
NWERC 2018 presentation of solutions

NWERC 2018 Jury

• Per Austrin
KTH Royal Institute of Technology

• Gregor Behnke
Ulm University

• Jeroen Bransen
Chordify

• Alexander Dietsch
FAU Erlangen-Nürnberg

• Arthur van Goethem
Eindhoven University of Technology

• Bjarki Ágúst Guðmundsson
Syndis

• Irina Kostitsyna
Eindhoven University of Technology

• Stefan Kraus
FAU Erlangen-Nürnberg

• Robin Lee
Google

• Simon Lindholm
KTH Royal Institute of Technology

• Lukáš Poláček
Innovatrics

• Alexander Raß
FAU Erlangen-Nürnberg

• Philipp Reger
FAU Erlangen-Nürnberg

• Tobias Werth
Google

• Paul Wild
FAU Erlangen-Nürnberg

Big thanks to our test solvers

• Eduard Kalinicenko
Palantir

• Timon Knigge
Google

• Ragnar Groot Koerkamp
Google

• Jan Kuipers
bol.com

• Dominik Paulus
Google

• Tobias Polzer
Google

I: Inflation
Problem Author: Arthur van Goethem

Problem
Assign gas canisters to balloons to maximize min(ci

i), such that ∀i. ci
i ≤ 1

Solution

1. Sort c
2. If ∃i. ci

i > 1, print impossible and return
3. Print min(ci

i)

Statistics: 146 submissions, 118 accepted

I: Inflation
Problem Author: Arthur van Goethem

Jury: behind the scenes
--- November 17, 2018 ---

• Robin: Good, we’re all set for the contest.
• Per has entered the room
• Per has successfully challenged jeroen.java
• Per has successfully challenged rgl.java
• Per has successfully challenged tobi.kt
• Jeroen: What?!
• Per: They all use *CENSORED* which is *CENSORED*.
• Simon: Let’s not include those cases.
• Others: Indeed, because we are so nice.

K: Kleptography
Problem Author: Alexander Dietsch

Problem
Given ciphertext b1b2 · · · bm encrypted with the Autokey cipher and last n letters am−n+1 · · · am of
plaintext, recover entire plaintext a.

Autokey cipher recap:

• Key k1k2 · · · kn, gets padded with plaintext (kn+i = ai).
• Plaintext a encrypted by bi = (ai + ki) mod 26.

Solution

1. For all i ≤ m − n, we have ai = ki+n = (bi+n − ai+n) mod 26.
2. Compute for i from m − n down to 1.
3. Complexity O(m).

Statistics: 126 submissions, 117 accepted

H: Hard Drive
Problem Author: Stefan Kraus

Problem
Create a bitstring of length n such that:

• The number of bit changes is c
• The bits at given positions zi are all 0

Solution

1. If c is even, start with a 0, otherwise a 1

2. Greedily alternate 0 and 1 where possible, as long as changes are needed

Statistics: 227 submissions, 117 accepted

B: Brexit Negotiations
Problem Author: Gregor Behnke

Problem
Given a DAG with vertex weights e(i), find a topological ordering π that minimizes

max
i
(e(π(i)) + i).

Solution 1 more helpfully

• Basic idea: last vertex should have as small e(i) as possible.
• Adapt standard topological sort.

• Build schedule from end.
• Keep adding currently available topic with smallest e(i).
• Maintain available topics in priority queue.

• Time complexity O(n log n + m).

B: Brexit Negotiations
Problem Author: Gregor Behnke

Solution 2

• Ideally would like to sort vertices by decreasing value of e(i), but that might violate the precedence
constraints.

• Assign potential p(i) = −e(i) for each vertex.
• Propagate potentials: for each predecessor j of i, must have p(j) ≤ p(i)− 1.
• Sorting by propagated potentials gives a valid and optimal ordering.

Statistics: 212 submissions, 72 accepted

B: Brexit Negotiations
Problem Author: Gregor Behnke

Credit: BBC.com

G: Game Design
Problem Author: Alexander Dietsch, Robin Lee & Tobias Werth

Problem
Given a sequence of UP/DOWN/LEFT/RIGHT instructions, construct a sliding ball maze with the
given instructions as a solution.

Solution

1. Start at centre
2. Each time we turn ±90 degrees, extend bounding box of maze by

2, and add blocks in both directions at edge of bounding box.
3. At end, shift maze so that we end at (0, 0) rather than starting

there.
4. Time complexity O(n).

G: Game Design
Problem Author: Alexander Dietsch, Robin Lee & Tobias Werth

Solution 2

1. Brute force: for each instruction try making it 1 step, 2 steps, etc and recursively solve the rest.
2. To make it fast enough, good to figure out when answer is impossible. This happens if and

only if input ends with LRL, RLR, or UDU, DUD.

