
BAPC preliminary contest

October 6, 2007

1

2

A Word Ladder

A word ladder is a sequence of words, in which two consecutive words differ by exactly
one letter. An example of such a ladder (usually arranged vertically, hence the “ladder”)
would be: beer, brew, brow, word, down. Note that to get from one word to the next, the
letters may be rearranged, and exactly one letter is changed.

For this problem, you will be given a dictionary of distinct words, all of the same length.
Your task is to write a program that finds a word ladder of minimal length, such that the
first and last word of the ladder have no letters in common.

Input

On the first line an integer t (1 ≤ t ≤ 100): the number of test cases. Then for each test
case:

• A line with two space-separated integers n (2 ≤ n ≤ 100) and l (1 ≤ l ≤ 20): the
number of words and their length.

• n lines with a word, each consisting of l lowercase letters (a - z).

Output

For each testcase:

• a single line with the words in a ladder of minimal length, separated by a single space.

It is guaranteed that at least one such ladder can be constructed. If there is more than
one, output the one that comes first lexicographically.

Notes

If s and t are strings of equal length and si denotes the ith character of s, then s precedes
t lexicographically if for some i: si < ti and sj = tj for all j < i.

3

Sample in- and output

Input Output

1

9 3

alt

spy

sea

opt

pea

ape

spa

apt

ale

ale alt apt opt

4

B Bonus Word

Lingo is a once popular game show where the contestants have to guess words. In the
original version the contestants would have to guess a five-letter word each round.

In between the rounds of regular word guessing, the contestants can win a bonus prize if
they can guess a ten-letter word. The ten-letter word is displayed with the letters permuted.
Some letters are colored indicating that they are displayed in the right position. Since
there are not that many ten-letter words, it happens frequently that the word is actually
a compound: a word constructed by concatenating two shorter words. In this problem we
assume that the ten-letter word is always of this form.

Given a dictionary and a sequence of ten letters, you must calculate the possible solutions
to the ten-letter word game. Two solutions are considered different if they are constructed
from different parts, even if their concatenation is the same. This is illustrated by the the
second sample case.

Input

On the first line an integer t (1 ≤ t ≤ 100): the number of test cases. Then for each test
case:

• One line with an integer n (1 ≤ n ≤ 200): the number of words in the dictionary.

• n lines with a single word in the dictionary. Each word is between 1 and 9 (inclusive)
characters long and consists of only lowercase letters.

• One line with an integer q (1 ≤ q ≤ 100): the number of queries.

• q lines with a single query string. Each query is exactly 10 characters long and will
consist of uppercase and lowercase letters. Lowercase letters are in the right position
and uppercase letters may be in the wrong position.

All words in the dictionary for a single test case are distinct.

Output

For each test case, output for each query:

• One line with an integer s: the number of solutions.

• min(1000, s) lines, each a solution formatted as two dictionary words separated by a
hyphen (-).

The solutions to a single query must be ordered lexicographically. If the number of solutions
exceeds 1000, then only output the first 1000 solutions.

5

Notes

If s and t are strings of equal length and si denotes the ith character of s, then s precedes t

lexicographically if for some i: si < ti and sj = tj for all j < i. In this problem statement,
the hyphen precedes all letters lexicographically.

Sample in- and output

Input Output

2

5

gunner

integral

relating

tail

un

4

TAILGUNNER

unINTEGRAL

UNrelating

IMPOSSIBLE

3

aaaa

aaaaa

aaaaaa

1

AAAAAAAAAA

6

gunner-tail

integral-un

relating-un

tail-gunner

un-integral

un-relating

2

un-integral

un-relating

1

un-relating

0

3

aaaa-aaaaaa

aaaaa-aaaaa

aaaaaa-aaaa

6

C Contest

You and your team are participating in a programming contest. After reading all problems,
you have estimated for each problem how long it will take you to solve it. Your teammates
have done exactly the same. Now you want to divide the problems, so that the total
number of solved problems will be maximized.

