
Sponsored by Sogeti

Qualifying Rounds

Problems

October 1, 2005

1

2

A Bancopia

Problem

Gold transports are risky nowadays in Bancopia due to the numerous robberies. Some roads are
more dangerous than others. In order to minimize the probability of a robbery on a gold transport
between two given cities, the Bancopians want to place police posts on some of their roads, which
will make those roads safer.

In this task the input will consist of an overview of the cities in Bancopia and the roads between
them, together with the two cities the gold transport is between. For each road, the probability
of a robbery is given. With the robbery probability of a road between two cities we mean the
probability that, given that a gold transport travels over that road, a robbery happens there, on
that transport. We assume that when a gold transport travels over a number of roads, the robbery
probabilities on these roads are independent.

Finally, the maximum number of police posts is given. On every road at most one police post
can be placed. A Bancopian police post exactly halves the robbery probability of that road. The
question is how large the probability is of a robbery on a gold transport that takes the safest route
between the two given cities when the police posts are placed in such a way that this probability
is minimized.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• One line with the five integers n, w, m, a and b, separated by spaces. 2 ≤ n ≤ 100 is the
number of cities, 1 ≤ w ≤ 104 the number of roads, 1 ≤ m ≤ 100 the maximum number of
police posts to be placed, and a and b are the cities between which the transport is to take
place. Cities are always designated by an unique number in the set {1, . . . , n}.

• w lines, each of which describes one road, with three numbers, separated by spaces: s1, s2

and p. s1 and s2 are the cities the road connects (s1 6= s2, 1 ≤ s1, s2 ≤ n) and 0 ≤ p ≤ 1 is
the robbery probability of that road.

No two roads in the input will connect the same pair of cities. A road is always considered
bidirectional and the robbery probability does not depend on the direction the road is travelled.
Finally, it is guaranteed that there is a route from city a to city b with the roads in the input.

Output

For every test case in the input file, the output should contain a single number, on a single line:
the probability that a gold transport that travels along the safest route from a to b is robbed,
when at most m police posts are placed in such way that this probability is minimized, rounded
to four decimals after the decimal point. The rounding should be done as usual: 0.12345 . . . is
rounded to 0.1235, 0.12344 . . . to 0.1234.

3

0.075

0.025

0.1162

0.2040

1 6

2

3

0.05 0.15

5

4

0.020.15

0.1 0.2

0.1

0.05

1 6

0.15

0.05

2

3

0.05 0.15

5

4

0.02

0.1 0.2

0.1

Figure 1: These maps correspond to the example. The first map gives the safest route without
police posts; the second one gives the safest route in the solution. The cities are numbered and the
robbery probability is shown next to each road. Next to city 6, the destination city, the probability
of a robbery on the entire route is given.

Example

Input (see Figure 1)

1

6 8 2 1 6

1 2 0.1

1 3 0.15

2 3 0.05

2 4 0.1

3 5 0.05

4 5 0.15

4 6 0.2

5 6 0.02

Output

0.1162

4

B Flipping Networks

Problem

The Dean of the Unseen University, not unknown to inhabitants of the Discworld or their acquain-
tances, has decided to modernise his communication by installing a computer network consisting of
a number of bidirectionally connected hosts, numbered from 1 to h consecutively. Unfortunately,
due to the highly magical nature of the environment, random changes in the network structure
occur quite often.

Therefore, it is especially useful to know which hosts can be reached and which cannot. Luckily the
changes in the structure can be monitored without further affecting the network and the current
network state can therefore be known at any time.

It is agreed upon that any host which can be reached in 10 hops or less from the main host,
number 1, is called online. This means that there may be a number of hosts which are reachable
from host 1, but are not called online. The Dean wants to know how many such hosts there are.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• One line with one integer, h, the number of hosts (1 ≤ h ≤ 3000);

• One line with one integer, c, the number of initial connections (1 ≤ c ≤ 1500);

• c lines with two integers, p and q, two hosts between which an initial connection exists;

• One line with one integer, l, the number of connection changes (1 ≤ l ≤ 1500);

• l lines with two integers, r and s, two hosts between which a connection (dis)appears (changes
from present to absent or vice versa).

Duo to the magical environment, the only condition that applies to p, q, r and s is that they are
in the range 1 . . . h.

Output

For every test case in the input file, the output should contain a single number, on a single line:
the number of hosts reachable from host number 1 which are not considered online.