Solution 3

1. Randomly place blocks (make each cell a block with probability 5%).
2. Run walk from (0, 0), if all steps can be executed and we end up in a position not visited earlier in

the walk then this gives a solution.

Statistics: 121 submissions, 44 accepted

J: Jinxed Betting
Problem Author: Alexander Raß

Problem
Betting tournament:

• Each round we bet between two options, each correct bet gets a point.
• Julia starts in the lead, has terrible luck but compensates by copying the majority bet from the

runners-up.
• For how many rounds will she stay in the lead?

(Not a) Solution

1. In a round with t runners-ups, worst thing that can happen is that their bets are split evenly ⌈t/2⌉.
2. Naive simulation: Θ(r · n) where r is number of rounds, which can be as large as 1016.
3. Mildly better simulation: keep track of Julia’s lead over the others instead of their scores.

Θ(r) time instead, still a year or so too slow.

J: Jinxed Betting
Problem Author: Alexander Raß

Further Analysis

x axis: number of points behind J.

y axis: number of bettors

leftmost bar: group of runners-up
5 6 7 8 9 10 11 12 13

0

1

2

3

4

5

6

5 6 7 8 9 10 11 12 13
0

1

2

3

4

5

6

1. In next 1 + ⌊log2 t⌋ rounds, each of the t runners-up catch up in all but one round, remaining
bettors catch up in all rounds.

2. If the t runners-up initially have a lead of d over the next group of bettors, this pattern repeats d
times, then the two groups are joined and the number of runners-up grows.

3. Keep running this sped-up simulation until J. no longer in the lead.
4. Complexity O(n log n) for sorting the scores, then O(n) arithmetic operations.

Statistics: 231 submissions, 34 accepted

C: Circuit Design
Problem Author: Paul Wild

Problem
Given a tree, assign each point a position on a plane such that:

• The distance between any two connected points is (approx.) 1

• Points are not too close together
• Edges do not intersect
• −3000 ≤ x, y ≤ 3000

C: Circuit Design
Problem Author: Paul Wild

C: Circuit Design
Problem Author: Paul Wild

Solution

1. Pick arbitrary root and place at origin
2. Draw points in region between two angles
3. Split region into subregions for children proportional to their width
4. Alternative: Instead of angle, use x-coordinates between −1 and 1, and increase y

Pitfalls

1. Print enough digits (9 could be too few)

Statistics: 190 submissions, 48 accepted

A: Access Points
Problem Author: Arthur van Goethem

Problem
Given list of n points p1, . . . , pn in R2, find n points q1, . . . , qn such that qi is componentwise smaller
than qi+1, and

∑n
i=1 ∥qi − pi∥22 is minimized.

Solution

• ∥qi − pi∥22 = (x(pi)− x(qi))
2 + (y(pi)− y(qi))

2

• x and y coordinates do not interact, solve them separately and add up the answers.
• Problem reformulated:

given sequence a1, . . . , an ∈ R, find x1 ≤ x2 ≤ . . . ≤ xn such that
∑

(xi − ai)
2 is minimized.

A: Access Points
Problem Author: Arthur van Goethem

The 1D case

• Add item by item.
• When adding xi, it wants to go to position ai.
• If ai smaller than position of previous item, xi ends up in same position as previous item and

pushes it (and possibly more items) towards the left.
• View xi together with previous item as a new “meta-item”.

(Previous item may already have been a meta-item, so these can get larger and larger.)
• Where does meta-item consisting of items xj, . . . , xi want to go?∑i

k=j(x − ak)
2 is minimized by x = avg(aj, . . . , ai) =

1
i−j+1

∑i
k=j ak.

• Keep number of items and
∑

ak for each meta-item to quickly be able to add more things to it.
• While positions of the last two meta-items out of order, merge them.
• Time complexity O(n).

Statistics: 26 submissions, 13 accepted

E: Equality Control
Problem Author: Robin Lee

Problem
Consider a programming language whose expressions consist of

• elementary lists: [x1, . . . , xn]

• concating two lists: concat(E1,E2)

• random reordering: shuffle(E)
• sorting: sorted(E)

Question: Given two expressions, are the distributions the same?

(Actual) Problems
Explicit computation of the distribution is not possible due to size.
Monte-Carlo sampling also does not work.

