FPC 2016 problem presentation; spoiler alert!

A - A Match of Table Tennis

B - Breaking the Cipher

C - Crawling
D - Debug
E - Expensive Floor

F - Fences
G- Guessing Game

H - Helping Out
FPC
2016


## A - Sample (1/2)

Problem description
Lorum ipsum dolor amet.
Solution - Variables:

- Lorum
- Ipsum


## A - Sample (2/2)

A - A Match of
Table Tennis
B - Breaking the Cipher

C - Crawling
D - Debug
E - Expensive Floor

F - Fences
G - Guessing Game

H - Helping Out

FPC 2016

Solution - Processing
■ Lorum

- Ipsum


## B - Breaking the Cipher (1/2)

A - A Match of
Table Tennis
B - Breaking the Cipher

C - Crawling
D - Debug
E - Expensive Floor

Fences
Guessing Game

Helping Out Solution (1/2)

- Compute $\phi(n)=(p-1) \cdot(q-1)$


## B - Breaking the Cipher (2/2)

Table Tennis
B - Breaking the Cipher

C - Crawling
D - Debug
E - Expensive Floor

F - Fences
G - Guessing Game

H - Helping Out

## FPC

2016

## Solution (2/2)

- Find $d$ by trying every $d \in[1, \phi(n)]$ and checking if $(d \cdot e) \% \phi(n)=1$.
- Decrypt by computing $C^{d}$, but apply $(\bmod n)$ after each multiplication:
- $M=1 ; \operatorname{for}(i=1 . . d) M=(M * d) \% n$


## C - Crawling (1/2)

A - A Match of
Table Tennis
B - Breaking the Cipher

C - Crawling
D - Debug
E - Expensive Floor

F - Fences
G - Guessing Game

## Problem description

Given the time of the fastest student measured, does Saint Alex have a student that can beat this time?

## Solution - Variables:

■ $t$ - The time of the fastest student measured.

- I - The length of the pool.
- $n$ - Number of students. For every student: $f, b$ - The speed of the front resp. back crawl of the student.
For every student, calculate $c=\frac{1}{f}+\frac{1}{b}$. If you find a student whose $c<t$, print "HOPE" and return. If all students are checked, print "DOOMED".


## C - Crawling (2/2)

A - A Match of Table Tennis

B - Breaking the
Cipher
C - Crawling
D - Debug
E - Expensive Floor

## Pitfalls

One of the more easy problems in the set, some points:

- Use floats (or doubles) and not integers.
- Do NOT calculate the average speed i.e. $\frac{f+b}{2}$ and then divide $2 /$ by this float. This is not correct.


## D - Debug (1/2)

A - A Match of
Table Tennis
B - Breaking the Cipher

C - Crawling
D - Debug
E - Expensive Floor

Fences
G - Guessing Game

## Problem description

Find out what the given code does and make it faster.

## Solution:

- The code is checking whether a given number is a prime number. If so, it outputs yes, else, it outputs no.
■ Note that 1 is not a prime number.
- How can we make it faster?


## D - Debug (2/2)

A - A Match of
Table Tennis
B - Breaking the Cipher

C - Crawling
D - Debug
E - Expensive
Floor
F - Fences
G - Guessing Game

## Making the code faster

- Various optimizations possible:
- Start the loop from 3 and create if-statements for the cases $n=1$ (no prime) and $n=2$ (prime).
■ Let the for-loop skip even numbers and check whether the number is even before entering the for-loop.
- Return immediately from the method if a divisor of $n$ is found in the for-loop.
- Loop to (including) $\sqrt{n}$ at most since the minimum of a and $b$ where $a b=n$ is at most $\sqrt{n}$.


## E - Expensive Floor

■ You should be using the long data type in Java in order to avoid overflow errors for a big value of $n$.

```
A - A Match of
```

Table Tennis
B - Breaking the
Cipher
C - Crawling
D - Debug
E - Expensive
Floor
F - Fences
G - Guessing
Game
H - Helping Out

FPC 2016

## G - Guessing Game

A - A Match of
Table Tennis
B - Breaking the Cipher

C - Crawling
D - Debug
Expensive Floor

Fences
G - Guessing Game

## Problem

Guess the correct number.

- You can't guess every number, that would be too slow.

■ Use binary search!

## Solution

- Keep track of a lower I and upper $u$ limit and repeat:
- guess $x=(I+u) / 2$
- If $x$ is too low, set $I=x+1$
- If $x$ is too high, set $u=x-1$


## H - Helping Out

## Problem description

Given a list of participants and their scores, give the total score of each participant, list the total score of each participant in alphabetic order.

## Solution

- Use a Map<String,Integer> to store the score of each participant.
- If the map already contains the name, add the new score to the current score to the map.
- Otherwise add a new entry to the map.

■ Use a TreeMap to automatically print in alphabetic order.

