
Solutions

BAPC 2017

University of Amsterdam

October 2017

Solutions — BAPC 2017 — October 2017 1 / 31

Falling Apart (54/77)

Sort the input in descending order (a1 ≥ a2 ≥ · · · ≥ an).
Output a1 + a3 + a5 + . . . and a2 + a4 +

Solutions — BAPC 2017 — October 2017 2 / 31

Amsterdam Distance (51/62)

Find the shortest path from A to B in Amsterdam.
You can solve this problem with Dijkstra, but that is the
stupidest way.

Solutions — BAPC 2017 — October 2017 3 / 31

Amsterdam Distance (Dijkstra)

Solutions — BAPC 2017 — October 2017 4 / 31

Amsterdam Distance (Dijkstra)

Solutions — BAPC 2017 — October 2017 4 / 31

Amsterdam Distance (Dijkstra)

Solutions — BAPC 2017 — October 2017 4 / 31

Amsterdam Distance (Dijkstra)

Solutions — BAPC 2017 — October 2017 4 / 31

Amsterdam Distance (Dijkstra)

Solutions — BAPC 2017 — October 2017 4 / 31

Amsterdam Distance (Dijkstra)

Solutions — BAPC 2017 — October 2017 4 / 31

Amsterdam Distance (Dijkstra)

Solutions — BAPC 2017 — October 2017 4 / 31

Amsterdam Distance (Dijkstra)

Solutions — BAPC 2017 — October 2017 4 / 31

Amsterdam Distance (Dijkstra)

Solutions — BAPC 2017 — October 2017 4 / 31

Amsterdam Distance (Dijkstra)

Solutions — BAPC 2017 — October 2017 4 / 31

Amsterdam Distance (Dijkstra)

Solutions — BAPC 2017 — October 2017 4 / 31

Amsterdam Distance

Find the shortest path from A to B in Amsterdam.
You can solve this problem with Dijkstra, but that is the
stupidest way.

Observation: if you walk around a city block, you always want
to go via the inside.

This means every shortest route has at most three parts:
Walk towards the center.
Walk along a canal.
Walk away from the center.

Solutions — BAPC 2017 — October 2017 5 / 31

Amsterdam Distance

Find the shortest path from A to B in Amsterdam.
You can solve this problem with Dijkstra, but that is the
stupidest way.
Observation: if you walk around a city block, you always want
to go via the inside.

This means every shortest route has at most three parts:
Walk towards the center.
Walk along a canal.
Walk away from the center.

Solutions — BAPC 2017 — October 2017 5 / 31

Amsterdam Distance

This leaves only a few options.

You can loop over the relevant circle arcs (≤ 100) and find
the shortest path.
In fact, because you optimize something linear, the shortest
path is always the outermost (black) or innermost (orange).

Solutions — BAPC 2017 — October 2017 6 / 31

Amsterdam Distance

This leaves only a few options.

You can loop over the relevant circle arcs (≤ 100) and find
the shortest path.
In fact, because you optimize something linear, the shortest
path is always the outermost (black) or innermost (orange).

Solutions — BAPC 2017 — October 2017 6 / 31

Irrational Division (32/87)

Option 1: do a min-max DP (N.B.: the “upper left” block can
be either black or white.)
Option 2: work out small cases, find a pattern:

If p is even, then the answer is zero.
If both p and q are odd, the answer is 1.
If p is odd, q is even and p < q, the answer is 2.
If p is odd, q is even and p > q, the answer is 0.

Solutions — BAPC 2017 — October 2017 7 / 31

Irrational Division (Code examples)
System.out.println((n % 2) * 2);

if (p == 1 and q % 2 == 0)
System.out.println(2);

else if (p % 2 == 1 and q % 2 == 1)
System.out.println(1);

else
System.out.println(0);

if (p % 2 == 1 and q % 2 == 1)
System.out.println(1);

else if (p % 2 == 0)
System.out.println(0);

else if (q > p)
System.out.println(2);

else
System.out.println(0);

Solutions — BAPC 2017 — October 2017 8 / 31

Irrational Division (Code examples)
System.out.println((n % 2) * 2);

if (p == 1 and q % 2 == 0)
System.out.println(2);

else if (p % 2 == 1 and q % 2 == 1)
System.out.println(1);

else
System.out.println(0);

if (p % 2 == 1 and q % 2 == 1)
System.out.println(1);

else if (p % 2 == 0)
System.out.println(0);

else if (q > p)
System.out.println(2);

else
System.out.println(0);

