BAPC 2019 Preliminaries

Solutions presentation

September 22, 2019

Architecture

■ Does there exist a city with the two given skylines?

- Let the tallest building have height h.
- The maximal height in the eastern skyline is h.
- The maximal height in the northern skyline is h.
- A necessary condition is that $\max x_{i}=h=\max y_{j}$.
- It is also sufficient:

Find r and c with $x_{r}=y_{c}=h$ and set $h_{r j}=y_{j}$ and $h_{i c}=x_{i}$.

0	0	3	0
4	1	6	3
0	0	1	0
0	0	2	0

Architecture

```
input()
if max([int(x) for x in input().split()])
                == max([int(x) for x in input().split()]):
    print("possible")
else:
    print("impossible")
```


Bracket Sequence

- Build an expression tree and evaluate it.
- Be careful to put the + and \times at the right levels!

■ Implement using recursion, a stack, or linked lists.
■ Instead of computing levels 'outside-in', you can also compute the value of each subexpression for both the + and \times case and decide which one you need at the end.

■ Python eval goes a long way, but stackoverflows.

Canyon Crossing

- What is the lowest height where we can make a path using at most k bridges?

■ If we can do it with minimal height h, we can also do it for all $h^{\prime} \geq h$.

- Binary search for h.
- For each h, we can do a BFS where for each cell we store the number of bridges needed to get there.
■ If we can reach the other side with at most k bridges: answer $\leq h$. Else: answer $>h$.

■ Dijkstra instead of BFS will be too slow.

Deceptive Dice

- Given: a die with n sides, k rolls.

■ Using our best strategy, what is our expected score?

- Example: given $n=20$ sides and $k=1$ roll, our expected score is

$$
\frac{1+2+\cdots+19+20}{20}=10 \frac{1}{2} .
$$

If we have $k=2$ rolls, we want to reroll if our first result $<10 \frac{1}{2}$. So our expected score is

$$
\frac{11+12+\cdots+20}{20}+\frac{10 \times 10 \frac{1}{2}}{20}=13 .
$$

So for $k=3$ rolls, we reroll if our first result <13. Score for 3 rolls:

$$
\frac{14+\cdots+20}{20}+13 \times \frac{13}{20}=14 \frac{2}{5}
$$

And so on, until we reach k rolls.

- A linear solution is possible by computing the sums in constant time.

Exits in Excess

■ Given a directed graph, remove at most half the edges so that it becomes acyclic. Lots of ways to do this. Here is one way:

- Partition the edges into two sets U and D such that both are acyclic.

■ For each edge $u \rightarrow v$:

- If $u<v$, put it in U.
- If $u>v$, put it in D.
- If U is smaller, output all edges in U. Otherwise, output all edges in D.
- There cannot be cycles in U : along every edge the number of the node goes up. And vice versa for D.

Floor Plan

- Given $1 \leq n \leq 10^{9}$, find two integers m and k solving

$$
n=m^{2}-k^{2} .
$$

■ Linear solution: Try all m between \sqrt{n} and $2 n$. Takes $>10^{9}$ steps, so too slow!
■ Let's try some simple examples:

$$
(m+1)^{2}-m^{2}=2 m+1
$$

So we can make all odd numbers this way.

$$
(m+2)^{2}-m^{2}=4 m+4
$$

So we can make all multiples of 4 this way.

- What about if n is even but not divisible by 2?

$$
n=m^{2}-k^{2}=(m-k)(m+k) .
$$

If n is even, then at least one of $m-k, m+k$ is even. But then they are both even, so $4 \mid n$. Conclusion: impossible.

Greetings!

■ Read the input and print the output with twice the number of e's.

```
s = input()
print(s[0] + s[1:-1] + s[1:-1] + s[-1])
print('h' + 'e'*(len(input())*2-4) + 'y')
print(input().replace('e','ee'))
```


Greetings!

```
hey = input()
print("he" + hey[2:-2] * 2 + "ey")
```


Greetings!

```
hey = input()
print("h" + hey[1:-1] * 2 + "y")
```


Greetings!