Your team is very organized and each team member always writes down all the details on
paper. Therefore the computer never forms a bottleneck. The only constraint is that for
each team member, the total time required to solve the problems assigned to him should
not exceed the time left in the contest.

Input

On the first line an integer t (1 ≤ t ≤ 100): the number of test cases. Then for each test
case:

• One line with two integers n (1 ≤ n ≤ 10) and m (1 ≤ m ≤ 300). The number of
problems and the number of minutes left in the contest.

• Three lines with n integers each. Each line describes the solving times for a different
team member. The jth integer on the ith line is denoted by sij: either the time in
minutes it takes the ith person to solve the jth problem (1 ≤ sij ≤ 300), or −1 if the
person cannot solve this problem.

Output

For each test case:

• One line with the maximum number of problems your team can solve.

Sample in- and output

Input Output

1

10 300

10 60 -1 -1 10 10 10 240 1 30

15 -1 30 -1 60 60 60 300 5 250

20 -1 -1 60 60 90 90 300 2 245

10

7

8

D Cycling

You want to cycle to a programming contest. The shortest route to the contest might
be over the tops of some mountains and through some valleys. From past experience you
know that you perform badly in programming contests after experiencing large differences
in altitude. Therefore you decide to take the route that minimizes the altitude difference,
where the altitude difference of a route is the difference between the maximum and the
minimum height on the route. Your job is to write a program that finds this route.

You are given:

• the number of crossings and their altitudes, and

• the roads by which these crossings are connected.

Your program must find the route that minimizes the altitude difference between the
highest and the lowest point on the route. If there are multiple possibilities, choose the
shortest one.

For example:

In this case the shortest path from 1 to 7 would be through 2, 3 and 4, but the altitude
difference of that path is 8. So, you prefer to go through 5, 6 and 4 for an altitude difference
of 2. (Note that going from 6 directly to 7 directly would have the same difference in
altitude, but the path would be longer!)

Input

On the first line an integer t (1 ≤ t ≤ 100): the number of test cases. Then for each test
case:

9

• One line with two integers n (1 ≤ n ≤ 100) and m (0 ≤ m ≤ 5 000): the number of
crossings and the number of roads. The crossings are numbered 1..n.

• n lines with one integer hi (0 ≤ hi ≤ 1 000 000 000): the altitude of the i-th crossing.

• m lines with three integers aj , bj (1 ≤ aj , bj ≤ n) and cj (1 ≤ cj ≤ 1 000 000): this
indicates that there is a two-way road between crossings aj and bj of length cj . You
may assume that the altitude on a road between two crossings changes linearly.

You start at crossing 1 and the contest is at crossing n. It is guaranteed that it is possible
to reach the programming contest from your home.

Output

For each testcase, output one line with two integers separated by a single space:

• the minimum altitude difference, and

• the length of shortest path with this altitude difference.

Sample in- and output

Input Output

1

7 9

4

9

1

3

3

5

4

1 2 1

2 3 1

3 4 1

4 7 1

1 5 4

5 6 4

6 7 4

5 3 2

6 4 2

2 11

10

E Escape

You find yourself trapped in a large rectangular room, made up of large square tiles; some
are accessible, others are blocked by obstacles or walls. With a single step, you can move
from one tile to another tile if it is horizontally or vertically adjacent (i.e. you cannot move
diagonally).

To shake off any people following you, you do not want to move in a straight line. In fact,
you want to take a turn at every opportunity, never moving in any single direction longer
than strictly necessary. This means that if, for example, you enter a tile from the south,
you will turn either left or right, leaving to the west or the east. Only if both directions
are blocked, will you move on straight ahead. You never turn around and go back!

Given a map of the room and your starting location, figure out how long it will take you
to escape (that is: reach the edge of the room).

