
A

B - BINGO!

Cryptography

D

E - Efficient
Printing

F - Floor Price
Calculator

G - Guessing
Game

H - Hungry
Wolves

I

FPC 2018 problem presentation; spoiler alert!



A

B - BINGO!

Cryptography

D

E - Efficient
Printing

F - Floor Price
Calculator

G - Guessing
Game

H - Hungry
Wolves

I

A



A

B - BINGO!

Cryptography

D

E - Efficient
Printing

F - Floor Price
Calculator

G - Guessing
Game

H - Hungry
Wolves

I

B - BINGO!

Problem description
Given an n × n BINGO grid and m events, calculate when
you can shout “BINGO!”

Observation
All events happen only once, so we incrementally count how
many items are crossed in every row/column/diagonal

Edge Case
When the grid size is 1× 1, you immediately win (due to the
free square in the center, which is the only square)



A

B - BINGO!

Cryptography

D

E - Efficient
Printing

F - Floor Price
Calculator

G - Guessing
Game

H - Hungry
Wolves

I

Cryptography (1/3)

Problem description
Given a number n 1 ≤ n ≤ 1010, decide whether it’s a prime
number or not.

Things to notice

Since n can be 10 billion you have to use longs, not integers
as they can only store up to 2.1 billion.
The problem becomes a lot more easy if you know the
modulo (%) operator.



A

B - BINGO!

Cryptography

D

E - Efficient
Printing

F - Floor Price
Calculator

G - Guessing
Game

H - Hungry
Wolves

I

Cryptography (2/3)

Naive approach
if n < 2 output BROKEN
else if n == 2 output SAFE
else loop from i = 2 to n and check if a number i%n == 0. If
true output BROKEN else output SAFE.
This takes approximately 1010 steps which would result in TIME
LIMIT EXCEEDED.

First optimization
Notice that after n/2 no divisor can be found anymore, so loop
from 2 to n/2. This reduces the number of steps to
approximately 5 billion, which is unfortunately still too much.



A

B - BINGO!

Cryptography

D

E - Efficient
Printing

F - Floor Price
Calculator

G - Guessing
Game

H - Hungry
Wolves

I

Cryptography (3/3)

Correct approach
The correct approach is to loop until the square root of n.
You are looking for pairs of numbers a and b so that a ∗ b = n if
n happens to be a composite number. You would only need the
smallest of the two and this number must be smaller or equal to√

n, if this would not be the case both a and b would be strictly
greater than

√
n contradicting the fact that a ∗ b = n.

Using this approach you end up with approximately√
1010 = 105 = 100.000 which is perfectly fine.

An optional optimization is to check if n%2 == 0 and if not loop
from i=3 to

√
n where you skip all even numbers by incrementing

i with 2 every time. This would leave you with approximately
50.000 steps.



A

B - BINGO!

Cryptography

D

E - Efficient
Printing

F - Floor Price
Calculator

G - Guessing
Game

H - Hungry
Wolves

I

D



A

B - BINGO!

Cryptography

D

E - Efficient
Printing

F - Floor Price
Calculator

G - Guessing
Game

H - Hungry
Wolves

I

E - Efficient Printing (1/3)

Problem description
Given an integer n, count the trailing zeroes of n! (n ≤ 1018)

Brute Force
Calculate n! using e.g. Java BigInteger (very slow)

Primes
The prime factorization of 10 is 2 · 5
Count all prime factors 2 and 5 in the result of n!
Only count the prime factor 5, as 2 occurs more often
To do: 1018 times prime factorization (still slow)



A

B - BINGO!

Cryptography

D

E - Efficient
Printing

F - Floor Price
Calculator

G - Guessing
Game

H - Hungry
Wolves

I

E - Efficient Printing (2/3)

Smart Counting

For all i between 1 and n, count how many times you can
divide i by 5
Still have to do this 1018 times, so still too slow

Optimized Counting

Using integer division: n/5 is the amount of numbers that
are divisible by 5 in the range [1, n]
Similarly for n/25, n/125, . . .
Sum of all divisions = number of 5s in prime factors of n!
Complexity: O(log5 n), takes approx. 26 iterations for 1018



A

B - BINGO!

Cryptography

D

E - Efficient
Printing

F - Floor Price
Calculator

G - Guessing
Game

H - Hungry
Wolves

I

E - Efficient Printing (3/3)

Example

42! =1405006117752879898543142606244511569936384000000000
42/5 = 8
42/25 = 1
42! has 8 + 1 = 9 trailing zeroes

Example

256! has 63 trailing zeroes
256/5 = 51
256/25 = 10
256/125 = 2



A

B - BINGO!

Cryptography

D

E - Efficient
Printing

F - Floor Price
Calculator

G - Guessing
Game

H - Hungry
Wolves

I

F - Floor Price Calculator

Problem description
Determine the total number of squares in a n x n floor.

Solution:
The total number of squares f (n) in a n x n floor is given
by the following summation:
f (n) =

∑n
i=1 i2

Can be implemented by using one for-loop. Create a
variable to keep track of the current answer.
You should be using the long data type in Java in order to
avoid overflow errors for a big value of n.



A

B - BINGO!

Cryptography

D

E - Efficient
Printing

F - Floor Price
Calculator

G - Guessing
Game

H - Hungry
Wolves

I

G - Guessing Game

Problem
Guess the correct number.
You can’t guess every number, that would be too slow.
Use binary search!

Solution
Keep track of a lower l and upper u limit and repeat:

guess x = (l + u)/2
If x is too low, set l = x + 1
If x is too high, set u = x − 1



A

B - BINGO!

Cryptography

D

E - Efficient
Printing

F - Floor Price
Calculator

G - Guessing
Game

H - Hungry
Wolves

I

H - Hungry Wolves

Problem description

Given the area A
Compute the radius r =

√
A
π

Compute the perimeter P = 2πr
Round up the solution dP·10e10



A

B - BINGO!

Cryptography

D

E - Efficient
Printing

F - Floor Price
Calculator

G - Guessing
Game

H - Hungry
Wolves

I

I


	A
	B - BINGO!
	Cryptography
	D
	E - Efficient Printing
	F - Floor Price Calculator
	G - Guessing Game
	H - Hungry Wolves
	I