Why not try something quadratic?

```
int main(){
    char s[2001];
    cin.get(s, 1001);
    for(int i=1; i < strlen(s); ++i){
        if(strchr("e", s[i])){
            for(int j = strlen(s)+1; j > i; --j){
                s[j] = s[j-1];
            }
            ++i;
        }
    }
    cout << s << '\n';
    return 0;
}
```


Hexagonal Rooks

■ Given a hexagonal chess board with a rook on it, in how many ways can the rook move to a target cell in exactly two steps?

- For each cell on the board:
- Check that you can go from the start to this cell, and to the goal from this cell.
- Check that the cell is not equal to the start or the goal.

Inquiry I

- What is the maximal value of

$$
\left(a_{1}^{2}+\cdots+a_{k}^{2}\right) \cdot\left(a_{k+1}+\cdots+a_{n}\right) ?
$$

- Trying all $n-1$ possible values of k separately takes $O\left(n^{2}\right)$ time: Too slow!
- We can do it in linear time by remembering the partial sums of $\sum_{i} a_{i}^{2}$ and $\sum_{i} a_{i}$:

```
n = int(input())
a = [int(input()) for _ in range(n)]
l, r = 0, sum(a)
best = 0
for x in a:
    l += x*x
        r -= x
        best = max(best, l*r)
print(best)
```


Jumbled Journey

- Given a table of average distances between vertices, reconstruct the original directed graph.
- To compute the length of edge $u \rightarrow v$ and whether it's present, we must first know all other edges on the path from u to v.
■ Toposort the vertices, and start by processing all adjacent vertices. Then process vertices at longer distances.
- Keep track of three tables: the input avg_dist [u] [v], the number of paths count [u] [v], and the length of the edge, if present edge [u] [v].
- The number of paths c from u to v and their total length L can be calculated by looping over the last vertex w of the path before v.
■ If the average distance is not already correct add the edge $u \rightarrow v$ with length I such that

$$
(I+L) /(c+1)=\operatorname{avg}_{u, v}
$$

Knapsack Packing

■ Given a set of 2^{n} integers S find a integers a_{1}, \ldots, a_{n} such that the set of the sums of all subsets is S :

$$
\left\{\sum_{i \in I} a_{i} \mid I \subseteq\{1,2, \ldots, n\}\right\}=S
$$

■ $0 \in S$ because it's the sum of the empty set.
$\square \min _{i} a_{i} \in S$ and must the the next smallest element.

- Add this value m to the solution and for each value x (in increasing order) remove $x+m$ from S.
- Repeat until S contains only 0 .
- Be careful to print impossible when needed!

Knapsack Packing

■ Given a set of 2^{n} integers S find a integers a_{1}, \ldots, a_{n} such that the set of the sums of all subsets is S :
$\left\{\sum_{i \in I} a_{i} \mid I \subseteq\{1,2, \ldots, n\}\right\}=S$.
$\{0,1,3,3,4,4,6,7\}$
$\{0,(1), 3,3,4,4,6,7\}$
$\{0,(1), 3,3,4,4,6,7\}$
$\{0,(1), 3,3,4,4,6,7\}$
$\{0,(1), 3,3,4,4,6,74\}$

Lifeguards

■ Given a set of points, find a line that evenly devides them into two equally sized groups.

- In the odd case, the line must go through exactly one point.

■ Idea: Find the middle point and move/rotate the line slightly.
■ Sort by (x, y) and take the middle point.

- For large M, the line through $(x-M, y-1)$ and $(x+M, y+1)$ goes through (x, y) and no other points.
■ In the even case use $(x-M, y-1)$ and $(x+M, y+0)$ instead.

Lifeguards

Odd: go through the middle point.

Lifeguards

Even: Go just under the 'middle' point.

Some stats

■ 400 commits
■ 480 testcases

- 170 jury solutions

■ Each problem but Canyon Crossing can be solved with Python!

- The number of lines needed to solve all problems is

$$
2+7+39+4+9+4+1+20+7+25+16+13=147
$$

On average 12.3 lines per problem!

The Jury

- Ragnar Groot Koerkamp
- Mees de Vries
- David Venhoek
- Harry Smit
- Daan van Gent

■ Wessel van Woerden

- Timon Knigge
- Bjarki Ágúst Guðmundsson
- Onno Berrevoets

