
SJAARS KAMPIOENSCHAP PROGRAMMEREN 2014

CONTEST PROBLEM SET
MARCH 24, 2014

A Administration
B Back and Forth
C Cryptography
D Diagnosis
E Efficient Pinning
F Friends
G Gardening
H High Towers
I Inaccurate Expectations

2

Copyright c� 2014 by the SKP 2014 Jury.
Licensed under the Creative Commons Attribution-Share Alike license version 3.0:
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Problem A: Administration

A - Administration

Johnny is going to found his own library in a small village. There’s only one problem, he
needs a system to manage the administration of his new library. Therefore we ask you
to help him to create this system. The goal of the system is to read a log and check if it’s
valid or not. When the log is valid, the system should output the amount each customer
needs to pay.

Customers can borrow a book for free, but when a book is not returned within 3 days,
a fine is charged of 0,23e a day. When a customer has not returned a book at the end
of the log, he will be charged 10,00e without the charge per day. Customers can only
borrow books that are on a bookshelf. Johnny has one employee, whose job is to bring
books back to one of the bookcases. When a customer returns a book to the library it
will be placed on a huge pile of books, but a customer can never return a book he didn’t
borrow. The employee picks up some books from the top of the pile every once in a
while. The library will be in small village, therefore he decides to have only one copy
of a every book. The log consists of one of the following actions: a user rents a book, a
users brings back a certain book or the employee picks up a number of books from the
pile.

Input

The input for every test case consists of a single line with the integer 1  n  1000, the
amount of lines of the log. Every next line in the log is one of the following cases:

• When a customer borrows a book: ”t - g borrows b”
Where integer 0  t  106 is the day after the opening of the library, g the name
of the user and b the name of the book.

• When a customer returns a book: ”t - g returns b”
Where integer 0  t  106 is the day after the opening of the library, g the name
of the user and b the name of the book.

• When an employee returns some books to a bookshelf: ”t - n books become
available”
here integer 0  t  106 � 1 is the day after the opening of the library, 1  n 
1000 the number of books that are removed from the pile and become available
for borrowing.

Note: every name of a book or a person is a string that doesn’t contain any whitespace.
Also note that the log is in chronological order.

4

Problem A: Administration

Output

When the log is not consistent with the rules described above print on one single line
the word ”CORRUPT”. Else you must print for every customer the amount they need to
pay in the below format. The output lines need to be sorted in alphabetical order on the
name of the customers.

5

Problem A: Administration

Examples

input 1 output 1

6

1 - Sophie borrows Romeo_and_Juliet

2 - Johnny returns Romeo_and_Juliet

3 - Sophie borrows The_Da_Vinci_Code

5 - Berty borrows The_Hunger_Games

5 - 3 books become available

7 - Sophie returns The_Da_Vinci_Code

CORRUPT

input 2 output 2

8

0 - Sophie borrows Romeo_and_Juliet

3 - Sophie borrows The_Da_Vinci_Code

4 - Berty borrows The_Hunger_Games

5 - Sophie returns Romeo_and_Juliet

6 - Berty returns The_Hunger_Games

7 - 1 books become available

7 - John borrows The_Hunger_Games

9 - Sophie returns The_Da_Vinci_Code

Berty E0.00

John E10.00

Sophie E1.15

6

Problem B: Back and Forth

B - Back and Forth

Steve has hit the jackpot at his local flea market. He bought a cheap scanner with a
special ability: it detects palindrome words! Unfortunately the algorithm that checks
the words is broken, thus Steve asked you to write a new algorithm to implement in the
scanner and revive it’s glory once more.

Remember that a palindrome word is a word that reads the same when reversed: racecar
for example is a palindrome.

Input

The input consists of a string s, having length 1  |s|  1000000.

Output

Your program should output ”beep” if the string s is a palindrome, ”boop” otherwise.

7

Problem B: Back and Forth

Examples

input 1 output 1

racecar beep

input 2 output 2

1234564321 boop

input 3 output 3

eeeeeeeeeeeeeeeeeeeeeeeeee beep

8

Problem C: Cryptography

C - Cryptography

Dave has just completed the Massive Open Online Course (MOOC) Cryptography on the
popular website Coursera.org.
Eager to create his own cryptography system – against the advise of the teacher Dan
Boneh to never, ever, ever implement your own crypto-system – he searches for a SKP
(Special Key Prime).
A SKP is a prime that is preferably a large number, because the larger the number the
more secure it is to use as a key.

Remember that a prime is a number that is only divisible by 1 and itself. For example 2
is a prime because it’s only divisible by 1 and 2. 15 however is not a prime since beside
1 and 15, also 3 and 5 happen to divide this number. The number 1 is considered to not
be a prime.

