 2019 8

Floor Plan
Given 1 ≤ n ≤ 109, find two integers m and k solving

n = m2 − k2.

Linear solution: Try all m between
√

n and 2n. Takes > 109 steps, so too slow!
Let’s try some simple examples:

(m + 1)2 −m2 = 2m + 1.

So we can make all odd numbers this way.

(m + 2)2 −m2 = 4m + 4.

So we can make all multiples of 4 this way.
What about if n is even but not divisible by 2?

n = m2 − k2 = (m − k)(m + k).

If n is even, then at least one of m − k, m + k is even. But then they are both
even, so 4 | n. Conclusion: impossible.

BAPC 2019 Preliminaries — September 22, 2019 8

Floor Plan
Given 1 ≤ n ≤ 109, find two integers m and k solving

n = m2 − k2.

Linear solution: Try all m between
√

n and 2n. Takes > 109 steps, so too slow!
Let’s try some simple examples:

(m + 1)2 −m2 = 2m + 1.

So we can make all odd numbers this way.

(m + 2)2 −m2 = 4m + 4.

So we can make all multiples of 4 this way.
What about if n is even but not divisible by 2?

n = m2 − k2 = (m − k)(m + k).

If n is even, then at least one of m − k, m + k is even. But then they are both
even, so 4 | n. Conclusion: impossible.

BAPC 2019 Preliminaries — September 22, 2019 8

Floor Plan
Given 1 ≤ n ≤ 109, find two integers m and k solving

n = m2 − k2.

Linear solution: Try all m between
√

n and 2n. Takes > 109 steps, so too slow!
Let’s try some simple examples:

(m + 1)2 −m2 = 2m + 1.

So we can make all odd numbers this way.

(m + 2)2 −m2 = 4m + 4.

So we can make all multiples of 4 this way.

What about if n is even but not divisible by 2?

n = m2 − k2 = (m − k)(m + k).

If n is even, then at least one of m − k, m + k is even. But then they are both
even, so 4 | n. Conclusion: impossible.

BAPC 2019 Preliminaries — September 22, 2019 8

Floor Plan
Given 1 ≤ n ≤ 109, find two integers m and k solving

n = m2 − k2.

Linear solution: Try all m between
√

n and 2n. Takes > 109 steps, so too slow!
Let’s try some simple examples:

(m + 1)2 −m2 = 2m + 1.

So we can make all odd numbers this way.

(m + 2)2 −m2 = 4m + 4.

So we can make all multiples of 4 this way.
What about if n is even but not divisible by 2?

n = m2 − k2 = (m − k)(m + k).

If n is even, then at least one of m − k, m + k is even. But then they are both
even, so 4 | n. Conclusion: impossible.

BAPC 2019 Preliminaries — September 22, 2019 8

Floor Plan
Given 1 ≤ n ≤ 109, find two integers m and k solving

n = m2 − k2.

Linear solution: Try all m between
√

n and 2n. Takes > 109 steps, so too slow!
Let’s try some simple examples:

(m + 1)2 −m2 = 2m + 1.

So we can make all odd numbers this way.

(m + 2)2 −m2 = 4m + 4.

So we can make all multiples of 4 this way.
What about if n is even but not divisible by 2?

n = m2 − k2 = (m − k)(m + k).

If n is even, then at least one of m − k, m + k is even. But then they are both
even, so 4 | n. Conclusion: impossible.

BAPC 2019 Preliminaries — September 22, 2019 8

Floor Plan
Given 1 ≤ n ≤ 109, find two integers m and k solving

n = m2 − k2.

Linear solution: Try all m between
√

n and 2n. Takes > 109 steps, so too slow!
Let’s try some simple examples:

(m + 1)2 −m2 = 2m + 1.

So we can make all odd numbers this way.

(m + 2)2 −m2 = 4m + 4.

So we can make all multiples of 4 this way.
What about if n is even but not divisible by 2?

n = m2 − k2 = (m − k)(m + k).

If n is even, then at least one of m − k, m + k is even. But then they are both
even, so 4 | n.

Conclusion: impossible.

BAPC 2019 Preliminaries — September 22, 2019 8

Floor Plan
Given 1 ≤ n ≤ 109, find two integers m and k solving

n = m2 − k2.

Linear solution: Try all m between
√

n and 2n. Takes > 109 steps, so too slow!
Let’s try some simple examples:

(m + 1)2 −m2 = 2m + 1.

So we can make all odd numbers this way.

(m + 2)2 −m2 = 4m + 4.

So we can make all multiples of 4 this way.
What about if n is even but not divisible by 2?

n = m2 − k2 = (m − k)(m + k).

