
Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

FPC 2014 problem presentation; spoiler alert!

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

A - Administration (1/2)

Problem description
Bookkeeping problem: Read in a log file and print the costs
for all users if the log is not CORRUPT. Sort the users in the
output on alphabetical order (abc...z).

Solution - Variables:
class User(String name, List books, int pay)
TreeMap<String, User> allUsers
Stack<String> bookpile
boolean corrupt

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

A - Administration (2/2)

Solution - Processing

borrow book: is this book available?
return book: can this user return this book? How much
does he need to pay.
make books available: check the size of the pile
don’t forget to charge users e 10.00 for every book they
didn’t return.

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

Back and Forth

Problem description
Given a string s with length 1 ≤ |s| ≤ 106, is this string a
palindrome?

Solution
Just loop over the string and compare the chars at the
beginning with their corresponding places at the end.
Note that you only have to check the first half of the string,
if you didn’t; no problem 106 steps is still acceptable.
Optionally you could use a StringBuilder to reverse the
string and match it against s using the matches function.

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

Cryptography (1/3)

Problem description
Given a number n 1 ≤ n ≤ 1010, decide whether it’s a prime
number or not.

Things to notice

Since n can be 10 billion you have to use longs, not integers
as they can only store up to 2.1 billion.
The problem becomes a lot more easy if you know the
modulo (%) operator.

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

Cryptography (2/3)

Naive approach
if n < 2 output BROKEN
else if n == 2 output SAFE
else loop from i = 2 to n and check if a number i%n == 0. If
true output BROKEN else output SAFE.
This takes approximately 1010 steps which would result in TIME
LIMIT EXCEEDED.

First optimization
Notice that after n/2 no divisor can be found anymore, so loop
from 2 to n/2. This reduces the number of steps to
approximately 5 billion, which is unfortunately still too much.

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

Cryptography (3/3)

Correct approach
The correct approach is to loop until the square root of n.
You are looking for pairs of numbers a and b so that a ∗ b = n if
n happens to be a composite number. You would only need the
smallest of the two and this number must be smaller or equal to√

n, if this would not be the case both a and b would be strictly
greater than

√
n contradicting the fact that a ∗ b = n.

Using this approach you end up with approximately√
1010 = 105 = 100.000 which is perfectly fine.

An optional optimization is to check if n%2 == 0 and if not loop
from i=3 to

√
n where you skip all even numbers by incrementing

i with 2 every time. This would leave you with approximately
50.000 steps.

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

Diagnosis

Problem description
Union of all of the sets of symptoms of selected diseases.
Print "yes" if the diseases clarify all symptoms, no otherwise.

Solution
Set<Integer> symptoms
loop over all sets and do ’output.add’ or ’.addAll’
output contains all symptoms?

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

Efficient Pinning

Problem description

Given two rectangles representing Board and CPU, count
the number of possible ways CPU matches subrectangles of
Board .

Solution
Check every possible subrectangle of Board , with size equal
to CPU.
Count subrectangles that are equal.
Print the number of matches found.
Optimization: stop checking a subrectangle as soon as a
mismatching pin is found.

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

Friends

Problem description
Given an graph, check whether all vertices are reachable.

Solution
Do a BFS, starting from node s. Keep track of the visited
nodes.
Check whether all nodes have been visited, print "yes" if so,
and "no" if not.

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

Gardening (1/2)

Problem description
Given a sequence of points defining a perimeter, find the area
within this perimeter.

Smart solution
Calculate the sum of the areas
between each line segment and
the y-axis.
|Σxi · (yi − yi+1)|
Area is positive if yi > yi+1
(going down) and negative if
yi < yi+1 (going up).
Area between tiles and y-axis is
added and subtracted, leaving
only the total area of tiles.

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

Gardening (2/2)

Intuitive solution
Use a map to save a list of
points for every line.
Be careful not to count area
below or above an edge.
Going down:

for(j = yi − 1 . . . yi+1)
map.get(j).add(x)
Going up:

for(j = yi . . . yi+1 − 1)
map.get(j).add(x)
Finally, calculate the total area
by adding xi+1 − xi for every
even i for each row.

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

High Towers (1/3)

Problem description
Count the number of upward triangles in a triangle of height n.

Recursive formula

Recursive formula: f (n) = f (n − 1) +
n∑

i=0
i

However, with n ≤ 200000, this would result in a stack
overflow.

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

High Towers (2/3)

Iterative formula

f (n) =
n∑

i=0
i +

n∑
i=0

(i − 1) + ... +
n∑

i=0
(i − n) =

n∑
i=0

i(i+1)
2 = 1

2

n∑
i=0

i2 + i = 1
2 (

n∑
i=0

i2 +
n∑

i=0
i)

Should give correct answer.

Faster solution
Direct formula is possible.

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

High Towers (3/3)

Things to notice
n∑

i=0
i = 1

2n(n − 1)

n∑
i=0

i2 = 1
6n(n + 1)(2n + 1)

Direct formula
f (n) = 1

12n(n + 1)(2n + 1) + 1
4n(n + 1)

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

Inaccurate Expectations (1/2)

Problem description

For a given n, output g(n)

Solution
"Simply" return n + n * g(n - 1), except for n = 0, which
should return 0.
Expectation:
g(1000) = 109380...[some more digits]...20000.

Administration

Back and Forth

Cryptography

Diagnosis

Efficient Pinning

Friends

Gardening

High Towers

Inaccurate
Expectations

Inaccurate Expectations (2/2)

Problem description

For a given n, output g(n)

Solution
"Simply" return n + n * g(n - 1), except for n = 0, which
should return 0.
Expectation:
g(1000) = 109380...[2558 more digits]...20000.
Use BigInteger

	Administration
	Back and Forth
	Cryptography
	Diagnosis
	Efficient Pinning
	Friends
	Gardening
	High Towers
	Inaccurate Expectations