Luckily his friend Trudy is quite good at guessing large numbers that could be prime.
Your task is given a number by Trudy, to decide whether this is actually a prime or not.

Input

You are given a number 0  n  1010, the number that Trudy has guessed for Dave to
use as a SKP.

Output

You should output ”SAFE” (without the quotes) iff the number n is a prime, else your
program should output ”BROKEN” (again, without the quotes).

9

Problem C: Cryptography

Examples

input 1 output 1

2 SAFE

input 2 output 2

15 BROKEN

input 3 output 3

104729 SAFE

10

Problem D: Diagnosis

D - Diagnosis

In the PHP (Paradise Hospital of Prague) they cure people with a lot of different diseases.
The PHP is dealing with a shortage of medical personal, therefore the director is afraid
of doctors getting sloppy. Doctors make a diagnosis based on the knowledge they gained
in university. So there is a known list of possible diseases and a known list of possible
symptoms a patient can have. A doctor makes a diagnosis of one or multiple diseases.
Those diseases have known symptoms that need to match exactly with the symptoms of
the patient.

More formally: given a set of diseases D = {d1, d2, ..., dn}, a set of symptoms S =
{s1, s2, ..., sm} and a function that represents the knowledge about diseases and their
symptoms. f(d) = S

0 with S

0 ✓ S and d ✓ D. When a given D

0 ✓ D check whether or
not the the condition S =

S
d2D0 f(d) is true. When it is print ”yes” else print ”no”.

Input

• One line with two integers n and m, with 1  n  1000 the number of diseases
and 1  m  1000 the number of symptoms. The patient has all symptoms s1 to
sm.

• One line with one integer k followed by k integers: the set of diseases D

0 the
patient has according to the doctor (D0 ✓ D).

• n lines, corresponding to diseases d1 to dn, with an integer p followed by p integers:
The symptoms belonging to disease i. These symptoms are given in ascending
order.

Output

Print ”yes” if the symptoms of the diagnosed diseases exactly match the patient’s symptoms.
Print ”no” otherwise.

11

Problem D: Diagnosis

Examples

input 1 output 1

5 6

3 3 4 5

3 1 2 3

3 2 3 4

2 5 6

3 1 4 5

4 1 2 3 5

yes

input 2 output 2

5 6

4 1 2 4 5

3 1 2 3

3 2 3 4

2 5 6

3 1 4 5

4 1 2 3 5

no

12

Problem E: Efficient Pinning

E - Efficient Pinning

While building a computer for Johnny’s new library, Eric notices all the shiny pins on
the new processor. He also notices, that the processor socket in the motherboard is a
lot bigger than usual. After closely examining the pins and holes on the processor and
motherboard, he realizes that there are a number of possible pin shapes. It seems the
processor can be placed at a number of positions, but only one of them will work.

Unfortunately, Eric has a very busy life, and doesn’t have the time to figure out where
the processor should go. He will let a friend install the processor. Eric’s friend is a very
precise worker, but this also makes him slow: it will take him an hour to put in and test
a possible position. Every pin on the processor is indicated by either an upercase letter,
or ⇤ for no pin. Every hole in the motherboard is indicated by an uppercase letter. A pin
will fit in the hole if the pin and hole have the same letter, or the pin is ⇤. The processor
and motherboard have to be placed facing north, as indicated by a big red arrow on both
of them, they cant be rotated.

Can you help Eric figure out how many hours he will have to pay his friend to get the
computer running?

Input

The first line consists of two space-seperated integers w and h (1  w, h  400),
indicating the number of columns and rows of the motherboard. After that, h lines
of length w follow, each line containing a string of uppercase letters, representing holes
in the motherboard socket. On the next line, there are two space-seperated integers n

and m (1  n,m  100, n  w, and m  h), indicating the number of columns and
rows of the processor. After that, m lines of length n follow, each line containing a string
of uppercase letters and/or ⇤, representing pins on the processor.

Output

An integer indicating the number of hours Eric’s friend will be working on this computer.

13

Problem E: Efficient Pinning

Examples

input 1 output 1

2 2

AB

BA

1 2

A

B

1

input 2 output 2

3 2

ABA

BAA

2 1

*A

3

14

Problem F: Friends

F - Friends

A new social network has been released and as you’re very into new technology, you
immediately decide to join it. After creating your account, you would look who has
joined the network already so you can send some friend requests. It appears this is not
a regular social network like Facebook and there’s one difference: when you are friends
with someone, you’re automatically friends with all the people he or she is also friends
with. For example, if you’re friends with ”Jan”, and ”Jan” is friends with ”Piet”, then you
are also friends with ”Piet” and all other people he has as friend.