If n is even, then at least one of m − k, m + k is even. But then they are both
even, so 4 | n. Conclusion: impossible.

BAPC 2019 Preliminaries — September 22, 2019 8

Greetings!

Read the input and print the output with twice the number of e’s.

s = input ()
print(s[0] + s[1: -1] + s[1: -1] + s[-1])

print(’h’ + ’e’*(len(input ())*2 -4) + ’y’)

print(input (). replace (’e’,’ee’))

BAPC 2019 Preliminaries — September 22, 2019 9

Greetings!

Read the input and print the output with twice the number of e’s.

s = input ()
print(s[0] + s[1: -1] + s[1: -1] + s[-1])

print(’h’ + ’e’*(len(input ())*2 -4) + ’y’)

print(input (). replace (’e’,’ee’))

BAPC 2019 Preliminaries — September 22, 2019 9

Greetings!

Read the input and print the output with twice the number of e’s.

s = input ()
print(s[0] + s[1: -1] + s[1: -1] + s[-1])

print(’h’ + ’e’*(len(input ())*2 -4) + ’y’)

print(input (). replace (’e’,’ee’))

BAPC 2019 Preliminaries — September 22, 2019 9

Greetings!

Read the input and print the output with twice the number of e’s.

s = input ()
print(s[0] + s[1: -1] + s[1: -1] + s[-1])

print(’h’ + ’e’*(len(input ())*2 -4) + ’y’)

print(input (). replace (’e’,’ee ’))

BAPC 2019 Preliminaries — September 22, 2019 9

Greetings!

hey = input ()
print("he" + hey [2: -2] * 2 + "ey")

BAPC 2019 Preliminaries — September 22, 2019 10

Greetings!

hey = input ()
print("h" + hey [1: -1] * 2 + "y")

BAPC 2019 Preliminaries — September 22, 2019 11

Greetings!

Why not try something quadratic?
int main (){

char s [2001];
cin.get(s, 1001);
for(int i=1; i < strlen (s); ++i){

if(strchr ("e", s[i])){
for(int j = strlen (s)+1; j > i; --j){

s[j] = s[j -1];
}
++i;

}
}
cout << s << ’\n’;
return 0;

}

BAPC 2019 Preliminaries — September 22, 2019 12

Hexagonal Rooks

Given a hexagonal chess board with a rook on it, in how many ways can the rook
move to a target cell in exactly two steps?

For each cell on the board:
Check that you can go from the start to this cell, and to the goal from this cell.
Check that the cell is not equal to the start or the goal.

BAPC 2019 Preliminaries — September 22, 2019 13

Hexagonal Rooks

Given a hexagonal chess board with a rook on it, in how many ways can the rook
move to a target cell in exactly two steps?
For each cell on the board:

Check that you can go from the start to this cell, and to the goal from this cell.
Check that the cell is not equal to the start or the goal.

BAPC 2019 Preliminaries — September 22, 2019 13

Inquiry I
What is the maximal value of(

a2
1 + · · ·+ a2

k
)
· (ak+1 + · · ·+ an)?

Trying all n − 1 possible values of k separately takes O(n2) time: Too slow!
We can do it in linear time by remembering the partial sums of

∑
i a2

i and
∑

i ai :
n = int(input ())
a = [int(input ()) for _ in range(n)]
l, r = 0, sum(a)
best = 0
for x in a:

l += x*x
r -= x
best = max(best , l*r)

print(best)

BAPC 2019 Preliminaries — September 22, 2019 14

Inquiry I
What is the maximal value of(

a2
1 + · · ·+ a2

k
)
· (ak+1 + · · ·+ an)?

Trying all n − 1 possible values of k separately takes O(n2) time: Too slow!

We can do it in linear time by remembering the partial sums of
∑

i a2
i and

∑
i ai :

n = int(input ())
a = [int(input ()) for _ in range(n)]
l, r = 0, sum(a)
best = 0
for x in a:

l += x*x
r -= x
best = max(best , l*r)

print(best)

BAPC 2019 Preliminaries — September 22, 2019 14

Inquiry I
What is the maximal value of(

a2
1 + · · ·+ a2

k
)
· (ak+1 + · · ·+ an)?

Trying all n − 1 possible values of k separately takes O(n2) time: Too slow!
We can do it in linear time by remembering the partial sums of

∑
i a2

i and
∑

i ai :

n = int(input ())
a = [int(input ()) for _ in range(n)]
l, r = 0, sum(a)
best = 0
for x in a:

l += x*x
r -= x
best = max(best , l*r)

print(best)

BAPC 2019 Preliminaries — September 22, 2019 14

Inquiry I
What is the maximal value of(

a2
1 + · · ·+ a2

k
)
· (ak+1 + · · ·+ an)?