E: Equality Control
Problem Author: Robin Lee

Algebra

• Operations below sorted or shuffle are irrelevant!
• Compact expressions to sequences of lists (sorts can be

executed directly) and shuffles.
• Expressions are identical iff sequences are

concat

concat shuffle

sorted[1,2,3] concat

shuffle sortedshuffle

[2,3,4] [3,4,5] [4,5,6]

Pitfalls

• shuffle([1, 1, 1]) = [1, 1, 1] • Adjacent lists must be joined

E: Equality Control
Problem Author: Robin Lee

Sampling - possibility 2
Take two samples per expression, i.e., sE1

1 , sE1
2 and sE2

1 , sE2
2 with:

1. s1 : shuffle = sorted
2. s2 : shuffle = reverse ◦ sorted

If sE1
1 = sE2

1 and sE1
2 = sE2

2 then equal else not equal.

Statistics: 127 submissions, 20 accepted

D: Date Pickup
Problem Author: Bjarki Ágúst Guðmundsson

Problem
Given a directed graph, find a walk from vertex s minimizing the maximum shortest distance to
vertex t during time [a, b].

Solution

1. Distances will be needed... compute distance from s to all vertices, and from all vertices to t,
using two runs of Dijkstra’s algorithm.

2. Binary search on the answer.
3. Now just need to check if given delay δ is possible.

D: Date Pickup
Problem Author: Bjarki Ágúst Guðmundsson

Checking if delay ≤ δ possible

1. Mark vertices u as “good” if d(s, u) + d(u, t) ≤ a + δ.
(If u does not satisfy this, then any route through u will give delay > δ if signal comes at time a.)

2. Propagate: if u is good and u ℓ−→ v with ℓ+ d(v, t) ≤ δ, then mark v and edge as good too.
(For such edges we get delay ≤ δ if signal comes when traversing the edge.)

3. If subgraph of good edges has a cycle: delay δ is possible.
(Can just cycle around indefinitely until signal comes.)

4. Otherwise, subgraph is a DAG. Use dynprog to compute longest time we can stay in the subgraph.
If this is ≥ b, delay δ is possible.

5. Complexity O(n) for the check.

D: Date Pickup
Problem Author: Bjarki Ágúst Guðmundsson

Checking if delay ≤ δ possible, example

• δ = 10:
1. vertex v not initially good (d(s, v) + d(v, t) = 8 + 6 > a + δ).
2. propagate: edge u → v and v marked as good.
3. no cycle, compute longest paths
4. can stay at s until time a + δ − d(s, t) = 4

5. propagating =⇒ can arrive at t at time 18 at the latest
6. delay 10 not possible (but would be possible if b ≤ 18)

s (0+8) u (5+6)
5

w (6+5)
1

v (8+6)

3

x (8+3)

2

t (11+0) 100

1

y (10+1)
2

10 1

a = 2, b = 20.
Legend: “u (d(s, u) + d(u, t))”

D: Date Pickup
Problem Author: Bjarki Ágúst Guðmundsson

Checking if delay ≤ δ possible

1. Mark vertices u as “good” if d(s, u) + d(u, t) ≤ a + δ.
(If u does not satisfy this, then any route through u will give delay > δ if signal comes at time a.)

2. Propagate: if u is good and u ℓ−→ v with ℓ+ d(v, t) ≤ δ, then mark v and edge as good too.
(For such edges we get delay ≤ δ if signal comes when traversing the edge.)

3. If subgraph of good edges has a cycle: delay δ is possible.
(Can just cycle around indefinitely until signal comes.)

4. Otherwise, subgraph is a DAG. Use dynprog to compute longest time we can stay in the subgraph.
If this is ≥ b, delay δ is possible.

5. Complexity O(n) for the check.

Statistics: 13 submissions, 1 accepted

F: Fastest Speedrun
Problem Author: Simon Lindholm

Problem
Beat a game as fast as possibly by solving the levels in an optimal order using special items.

Solution
General idea: smart preprocessing + DP

1. Each level should be solved, so add si to answer and subtract from all ai,j

2. Now special item can always be used for free
3. The special items form a set of cycles with trees pointed at them
4. For each cycle, find the cheapest ai,n, add it to the answer and subtract from cycle
5. Now if we get the highest item, we can solve all the rest for free
6. Now use DP (or Dijkstra) to find the cheapest way of obtaining that
7. O(n2)

F: Fastest Speedrun
Problem Author: Simon Lindholm

Solution 2

• Problem can be reduced to Minimum directed spanning tree
• Use algorithm from TCR (Edmonds’ algorithm)
• Make sure it is bug-free and runs in O(n2)

Statistics: 25 submissions, 3 accepted

Language stats

python3 python2 cpp java c kotlin

20

40

60

80
Accepted
Wrong Answer
Time Limit
Runtime Error
Pending