You are given the details of the network. You know which members have joined the
network and which users are friends with each other. Each user has an unique identifier
in the network.

More and more people are joining the new established network and you would like to
know whether you’re friends with everyone. After all, one can never have too much
friends on a social network!

Input

The first line consists of the integers n, m and s (1  n  1000, 0  m  25000,
0  s  1000): n is the amount of registered users in the network, m denotes the
number of connections in the network and s is your user identifier. After that, m lines
follow with on each line two integers: a and b which means that users with identifiers a
and b are friends in the network.

Output

One line with either yes if you have every other user as a friend or no if not.

15

Problem F: Friends

Examples

input 1 output 1

5 4 3

0 1

1 2

2 3

3 4

yes

input 2 output 2

6 3 2

1 2

1 4

0 5

no

16

Problem G: Gardening

G - Gardening

Figure 1 – Example testcase 2, where points

given as input are highlighted.

Bob has an incredibly huge garden with
lots of grass and beautiful flowers, but
since he started training his programming
skills for the SKP, he does not have that
much time to maintain it any more. To
reduce the time spent maintaining his
garden, Bob selected an area of his garden
where he wants to place square stone
tiles. He subdivided his garden into a n

by n square grid (1  n  1000) such
that one stone tile fits exactly into one grid
cell. Therefore, each tile must be placed
inside exactly one grid cell.

The area Bob wants to fill with tiles is given as a sequence of m points defining its
perimeter. Each line segment between points pi and pi+1 defines an edge of the area.
Point p0 is also connected to point pn�1. In each cell within the defined perimeter, exactly
one stone tile is placed. Bob now needs your help to count the number of stone tiles he
needs to fill the entire designated area.

Input

The first line of the input consists of one integer m (4  m  1000): the number of
points that define the perimeter of the selected area.

The following input consists of m distinct lines with two space-separated integers xi and
yi (1  xi, yi  1000): The coordinates of point pi are (xi, yi). The bottom left corner is
defined as point (0, 0) and the top right corner is defined as point (n, n).

Output

One line with the number of square tiles required to fill the entire designated area.

17

Problem G: Gardening

Examples

input 1 output 1

4

6 14

6 33

19 33

19 14

247

input 2 output 2

12

5 1

5 6

10 6

10 7

1 7

1 14

14 14

14 9

18 9

18 3

12 3

12 1

160

18

Problem H: High Towers

H - High Towers

Figure 1 – A triangle puzzle with height 3. There

are 10 upward triangles in this figure.

Peter really likes to solve puzzles and his
friends know this. They recently asked
Peter to solve a well-known puzzle: given
a triangular figure of height 3 (see the
figure right), how many triangles pointing
upwards are in the figure? Peter solved
this problem in no-time so he asked his
friends for some harder puzzles. And they
came up with the same figure of height 4
and height 5 which Peter easily solved.

However, Peter got himself in a bit of
trouble when his friends want him to
solve the puzzle with a figure of height 6. Peter still wants to impress his friends with
the correct answer, and he wants to be able to solve the puzzles with an even greater
height, possibly up to two million! Since he’s a very bad programmer, he asked you for
help: given the height of the triangle n, can you determine how many triangles pointing
upwards there are visible in the figure?

Input

The input consists of one integer n (1  n  2 · 106): the height of the triangle.

Output

One integer with the number of triangles pointing upwards in the figure.

19

Problem H: High Towers

Examples

input 1 output 1

5 35

input 2 output 2

83948 98604181205900

20

Problem I: Inaccurate Expectations

I - Inaccurate Expectations

Jake is doing a lot of programming. Recently Jake has been working on an archiving tool,
because organizing isn’t one of his strengths. Jake learned that testing is an important
part of programming. He needs to make some file generating tool, to make sure his
archiving tool is not messing up. Jake has already created a simple generator to generate
some folders and files, ready to use his archiving tool on. However the generator seems
to take a very long time to finish, if it finishes at all.

It seems Jake has some inaccurate expectations of the effect of his generator. Can you
help Jake figure out how many files his generating tool is actually creating, for the given
input?

The generator g(root, n) works as follows: in the root folder, n files and n folders are
created. In each of those folders, g(folder, n�1) is used to generate the contents of that
folder. Calling g(folder,0) does nothing, of course.

Input

A single integer n, 0  n  1000

Output

A single integer, the number of files (not the folders) created by g(root, n).

21

Problem I: Inaccurate Expectations

Examples

input 1 output 1

0 0

input 2 output 2

2 4

22