5

Example

Input

2

4

4

1 2

2 3

3 4

4 1

4

1 3

1 3

2 3

3 4

12

5

10 11

3 6

9 8

1 4

4 7

8

11 3

5 6

7 10

6 5

5 9

8 2

5 6

2 12

Output

0

1

6

C Insecurity

Problem

In the history of operating systems security has always been an issue. This has led to many
proposals to improve security. One of the areas these proposals aim at is the storage of passwords.
Passwords shouldn’t be stored readable and one of the ways to store them very safe is by storing
them as a code. Nowadays many systems use an md5-hash to store the passwords.

A possible attack on a password storage using hashes is the use of a bunch of commonly used
passwords and their encryption. All you need to do is read out the password file and see if anyone
has the same hash for a password as one of your known passwords. Although this won’t succeed
easily on well-maintained servers with technical users, it’s a trick that will be quite easy on a
general server, where the users don’t know much about security.

To solve this problem a proposal is made to encrypt both the usernames and the passwords. If
done cleverly, this might indeed work. A small company, however, overestimated the effectivity of
this mechanism. They gave the guarantee that, combined with their encryption techniques and
a lot of user accounts, one could give out all usernames and passwords without compromising
security worse than in the current situation.

Of course, since you see the errors they make, you will try and find evidence that security will be
thoroughly compromised. You seek out one of their servers and retrieve the list of usernames, the
list of passwords and the passwordfile.

Their encryption works as follows: Let w be the word to be encrypted and w[0] through w[n − 1]
the characters in this word, represented by 8 bits using normal ASCII encoding. Let c[i] be the
encryption of the first i + 1 characters of w. c[i] is considered to be a bitstring, not a string of
characters. The following rules will provide the encryption:

• c[0] = w[0]

• c[i] = (c[i − 1] << 4) XOR w[i] (i ≥ 1)

The operation << is commonly known as a bitwise left-shift. The effect of the operation is shifting
all bits to the left. So the bit string 00101011 would become 0010101100 when being left-shifted
by 2. For the encryption the bit string can keep growing, so no bits will ever be thrown away.
Since zero-bits are important, even if they’re the left-most bits and would normally be ignored,
the effect of the operator here is adding some zero-bits to the right of the bit string.

The XOR operation is defined as a bitwise XOR, meaning it compares the bits instead of the bit
string itself. A bitwise XOR operation produces a 0-bit when the compared bits are equal and a
1-bit otherwise. The following is an example of this: 100011 XOR 0101 = 100110.

The word to be encrypted is a concatenation of the username and the password, so usernamepassword.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• One line with the encrypted username and password, which should be cracked. The bitstring
will be represented by upper case hexadecimal digits. Every 4 bits are represented by one
hexadecimal digit. The bitstring 110010101101 would be represented by CAD.

• One line with m (1 ≤ m ≤ 105), the number of users in the system;

• m lines with every line containing one username;

7

• m lines with every line containing one password.

The usernames and passwords contain only the letters a to z, A to Z, the digits 0 to 9, and the
special characters _-=+!@#$%{}&*()[]\|/<>,.. Both username and password have at least 8 and
at most 30 characters. When encrypting the ASCII-values of the characters are used.

All usernames are unique. The same holds for the passwords.

Output

For every test case in the input file, the output should contain two strings, each on a separate line:
the username and the password that were used to form the concatenation of encrypted username
and password given in the input. The input is such that in each case a unique solution exists.

Example

Input

2

7237B23A13EC745236

5

amsterdam

teamdelft

eindhoven

enschede

groningen

abcdefgh

ijklmnop

qrstuvwx

yzabcdef

ghijklmn

62652F07224264EB08455

2

skywalker

darthvader

dark_Force

by1XWing

Output

teamdelft

yzabcdef

darthvader

dark_Force

8

D Mandalas

Problem

Shasita is drawing mandalas. First, she draws some circles, and then she colours the obtained
regions.

Her younger sister Rice wants to help her drawing the mandalas. They agree Rice will draw the
circles and Shasita will colour them. Shasita does not want to colour a very large number of all
small regions and therefore she fixes the number of regions Rice should create by drawing the
circles. Rice, on her side, is not very good at counting regions and she asks you to help her.

In this task you have to give the number of regions in a given mandala.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• one line with the integer 0 ≤ n ≤ 500, the number of circles in this test case

• n lines, each with the three integers xi, yi and ri, describing the ith circle, which has midpoint
(xi, yi) and radius ri, with |xi| , |yi| ≤ 1000 and 0 < ri ≤ 1000.