Solutions — BAPC 2017 — October 2017 8 / 31

Irrational Division (Code examples)
System.out.println((n % 2) * 2);

if (p == 1 and q % 2 == 0)
System.out.println(2);

else if (p % 2 == 1 and q % 2 == 1)
System.out.println(1);

else
System.out.println(0);

if (p % 2 == 1 and q % 2 == 1)
System.out.println(1);

else if (p % 2 == 0)
System.out.println(0);

else if (q > p)
System.out.println(2);

else
System.out.println(0);

Solutions — BAPC 2017 — October 2017 8 / 31

Irrational Division (proofs)

By considering you take everything or you take
something and your sister grabs everything, it
follows that the score will be either 0, 1, or 2.
The first two cases follow directly.
For the last two one can the following theorem:

Theorem
A chocolate n × n “white” square (i.e. with a white block in the
upper left corner) will net you a score of −1.
This leads to a strategy where either you or your sister (depending
on p < q or p > q) will always reduce the block to a white square,
and the scores follow.

Solutions — BAPC 2017 — October 2017 9 / 31

Detour (31/87)
Is there a route which never takes the shortest route?
We need to know the shortest path from x to Amsterdam first.
Dijkstra from Amsterdam to determine all shortest paths to it.
Remove those edges. Make sure not to remove in both
directions.
Run any traversal algorithm (from Delft or Amsterdam).

Solutions — BAPC 2017 — October 2017 10 / 31

Lemonade Trade (17/103)

Find the maximum amount of blue lemonade that you can get
for one litre of pink lemonade.
For each colour c keep

M[c] := log(maximum amount of c lemonade you can get).

Update this for each line in the input.
Be aware of precision and enormous overflow problems! This
is the reason why you need to use logarithms for this!

Solutions — BAPC 2017 — October 2017 11 / 31

King of the Waves (16/36)

Can we order the participants in such an order that Henk
wins?
Trying all permutations obviously too slow
Greedy not correct: we may not know whether Henk became
king or already was a king.
Input: complete graph with edges (u, v) if u beats v .

Solutions — BAPC 2017 — October 2017 12 / 31

King of the Waves
Insight: Henk can win ⇔ there is a path from Henk to every
other participant.
⇒: If no path to x , then we get stuck at person x (everyone
has to play!)
⇐: Following one path back to Henk leaves Henk as king.
What about multiple paths?

Code: any traversal algorithm (DFS or BFS or ...?)

Solutions — BAPC 2017 — October 2017 13 / 31

Easter Eggs (6/20)

Do a binary search on the distance D, and answer the decision
problem: is it possible to put N eggs, such that the distance
between a red and blue egg is at least D?
Consider the bipartite graph with the blue and red bushes as
vertices. Draw an edge if the distance is at most D.
We are now looking for a maximum independent subset in this
graph.
This is the complement of a minimum vertex cover.
König’s theorem states that this is equivalent to the size of a
maximum matching.

Solutions — BAPC 2017 — October 2017 14 / 31

Collatz Conjecture (5/37)

Given a1, a2, . . . , an, compute the number of unique values
f (i , j) = gcd(ai , ai+1, . . . , aj) takes on.
Various solutions with various runtimes. The fastest runs in
O(n log2 A) time and is based on the following observations:
(cont.)

Solutions — BAPC 2017 — October 2017 15 / 31

Collatz Conjecture
Observation 1: consider the following sequence of gcd’s:

gcd(a1)
gcd(a1, a2)
. . .

gcd(a1, a2, a3, . . . , an−2)
gcd(a1, a2, a3, . . . , an−2, an−1)
gcd(a1, a2, a3, . . . , an−2, an−1, an)

Since gcd(a, b, c) = gcd(gcd(a, b), c), each value in this
sequence divides the value above it.
Since every proper division halves the value, this sequence
contains at most dlog a1e+ 1 unique values.

Solutions — BAPC 2017 — October 2017 16 / 31

Collatz Conjecture

Observation 2:

Let Di = { gcd(aj , aj+1, . . . , ai−1, ai) | j ≤ i }. By observation
1 the size of Di is O(log ai)
We can easily compute Di+1 from Di , again using the identity
gcd(a, b, c) = gcd(gcd(a, b), c), namely:

Di+1 = { gcd(v , ai+1) | v ∈ Di } ∪ { ai+1 }

The above computation takes O(log2 A) time.

These two observations result in a very simple O(n log2 A)
algorithm: just compute and union all the Di ’s, and output the size
of the resulting set.
(Additionally, more complicated approaches can also pass when
written efficiently.)

Solutions — BAPC 2017 — October 2017 17 / 31

Manhattan mornings (4/14)
Given a rectangular grid, find the maximum errands you can
run along your route without increasing the route length.
All the errands outside the rectangle between your house
(xh, yh) and the workplace (xw , yw) can be skipped.
Sort all errands within those limits (xi , yi) on x , resulting in a
list of yi coordinates.
If you decide to run errand yi , all following errands j must
have yj > yi .