Trying all n − 1 possible values of k separately takes O(n2) time: Too slow!
We can do it in linear time by remembering the partial sums of

∑
i a2

i and
∑

i ai :
n = int(input ())
a = [int(input ()) for _ in range(n)]
l, r = 0, sum(a)
best = 0
for x in a:

l += x*x
r -= x
best = max(best , l*r)

print(best)

BAPC 2019 Preliminaries — September 22, 2019 14

Jumbled Journey
Given a table of average distances between vertices, reconstruct the
original directed graph.

To compute the length of edge u → v and whether it’s present, we must first
know all other edges on the path from u to v .
Toposort the vertices, and start by processing all adjacent vertices. Then process
vertices at longer distances.
Keep track of three tables: the input avg dist[u][v], the number of paths
count[u][v], and the length of the edge, if present edge[u][v].
The number of paths c from u to v and their total length L can be calculated by
looping over the last vertex w of the path before v .
If the average distance is not already correct add the edge u → v with length l
such that

(l + L)/(c + 1) = avgu,v .

BAPC 2019 Preliminaries — September 22, 2019 15

Jumbled Journey
Given a table of average distances between vertices, reconstruct the
original directed graph.
To compute the length of edge u → v and whether it’s present, we must first
know all other edges on the path from u to v .
Toposort the vertices, and start by processing all adjacent vertices. Then process
vertices at longer distances.
Keep track of three tables: the input avg dist[u][v], the number of paths
count[u][v], and the length of the edge, if present edge[u][v].

The number of paths c from u to v and their total length L can be calculated by
looping over the last vertex w of the path before v .
If the average distance is not already correct add the edge u → v with length l
such that

(l + L)/(c + 1) = avgu,v .

BAPC 2019 Preliminaries — September 22, 2019 15

Jumbled Journey
Given a table of average distances between vertices, reconstruct the
original directed graph.
To compute the length of edge u → v and whether it’s present, we must first
know all other edges on the path from u to v .
Toposort the vertices, and start by processing all adjacent vertices. Then process
vertices at longer distances.
Keep track of three tables: the input avg dist[u][v], the number of paths
count[u][v], and the length of the edge, if present edge[u][v].
The number of paths c from u to v and their total length L can be calculated by
looping over the last vertex w of the path before v .
If the average distance is not already correct add the edge u → v with length l
such that

(l + L)/(c + 1) = avgu,v .

BAPC 2019 Preliminaries — September 22, 2019 15

Knapsack Packing

Given a set of 2n integers S find a integers a1, . . . , an such that the
set of the sums of all subsets is S:∑

i∈I
ai

∣∣∣∣∣∣I ⊆ {1, 2, . . . , n}

 = S.

0 ∈ S because it’s the sum of the empty set.
mini ai ∈ S and must the the next smallest element.
Add this value m to the solution and for each value x (in increasing order) remove
x + m from S.
Repeat until S contains only 0.
Be careful to print impossible when needed!

BAPC 2019 Preliminaries — September 22, 2019 16

Knapsack Packing

Given a set of 2n integers S find a integers a1, . . . , an such that the
set of the sums of all subsets is S:∑

i∈I
ai

∣∣∣∣∣∣I ⊆ {1, 2, . . . , n}

 = S.

0 ∈ S because it’s the sum of the empty set.
mini ai ∈ S and must the the next smallest element.
Add this value m to the solution and for each value x (in increasing order) remove
x + m from S.
Repeat until S contains only 0.
Be careful to print impossible when needed!

BAPC 2019 Preliminaries — September 22, 2019 16

Knapsack Packing

Given a set of 2n integers S find a integers a1, . . . , an such that the
set of the sums of all subsets is S:∑

i∈I
ai

∣∣∣∣∣∣I ⊆ {1, 2, . . . , n}

 = S.

{0, 1, 3, 3, 4, 4, 6, 7}

BAPC 2019 Preliminaries — September 22, 2019 17

Knapsack Packing

Given a set of 2n integers S find a integers a1, . . . , an such that the
set of the sums of all subsets is S:∑

i∈I
ai

∣∣∣∣∣∣I ⊆ {1, 2, . . . , n}

 = S.

{0, 1©, 3, 3, 4, 4, 6, 7}

BAPC 2019 Preliminaries — September 22, 2019 17

Knapsack Packing

Given a set of 2n integers S find a integers a1, . . . , an such that the
set of the sums of all subsets is S:∑

i∈I
ai

∣∣∣∣∣∣I ⊆ {1, 2, . . . , n}

 = S.

