FPC 2018 problem presentation; spoiler alert!

```
A
B - BINGO!
Cryptography
D
E - Efficient
Printing
F - Floor Price
Calculator
G - Guessing
Game
H-Hungry
Wolves
FPC 2018
```


B - BINGO!

Problem description

Given an $n \times n$ BINGO grid and m events, calculate when you can shout "BINGO!"

Observation

All events happen only once, so we incrementally count how many items are crossed in every row/column/diagonal

Edge Case

When the grid size is 1×1, you immediately win (due to the free square in the center, which is the only square)

Cryptography (1/3)

Problem description

- Given a number $n 1 \leq n \leq 10^{10}$, decide whether it's a prime number or not.

Things to notice

- Since n can be 10 billion you have to use longs, not integers as they can only store up to 2.1 billion.
- The problem becomes a lot more easy if you know the modulo (\%) operator.

Cryptography (2/3)

Naive approach

- if $n<2$ output BROKEN
- else if $n==2$ output SAFE
- else loop from $i=2$ to n and check if a number $i \% n==0$. If true output BROKEN else output SAFE.
- This takes approximately 10^{10} steps which would result in TIME LIMIT EXCEEDED.

First optimization

- Notice that after $n / 2$ no divisor can be found anymore, so loop from 2 to $n / 2$. This reduces the number of steps to approximately 5 billion, which is unfortunately still too much.

Cryptography (3/3)

Correct approach

- The correct approach is to loop until the square root of n.
- You are looking for pairs of numbers a and b so that $a * b=n$ if n happens to be a composite number. You would only need the smallest of the two and this number must be smaller or equal to \sqrt{n}, if this would not be the case both a and b would be strictly greater than \sqrt{n} contradicting the fact that $a * b=n$.
- Using this approach you end up with approximately $\sqrt{10^{10}}=10^{5}=100.000$ which is perfectly fine.
- An optional optimization is to check if $n \% 2==0$ and if not loop from $\mathrm{i}=3$ to \sqrt{n} where you skip all even numbers by incrementing i with 2 every time. This would leave you with approximately 50.000 steps.

A
B - BINGO!
Cryptography
D - Efficient
Printing
F-Floor Price
Calculator
G-Guessing
Game
H - Hungry
Wolves
I
B

D

E - Efficient Printing (1/3)

Problem description

Given an integer n, count the trailing zeroes of $n!\left(n \leq 10^{18}\right)$

Brute Force

■ Calculate n ! using e.g. Java BigInteger (very slow)

Primes

- The prime factorization of 10 is $2 \cdot 5$
- Count all prime factors 2 and 5 in the result of n !
- Only count the prime factor 5 , as 2 occurs more often

2018

- To do: 10^{18} times prime factorization (still slow)

E - Efficient Printing (2/3)

Smart Counting

- For all i between 1 and n, count how many times you can divide i by 5
- Still have to do this 10^{18} times, so still too slow

Optimized Counting

- Using integer division: $n / 5$ is the amount of numbers that are divisible by 5 in the range $[1, n]$
- Similarly for $n / 25, n / 125, \ldots$

■ Sum of all divisions $=$ number of 5 s in prime factors of n !

- Complexity: $\mathcal{O}\left(\log _{5} n\right)$, takes approx. 26 iterations for 10^{18}

E - Efficient Printing (3/3)

Example

■ 42! = 1405006117752879898543142606244511569936384000000000

- $42 / 5=8$
- $42 / 25=1$
- 42! has $8+1=9$ trailing zeroes

Example

- 256 ! has 63 trailing zeroes
- $256 / 5=51$
- $256 / 25=10$

2018

F - Floor Price Calculator

Problem description

Determine the total number of squares in a $n \times n$ floor.

Solution:

- The total number of squares $f(n)$ in a $n \times n$ floor is given by the following summation:
- $f(n)=\sum_{i=1}^{n} i^{2}$
- Can be implemented by using one for-loop. Create a variable to keep track of the current answer.
- You should be using the long data type in Java in order to avoid overflow errors for a big value of n.

G - Guessing Game

Problem

Guess the correct number.

- You can't guess every number, that would be too slow.

■ Use binary search!

Solution

- Keep track of a lower I and upper u limit and repeat:
- guess $x=(I+u) / 2$
- If x is too low, set $I=x+1$
- If x is too high, set $u=x-1$

H - Hungry Wolves

Problem description

- Given the area A
- Compute the radius $r=\sqrt{\frac{A}{\pi}}$

■ Compute the perimeter $P=2 \pi r$

- Round up the solution $\frac{\lceil P \cdot 10\rceil}{10}$

