Solution outlines

BAPC Preliminaries 2011

October 1, 2011

F - Dividing the Loot

\square Very simple greedy solution

- Simply pick the $\mathrm{N} /(\mathrm{P}+1)$ most valuable items

E - Rolling Dice

\square Basic simulation
\square Hardest part is keeping track of orientation
\square Do not roll one square at a time!

- Orientation the same after rolling 4 times in same direction

A - Stifling the Mutiny

- Ad-hoc solution
- Every ship must have one loyal pirate
- Place a disloyal pirate every three ships:

- Place as many disloyal pirates as possible on last ship
- Formula for n ships and k pirates:

$$
F(n, k)= \begin{cases}k / 2 & \text { if } n=1 \\ k-n & \text { if } k<n+(n+4) / 3 \\ (k-(n-2) / 3) / 3 & \text { otherwise }\end{cases}
$$

H - Stealth Ninja

\square States have period of 16 sec

- 8 sec after dividing by two
\square Compute states (x, y, t) for which ninja is unseen ($\mathrm{t} \bmod 8$)
\square Check whether ninja succeeds using BFS

D - Polly wants a cracker

- Compute Levenshtein distance for every pair of words using DP
- Compute minimum weighted matching

■ Brute-force fast enough

- In case of brute-force: do not recompute distances!

B - RNG in Reverse

\square First rewrite as: $a x^{2}+b x+c=0 \bmod 2^{n}$
$\square x$ is a solution for $n \rightarrow\left(x \bmod 2^{n-1}\right)$ is a solution for $n-1$

- Hence, if x is unique solution for $n-1$
$\square \mathrm{x}$ is possible solution for n
- $x+2^{n-1}$ is possible solution for n
\square Maintain solutions for increasing n
- If solution is unique, continue
- Otherwise we can never get a unique solution
- Be careful with overflow!

C - Attack of the Giant n-pus

- Make complete bipartite graph for pirates \& tentacles
\square Weight of edge is required time
\square Perform BS over edge weights
- For a given weight w

■ Remove edges with weight > w

- Compute maximum bipartite matching
- Find smallest w such that |Matching| = \#tentacles
- Add time from captain to head of n-pus
\square Solution using Dynamic Programming
- F[stacksize][maxnum][prevmove] is too slow
- Instead, for F[stacksize][maxnum] store:

■ -1, if there are multiple winning moves
■ 0 , if there is no winning move

- x , if x is the only winning move
\square Player wins if:
- F[stacksize][maxnum] = -1 or
- F[stacksize][maxnum] \neq prevmove
\square Split up nodes of sentries and connect with directed edge
- Compute shortest path using Dijkstra or Bellman-Ford
- Along shortest path:

■ Edges between split nodes: Reverse direction
■ Other edges: Negate weight in opposite direction

- Compute another shortest path using Bellman-Ford
- Dijkstra also possible after reweighting

G - Secret Island Base

\square Find largest inscribed circle of polygon

- For every combination of 3 points/edges
\square Find circle(s) touching the 3 points/edges
■ Check if circle fits (and is in polygon)
- 4 different combinations
- 3 points (easy)

■ 3 edges (easy)

- 2 points, 1 edge (hard)
- 2 edges, 1 point (hard)