0 1 2 3 4 5 60

1

2

3

4

5

Solutions — BAPC 2017 — October 2017 18 / 31

Manhattan mornings

Observation: the longest increasing subsequence of these
y -coordinates is equal to the amount of errands you can run.
Solve the following recurrence relation:

errands(n) = maxn
i=0,yi <yn (1 + errands(i))

Naive: O(n2) - too slow
Avoid recalculation by using a map: O(n log(n)) - fast enough
When the workplace is below the house, make sure to
calculate the longest decreasing subsequence.

Solutions — BAPC 2017 — October 2017 19 / 31

Going Dutch (3/25)

Think of transactions as a graph.
Observe: a tree always suffices. So K people require at most
K − 1 transactions.
If K people can do it in K − 2 transactions, that means we
can split them into two groups with balance 0.
So if we can split the n people into i zero balance groups we
need N − i transactions.

Solutions — BAPC 2017 — October 2017 20 / 31

Going Dutch

So we are looking for the largest number of zero-balance sets
we can split {1, . . . , n} into.
Equivalently: we are looking for the longest chain of sets

∅ (S1 (· · · (Si = {1, . . . , n}

where each set has zero balance, so we can do it in n − i
transactions.

Solutions — BAPC 2017 — October 2017 21 / 31

Going Dutch

For each set (bitmask) S, let L(S) be the largest integer i
such that we have a chain

∅ (S1 (· · · (Si ⊆ S

with each Si (but not necessarily S) having zero balance.
Then for S 6= ∅,

L(S) = max
p∈S

L(S \ {p}) +
{

1 if S is zero-balance.
0 else.

Since |S| ≤ n, this takes n steps to compute from previous
results, which gives a O(n2n) DP algorithm.
The answer is given by n − L({1, . . . n}).

Solutions — BAPC 2017 — October 2017 22 / 31

Hoarse Horses (2/15)

Given a set of lines in the plane, count the number of
non-empty regions they enclose.
We could just find all intersections between lines and try to
count all areas by starting at an intersection, and then
following outgoing lines in a clockwise order.
Error-prone and a lot of work, will probably make an error ...

Solutions — BAPC 2017 — October 2017 23 / 31

Hoarse Horses

Combinatorics to the rescue!
Euler: for a connected planar graph, the number of vertices
V , edges E and planar faces F obeys V − E + F = 2 (this
includes the outer face).
There are two problems here:

Input graph need not be planar.
Input graph need not be connected.

Solutions — BAPC 2017 — October 2017 24 / 31

Hoarse Horses

We can planarize the graph by replacing two intersecting edges
with four edges with a new vertex at the center.

For connectedness - Euler’s formula generalizes to
V − E + F = 1 + C for a planar graph with C components (just
connect the components with C − 1 edges in a tree-like fashion).

Solutions — BAPC 2017 — October 2017 25 / 31

Hoarse Horses

For the purposes of this computation, we don’t actually care
where two fences intersect, just that they do, so you can use
integer arithmetic to avoid precision issues (in fact, we don’t
even care what fences intersect - we just care about the total
number of intersections).
Final answer is #components − n + #intersections.

Solutions — BAPC 2017 — October 2017 26 / 31

Jumping Choreography (0/10)

Calculate the number of jumps needed to go i to the right:
Approximately

√
2i steps needed, possible one extra due to

parity.
This takes at most 1500 different values. When considering
even (or odd) i only, the function is increasing.
Use two fenwick trees to store the total number of steps
needed to get to each position, one for odd and one for even
positions.
When adding/removing a frog, update both in
O(1500 ∗ ln(106)).
Querying is O(ln(106)).
Be careful to use fast input/output!
Brute force is easy, but too slow.

Solutions — BAPC 2017 — October 2017 27 / 31

Bearly Made It (0/0)
A shortest path between Barney and his mother is straight or
travels through intersections of circles along straight lines in
between. One can study the Euclidean Shortest Path problem to
prove this fact.

Solutions — BAPC 2017 — October 2017 28 / 31

Bearly Made it

Determine all intersections between circles.

Solutions — BAPC 2017 — October 2017 29 / 31

Bearly Made it

For every pair of intersections and bear to interesection pairs,
check whether the line between them is covered completely by
circles. If this is the case, consider it a connection in the graph.

Solutions — BAPC 2017 — October 2017 30 / 31

Bearly Made it
Execute a shortest path algorithm on the graph induced by the
completely covered lines. The path found is the shortest path from
Barney to his mother. If such a path does not exist, we output
impossible.

Solutions — BAPC 2017 — October 2017 31 / 31