Output

For every test case in the input file, the output should contain a single number, on a single line:
the number of regions the circles divide the plane R

2 in.

Example

Input

3

1

5 7 10

2

0 0 5

10 0 5

3

0 0 7

10 10 7

0 10 8

Output

2

3

6

9

10

E Minotaur

Problem

While investigating an excavation site on the island Crete, the archaeologist Theseus has discovered
the entrance to a maze. Afraid of nothing, our brave and daring Theseus entered the maze. After
having mapped part of the entire maze, he arrives at a special hall. When he tries to read some
text on the wall, suddenly a projection appears in the middle of the hall. It is Minos, Theseus
greatest rival and evil enemy, who seems to have found the maze before Theseus did.

Minos’ projection tells Theseus that he won’t survive his visit to this maze, because as soon as
he leaves the hall, a robot, called Minotaur, will be activated that has one and only one mission:
track down Theseus and confront him with his fast rotating archaeologist shredder. Minotaur will
also be activated in any case after a period of five hours, so Theseus has limited time. “But,” says
Minos’ projection, “to make it a fair game, I will show you a map of the maze with the locations
of you, Minotaur and the exit. Also, remember that Minotaur moves twice as fast as you can do.”
A map shows up in the air, and Theseus sees the following text faintly appearing near Minotaur:

function decideDirection()

if noWall(myPos.westPos()) and victimPos.isWestOf(myPos) then return(west)

if noWall(myPos.eastPos()) and victimPos.isEastOf(myPos) then return(east)

if noWall(myPos.northPos()) and victimPos.isNorthOf(myPos) then return(north)

if noWall(myPos.southPos()) and victimPos.isSouthOf(myPos) then return(south)

return(none)

Luckily, Theseus’ girlfriend Ariadne has given him a laptop computer as a present just before he
left to go to the excavation site that morning. He decides to write a program to help him find an
escape route – most preferably within the five hours.

Theseus models his situation as a game in which every time Minotaur has two turns to play,
followed by one turn for Theseus. In every turn it is allowed to move either one square west, east,
north or south, or hold still for the duration of that turn. Minotaur shreds Theseus as soon as
they are on the same square, and Theseus escapes as soon as he enters the Exit square.

In this task you must write the program, in the limited time resting of this five hour programming
contest. . .

Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• One line with two integers, w and h, with 1 ≤ w ≤ 50 the number of squares in East-West
direction and 1 ≤ h ≤ 50 the number of squares in North-South direction.

• h lines with each w characters (excluding the newline character). The meaning of the
characters is as follows:

– # indicates a Wall square

– . (a dot) indicates an empty square

– T indicates the initial position of Theseus

– M indicates the initial position of Minotaur

– X indicates the Exit

11

The characters T, M and X appear all exactly once in each input case. The first line describes the
most Northern squares, the last line the most Southern squares. The first character on each line
describes the most Western square, the last character the most Eastern one. A wall surrounds the
entire maze, but it is not included in the input. The exit can be anywhere in the maze, because it
is an opening in the roof. It is guaranteed that there is a path of non-Wall squares from Theseus
to the Exit.

Output

For every test case in the input file, the output should contain a single number, on a single line: the
minimum number of turns Theseus needs to escape from the maze, or 0 if Theseus can never reach
the Exit safely. The number of turns should include only Theseus’ turns, not the ones Minotaur
played.

Example

Input

2

10 7

.##.##..#.

.T#M#..##X

.##.#.##..

..#.#....#

#.#....#.#

..######..

#........#

10 7

.##.##..#.

.T#M#..##X

.##.#.##..

..#....#.#

#.#.#....#

..######..

#........#

Output

0

20

12

F Mondriaan

Problem

The great Dutch painter Piet Mondriaan (1872–1944) is consid-
ered one of the first modern painters. A major part of his com-
positions is divided in a couple of rectangular regions. Some of
them are filled with a color, while the remaining ones are left
white.

Mondriaan’s colorings usually obeyed the following rules:

• Every colored region is either red, yellow or blue;

• Two (horizontally or vertically) adjacent regions don’t
have the same color. White is not considered a color, so
two adjacent regions can be both white.

Once a painting is divided in regions, there are still a lot of different ways to fill these with colors.
Mondriaan is wondering how many different ways there are for a given division. For the paintings
we consider, this number will not exceed 106.

Two regions that only touch at a corner point are not considered adjacent.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• One line with one positive number n with 1 ≤ n ≤ 100: the number of regions in the
painting.