Input

On the first line an integer t (1 ≤ t ≤ 100): the number of test cases. Then for each test
case:

• a line with two integers separated by a space, h and w (1 ≤ h, w ≤ 80), the height
and width of the room;

• then h lines, each containing w characters, describing the room. Each character is one
of . (period; an accessible space), # (a blocked space) or @ (your starting location).
There will be exactly one @ character in each room description.

Output

For each test case:

• A line with an integer: the minimal number of steps necessary to reach the edge of
the room, or -1 if no escape is possible.

11

Sample in- and output

Input Output

2

9 13

#############

#@..........#

#####.#.#.#.#

#...........#

#.#.#.#.#.#.#

#.#.......#.#

#.#.#.#.#.#.#

#...........#

#####.#######

4 6

#.####

#.#.##

#...@#

######

31

-1

12

F Settling Salesman Problem

After travelling around for years, Salesman John has decided to settle. He wants to build
a new house close to his customers, so he doesn’t have to travel as much any more. Luckily
John knows the location of all of his customers.

All of the customers’ locations are at (distinct) integer coordinates. John’s new house
should also be built on integer coordinates, which cannot be the same as any of the cus-
tomers’ locations. Since John lives in a large and crowded city, the travelling distance to
any customer is the Manhattan distance: |x − xi| + |y − yi|, where (x, y) and (xi, yi) are
the coordinates of the new house and a customer respectively.

What is the number of locations where John could settle, so the sum of the distance to all
of his customers is as low as posible?

Input

On the first line an integer t (1 ≤ t ≤ 100): the number of test cases. Then for each test
case:

• One line with an integer n (1 ≤ n ≤ 2 000): the number of customers John has.

• n lines with two integers xi and yi (−1 000 000 000 ≤ xi, yi ≤ 1 000 000 000): the
coordinates of the i-th customer.

Output

For each test case:

• Two space-separated integers: the minimum summed distance to all customers, and
the number of spots on which John can build his new house to achieve this minimum.

13

Sample in- and output

Input Output

2

4

1 -3

0 1

-2 1

1 -1

2

-999888777 1000000000

1000000000 -987654321

10 4

3987543098 3975087573110998514

14

G Space

During a programming contest, teams can’t sit close to each other, because then a team
might copy the solution of another team. You are given the locations of the teams and the
minimum required Euclidian distance between two teams. You have to find the number of
pairs of teams that sit too close to each other.

Input

On the first line an integer t (1 ≤ t ≤ 100): the number of test cases. Then for each test
case:

• One line with two integers n (1 ≤ n ≤ 100 000) and d (1 ≤ d ≤ 50): the number of
teams and the minimum distance between two teams.

• n lines with two integers xi (0 ≤ xi ≤ 1 000 000 000) and yi (0 ≤ yi ≤ 1 000 000 000):
the coordinates of the i-th team. No two teams will have the same coordinates.

Output

For each test case:

• One line with the number of pairs of teams that sit too close to each other.

Notes

The Euclidean distance between points (x1, y1) and (x2, y2) is
√

(x1 − x2)2 + (y1 − y2)2.

Sample in- and output

Input Output

1

6 3

0 0

0 3

2 1

2 3

3 0

3 1

8

15

16

H Herbert

Herbert is a game in which you control a robot on an infinite two-dimensional grid. There
are three commands available to you:

• s: Go one square forward in the current direction.

• l: Turn ninety degrees counterclockwise.

• r: Turn ninety degrees clockwise.

After playing this game for a while, you wonder how many squares you can reach within a
certain number of moves. Write a program to calculate the answer to this question.

Input

On the first line an integer t (1 ≤ t ≤ 100): the number of test cases. Then for each test
case:

• One line with an integer n (0 ≤ n ≤ 1 000 000 000): the maximum number of moves.

Output

For each test case:

• One line with the number of reachable squares.

Sample in- and output

Input Output

4

0

1

2

3

1

2

5

11

17

18

