
Solutions
Leidsch Kampioenschap Programmeren

Preliminaries of the
Benelux Algorithm Programming Contest 2015

Universiteit Leiden

September 19, 2015

Solutions — LKP 2015 — September 19, 2015 1 / 14

A general remark

return 0

Solutions — LKP 2015 — September 19, 2015 2 / 14

E: Board Game 3

Read the input and add the position of each w to a queue

while queue is not empty

{ take first element from queue

for all 8 adjacent tiles

if (empty)

add new w tile to queue

}

Return number of new w’s

Note: w’s do not have to be adjacent to each other (see
sample data)

Solutions — LKP 2015 — September 19, 2015 3 / 14

A: Board Game 1

Remember BAPC Leiden 2006

Read input and store in array.

Double tiles may be ignored.

Apply a series of if else statements,
checking whether there are

three or more tiles with the same number and different colors.
three or more consecutive tiles of the same color.

Common mistakes:

Can not be done directly from input, so use an array.

Initialize array at the right size.

Solutions — LKP 2015 — September 19, 2015 4 / 14

G: Sir Jumpsalot

X 2 + Y 2 = Z 2 with Z = J ∗
√

D

X 2 + Y 2 = J2 ∗ D

J2 = (X 2 + Y 2)/D

take square root of (X 2 + Y 2)/D and round up

do not calculate
√

X 2 + Y 2/
√

D

special case: if 0 < X 2 + Y 2 < D, then answer is 2

Solutions — LKP 2015 — September 19, 2015 5 / 14

K: Road Trip

Straightforward

Given the N ≤ 1, 000 000, the solution should obviously be
O(N) and not O(N2)

int tank = 0, mintank = 0, mini = 1;

for(int i=1; i<=N; i++)

tank += G - D

if(tank < mintank) {

mini = i;

mintank = tank;

}

if(tank < 0)

cout << "IMPOSSIBLE" << endl;

else

cout << mini << endl;

Solutions — LKP 2015 — September 19, 2015 6 / 14

H: Storm Damage

connected components

nodes: blocks

(undirected) edges: power lines

determine connected components

output number of components without power source

Solutions — LKP 2015 — September 19, 2015 7 / 14

F: Anagram

ad hoc

possible if most frequent letter occurs at most once more than
all others together

repeat

append most frequent letter if it occurs exactly once more
than all others together
otherwise, append ‘smallest’ avalaible letter different from
previous letter

with strings: do not use ‘anagram + ch’ to append letters
(time limit)

Solutions — LKP 2015 — September 19, 2015 8 / 14

C: Jewellery

Easy if you know formula to compute area of polygon:

area = 0;

for each edge (x1,y1)-(x2,y2) of polygon (in order)

area += x1*y2 - y1*x2 (cross product)

area = |area| / 2;

divide area by area of triangle

Otherwise:

keep track of ‘vertical’ lines per row
count how many triangles between lines are inside shape

This might be too slow

Solutions — LKP 2015 — September 19, 2015 9 / 14

B: Video Game

BFS

node for each pair of positions Pac-Men

edge if N,E,S,W takes Pac-Men from one pair to another

Solutions — LKP 2015 — September 19, 2015 10 / 14

J: Board Game 4

DP

set P[i][0]=1.0

set P[1][j]=0.0

for (i=2;i<=M;i++)

for (j=1;j<=N;j++)

{ compute P[i][j]

from P[i-2][j], P[i-1][j-1], P[i][j-2]

and from P[i-1][j], P[i][j-1]

(taking lowest value, best for defender)

}

O(N ∗M ∗ D2) is OK

O(N ∗M ∗ D3) is not OK

Note: choice of defender for 1 or 2 dice does not only depend
on values of attacker, but also on i and j

Solutions — LKP 2015 — September 19, 2015 11 / 14

D: Board Game 2

graph + DP (subset sum)

nodes of graph: players

players A and B certainly belong to same team,
if they have not played match against each other

in that case: (undirected) edge between A and B

yields complement graph

determine connected components: 1, 2, . . . ,C , with size[i]

component 1 contains player 1

Solutions — LKP 2015 — September 19, 2015 12 / 14

D: Board Game 2 (2)

array Teams[C][N]: number of teams including player 1

set Teams[1][j]=0

Teams[1][size[1]] = 1

for (i=2;i<=C;i++)

for (j=1;j<=N;j++)

Teams[i][j] =

Teams[i-1][j] + Teams[i-1][j-size[i]]

(modulo 10^8)

return Teams[C][N]

backtrace array to find particular team

Solutions — LKP 2015 — September 19, 2015 13 / 14

I: Advanced Modelling

Simulation + geometry
Simulate the shot, linear in F and D.

Line-plane intersection (where does it hit the face - normals +
dot product)

Distance from origin on line (what face does it hit first)

2D point in convex polygon (does the shot hit the face: use
sign of cross product and the next step)

Project face + projected point onto 2D (GramSchmidt
process - project + dot product)

mirror vector in 3D (does the shot deflect - projection)

Solutions — LKP 2015 — September 19, 2015 14 / 14