• n lines with four non-negative integers x1, y1, x2 and y2 with 0 ≤ x1, x2, y1, y2 ≤ 109: the
coordinates of two opposite vertices of a region. Every region has a non-zero area, regions
will not overlap and the union of the regions will form a rectangular painting. (Therefore,
the illustration above would be an invalid input case for this problem.)

Output

For every test case in the input file, the output should contain a single number, on a single line:
the number of ways the painting can be colored.

Example

Input

2

2

100 110 70 105

100 105 12345 110

4

0 0 1 1

0 1 1 2

1 0 2 1

1 1 2 2

Output

13

121

13

14

G Nim/3

Problem

You are staying in the country of Determinisia for a challenging programming contest. The
Determinisians are very fond of playing deterministic games, i.e. games of which the result can
be known in advance, assuming the players play optimally. They really love to see each time
everything is going exactly the way they had foreseen.

The great teacher Oneplusoneistwo has developed the game Nim some thousands of years ago,
and this game is still very popular in Determinisia. This game is quite simple: there are three
(possibly empty) stacks of matches. By turns, the players must choose a non-empty stack and
remove any positive number of matches from it. The first player to make all three stacks empty,
wins.

Recently, the scientist Oneplustwoisthree has suggested to make a three player Nim game, called
Nim/3. In order to make this game deterministic, each of the players has one of the other two
players as a favorite; in case he can’t win himself, he will try to let his favorite win. The players
must also know each other’s favorites.

In order to socialize with the local students, you want to play a few games of Nim/3 with them.
But this is only possible when you play the game in an optimal way. Luckily, you are allowed to
write a computer program to assist you during game play.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• One line with six integers: s1 s2 s3 f1 f2 f3. Here, s1, s2 and s3 denote the number of
matches on the stacks 1, 2 and 3 respectively (0 ≤ sn ≤ 20, s1 + s2 + s3 ≥ 1). f1, f2 and f3

indicate the favorite player of player 1, 2 and 3 respectively.

Note that fp ∈ {1, 2, 3} \ {p}. Currently it is the turn of player 1, followed by player 2 and 3
respectively.

Output

For every test case in the input file, the output should contain two numbers, on a single line,
separated by a space: k and n. k ∈ {1, 2, 3} is the stack and 0 < n ≤ sk the number of matches
to take from that stack by player 1, when he plays an optimal game. There might be multiple
optimal choices, but you should give the one with k as small as possible, and next n as small as
possible.

Example

Input

3

1 1 5 3 3 2

1 1 5 2 1 1

0 1 4 2 1 1

Output

3 4

1 1

3 1

15

16

H Venus Rover

Problem

After the NASA1 sent their Mars Exploration Rovers Spirit and Opportunity to Mars, the ASAN2

decided to send their Venus Exploitation Rover Greedy to Venus in order to find out which valuable
raw resources can be obtained from Venus. Its mission is to collect some stones from Venus’ surface.

Greedy will be transferred to Venus using a rocket that will drop it on the surface together with
a large container, then fly seven times around Venus and finally pick up both Greedy and the
container from the surface using its on-board grabbers.

After its landing, Greedy will use its IntelliSensor technology to scan for all interesting stones
within half a mile. This will yield a list of stones with accurate estimations of their mass, their
value for the Administratika and the time required to pick them up and put them in the container.
The container is large enough to contain even all the stones, but the rocket can only lift a limited
amount of mass from the surface. Also, the amount of time is limited due to the fact that the
rocket will come back after seven rounds around Venus.

It is your task to write the program that will determine which of these stones to pick up and put
in the container, if the total value is to be maximized.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• A line with three positive integers: N , T and M . 0 < N ≤ 100 is the number of stones
found, 0 < T ≤ 100 the time available before the rocket will come back to pick up Greedy

and the container and 0 < M ≤ 100 the maximum mass of the stones that the rocket can
lift.

• N lines, with each ith line containing the three positive integers ti, mi and vi (all no greater
than 106), representing respectively the time required for pick-up, the estimated mass and
the estimated value for stone i.

Output

For every test case in the input file, the output should contain a single number, on a single line:
the maximum total value collectable in the corresponding test case.

1National Aeronautics and Space Administration
2Administratika Spatika and Aeronautika Nationalika

17

Example

Input

2

1 20 10

2 2 100

5 20 10

6 6 10

10 5 12

5 10 18

12 5 10

3 3 7

Output

100

19

18

