## FPC 2015 problem presentation; spoiler alert!

Finish
■ Breadth First Search (BFS) over guards within each other's range.

- BFS over points not possible,
- BFS over points not possible,
because space is continuous.
- Guards overlap if:
$\left(x_{1}^{2}-x_{2}^{2}\right)+\left(y_{1}^{2}-y_{2}^{2}\right)<=\left(r_{1}+r_{2}\right)^{2}$.
- Guards overlap if:
$\left(x_{1}^{2}-x_{2}^{2}\right)+\left(y_{1}^{2}-y_{2}^{2}\right)<=\left(r_{1}+r_{2}\right)^{2}$.



## Problem description

Find out if a path from $(0,0)$ to $(w, h)$ is possible.

## Solution

## B - Bad English (1/2)

## Problem description

Given a string which represents (a part of) the recording, was it literally translated from Dutch to English?

## Solution - variables

- String $r$ - A representation of the recording.
- String $t$ - The Dutch equivalent of $r$.
- String $d$ - The Dutch words used in $t$ (no repetition, sanitized and sorted alphabetically).
- String $e$ - The English translation of the words in $d$.


## B - Bad English (2/2)

## Solution - processing

First check if $r$ and $t$ contain the same amount of words. If not, return "VALID". Else, perform the following steps:
1 Sanitize both $r$ and $t$ : make them lowercase and remove punctuation.
2 For each dutch word, retrieve the English counterpart and compare with the word in $r$.

3 If all words correspond, output "STONECOAL" else "VALID".
Key data structure: Map. Simply use the words in $d$ as keys and the corresponding translation in $e$ as value. l.e. looping over arrays for each word in $t$ is too slow since you have up to $10^{4}$ words.

## C - Composius' Wrath

## Alcatraz

Bad English
Composius' Wrath

Deal or No Deal
Excellent Grades
Floor Tiling
Grand opening
Hypotenuse

## Problem description

Select the roads, that needs to be build, in such a way that every city is connected with every other city. Roads with length equal to a prime number are cheaper than roads with length equal to a composite number.

## C - Composius' Wrath

## Problem description

Select the roads, that needs to be build, in such a way that every city is connected with every other city. Roads with length equal to a prime number are cheaper than roads with length equal to a composite number.

## Primality test:

$n$ is a prime number if and only if $n=2$ or $n \bmod i \neq 0$ for every $2 \leq i \leq n$.

## C - Composius' Wrath

## Problem description

Select the roads, that needs to be build, in such a way that every city is connected with every other city. Roads with length equal to a prime number are cheaper than roads with length equal to a composite number.

## Primality test:

$n$ is a prime number if and only if $n=2$ or $n \bmod i \neq 0$ for every $2 \leq i \leq n$.

## Road selection:

This can be solved by constructing a Minimum Spanning Tree (MST) of the graph and count the number of prime roads and non-prime roads.

## D - Deal or No Deal

## Alcatraz

Bad English
Composius
Wrath
Deal or No Deal
Excellent Grades
Floor Tiling
Grand opening
Hypotenuse

## Problem description

How much did the contestant won and how much could he have won by declining all bank offers?

## Solution

- The amount of money the contestant wins by declining all bank offers, is the amount of money in his chosen box
- Simulate the game, keep track of opened boxes and calculate the bank offers.


## E - Excellent Grades (1/2)

## Problem description

Output the grade required for achieving a cum laude degree.

## Solution:

- Calculate total required points $8 \sum w_{i}$.
- Subtract all exam grades multiplied by their weight.
- Divide by the weight of the final exam's grade.



## E - Excellent Grades (2/2)

## Problems

- Print 1 decimal.
- Print 5.8 if required $\leq 5.8$.

■ Ceil the required grade.

## F - Floor Tiling (1/5)

## Problem description

In how many ways can a $3 \times 2 n$ floor be tiled with domino tiles?

## Solution

- Special case of the domino tiling problem (with an unbounded width/height of the floor).
■ If the floor always has width 2 , the number of tiling of a $2 \times 2 n$ floor is described by the Fibonacci sequence.

F - Floor Tiling (2/5)

## Solution - $3 \times 2$ case

- Trivial, we have three possibilities here:




## F - Floor Tiling (3/5)

## Solution $-3 \times 4$ case

- For the $3 \times 4$ case, we can make combinations of $3 \times 2$ patterns.

■ However, we have two extra possibilities:


## F - Floor Tiling (4/5)

## Solution - $3 \times 2 n$

- let $a_{n}$ the number of tilings of a $3 \times 2 n$ rectangle, we get $a_{n+1}$ by adding a $3 \times 2$ block which gives $3 a_{n}$.
- we also get $a_{n}$ by considering cases where this block is added to previous blocks without any $3 \times 2$ block.

■ we can construct $3 \times n$ blocks without any $3 \times 2$ blocks by duplicating the "internal" tiles of the $3 \times 4$ cases.


```
F - Floor Tiling (5/5)
```

Solution $-3 \times 2 n$

$$
a_{n+1}=3 a_{n}+2 \sum_{i}^{n} a_{i}
$$

By subtracting $a_{n}$ from both sides and some rewriting, we get:

$$
a_{n+1}=4 a_{n}-a_{n-1}
$$

- The numbers can become big, use the Java built-in Math.BigInteger.


## G - Grand opening (1/2)

## Problem description

Given a key and one or more locks, in how many locks does the key fit.

## Solution - Notes

Since the key is given last, you will need to store information about the locks. One way is to store each lock in a 2D String[][] array (where line 6 of lock 2 is array[1][5]).

## G - Grand opening (2/2)

Solution - Processing
Start by checking every line. For every lock L, check if the key K fits:
1 find the first \# in every line in L
2 find the last \# in every line in $K$
3 per line: if the position of the last \# in K is lower then the corresponding position of the first \# in $L$, the line will fit
4 if every line fits, the key fits.
Now all there is left to do is print the number of keys that fit.

```
H - Hypotenuse (1/2)
```


## Alcatraz

Bad English
Composius'
Wrath
Deal or No Deal
Excellent Grades
Floor Tiling
Grand opening
Hypotenuse

## Problem description

Calculate the unknown in $a^{2}+b^{2}=c^{2}$.
Solve the unknown:
Three possibilities:

- $a$ unknown: $a=\sqrt{c^{2}-b^{2}}$
- b unknown: $b=\sqrt{c^{2}-a^{2}}$
- $c$ unknown: $c=\sqrt{a^{2}+b^{2}}$


## Simplify a square root:

- $\sqrt{72}=\sqrt{4} \sqrt{18}=2 \sqrt{18}$
- $2 \sqrt{18}=2 \sqrt{9} \sqrt{2}=6 \sqrt{2}$