{0, 1©, 3, 3, �A4, 4, 6, 7}

BAPC 2019 Preliminaries — September 22, 2019 17

Knapsack Packing

Given a set of 2n integers S find a integers a1, . . . , an such that the
set of the sums of all subsets is S:∑

i∈I
ai

∣∣∣∣∣∣I ⊆ {1, 2, . . . , n}

 = S.

{0, 1©, 3, 3, �A4, �A4, 6, 7}

BAPC 2019 Preliminaries — September 22, 2019 17

Knapsack Packing

Given a set of 2n integers S find a integers a1, . . . , an such that the
set of the sums of all subsets is S:∑

i∈I
ai

∣∣∣∣∣∣I ⊆ {1, 2, . . . , n}

 = S.

{0, 1©, 3, 3, �A4, �A4, 6, �A7}

BAPC 2019 Preliminaries — September 22, 2019 17

Knapsack Packing

Given a set of 2n integers S find a integers a1, . . . , an such that the
set of the sums of all subsets is S:∑

i∈I
ai

∣∣∣∣∣∣I ⊆ {1, 2, . . . , n}

 = S.

{0, 1©, 3©, 3, �A4, �A4, 6, �A7}

BAPC 2019 Preliminaries — September 22, 2019 17

Knapsack Packing

Given a set of 2n integers S find a integers a1, . . . , an such that the
set of the sums of all subsets is S:∑

i∈I
ai

∣∣∣∣∣∣I ⊆ {1, 2, . . . , n}

 = S.

{0, 1©, 3©, 3, �A4, �A4, �A6, �A7}

BAPC 2019 Preliminaries — September 22, 2019 17

Knapsack Packing

Given a set of 2n integers S find a integers a1, . . . , an such that the
set of the sums of all subsets is S:∑

i∈I
ai

∣∣∣∣∣∣I ⊆ {1, 2, . . . , n}

 = S.

{0, 1©, 3©, 3©, �A4, �A4, �A6, �A7}

BAPC 2019 Preliminaries — September 22, 2019 17

Lifeguards

Given a set of points, find a line that evenly devides them into two equally sized
groups.
In the odd case, the line must go through exactly one point.

Idea: Find the middle point and move/rotate the line slightly.
Sort by (x , y) and take the middle point.
For large M, the line through (x −M, y − 1) and (x + M, y + 1) goes through
(x , y) and no other points.
In the even case use (x −M, y − 1) and (x + M, y + 0) instead.

BAPC 2019 Preliminaries — September 22, 2019 18

Lifeguards

Given a set of points, find a line that evenly devides them into two equally sized
groups.
In the odd case, the line must go through exactly one point.
Idea: Find the middle point and move/rotate the line slightly.
Sort by (x , y) and take the middle point.

For large M, the line through (x −M, y − 1) and (x + M, y + 1) goes through
(x , y) and no other points.
In the even case use (x −M, y − 1) and (x + M, y + 0) instead.

BAPC 2019 Preliminaries — September 22, 2019 18

Lifeguards

Given a set of points, find a line that evenly devides them into two equally sized
groups.
In the odd case, the line must go through exactly one point.
Idea: Find the middle point and move/rotate the line slightly.
Sort by (x , y) and take the middle point.
For large M, the line through (x −M, y − 1) and (x + M, y + 1) goes through
(x , y) and no other points.
In the even case use (x −M, y − 1) and (x + M, y + 0) instead.

BAPC 2019 Preliminaries — September 22, 2019 18

Lifeguards

Odd: go through the middle point.

BAPC 2019 Preliminaries — September 22, 2019 19

Lifeguards

Even: Go just under the ‘middle’ point.

BAPC 2019 Preliminaries — September 22, 2019 20

Some stats

400 commits
480 testcases
170 jury solutions
Each problem but Canyon Crossing can be solved with Python!
The number of lines needed to solve all problems is

2 + 7 + 39 + 4 + 9 + 4 + 1 + 20 + 7 + 25 + 16 + 13 = 147.

On average 12.3 lines per problem!

BAPC 2019 Preliminaries — September 22, 2019 21

The Jury

Ragnar Groot Koerkamp
Mees de Vries
David Venhoek
Harry Smit
Daan van Gent
Wessel van Woerden
Timon Knigge
Bjarki Ágúst Guðmundsson
Onno Berrevoets

BAPC 2019 Preliminaries — September 22, 2019 22

