oo aD /el//‘fi‘/
s g Acmyeek

Problem A : Woodworms

1991 ACM Scholastic Programming Contest
sponsored by AT&T Computer Systems

European Regional Finals
November 3, 1990

Source File: WORMS.PAS
Input File: WORMS.INP
Output File: WORMS.OUT

A carpenter has a little problem: his stock of wood is infected with woodworms. As he
does not like to lose his whole stock at once, he decides to saw the largest possible plank
containing no worms out of every infected board. He has still another problem: his sawing
machine can saw only in directions parallel to the sides of the board. The carpenter has
made a list of the coordinates of each of the wormholes in each board. Fortunately the
worms go straight through the wood, so we can ignore the third dimension. It is your job
to find the area of the plank with the largest area that can be recovered {from each board.
(If there are no holes then the whole board is recovered.)

The program should read a textfile and should give its output in a textfile. Both files are
in ‘strict format’.

Input: The input file consists of a number of blocks, each corresponding to one board. The
different blocks are separated by a blank line. The data in each block consists of a number
of lines containing two non-negative integer numbers, smaller than 10,000, separated by
exactly one blank. The first number of the first line gives the x-dimension of the board
" in arbitrary "wood” units. The second number of the first line gives the y-dimension of
the board in the wood units. The following lines each give the position of a hole. First
number: x-coordinate, second number: y-coordinate. All holes are within the boundary of
the board. The holes are given in random order. It is possible that the same hole occurs
more than once in a block. The number of holes in a board is limited to 400. It may be a

good idea to use the type longint for the area, as intermediate results can easily be larger
than MaxInt .

Output: The output is a textfile containing one line for each block of the input file. Each

line consists of one integer number. This number represents the area of the largest plank
in square "wood” units.

Example:

45 60 2610
11 2800
i1

44 59

70 40

End of problem A

AeMngoek

Problem B : BOGGLE II

1991 ACM Scholastic Programming Contest
sponsored by AT&T Computer Systems

European Regional Contest
November 3, 1990

~Source File: BOGGLE.PAS
Input File: BOGGLE.INP
Output File: BOGGLE.OUT

In a Boggle game we have a board of M x N places where each place contains one upper
case letter. A word is a sequence of letters. We say that word c,cy..c; (k> 0)is embedded
in the board if and only if ¥ =0 or for £ > 1:

o there is a place (m;,n;) that contains letter ¢,

o for each letter ¢;1; (1 <@ < k) there is a place (mis1,ni41) that contains that letter
and (m;, n;) and (mi41,ni41) are adjacent places on the board, and

e the word covers k places (that is, no places are used twice.)

Two (different) places (z0,y0) and (z,,y:) are said to be adjacent if the first coordinates
satisfy |zg — z;| < 1 or |zg — ;| = M — 1, and the second coordinates satisfy |yo — y,| < 1
or [yo—y:1| = N — 1. For example, on a square board of 16 places the set of places adjacent
to (1,2) equals {(1,1),(1,3),(2,1),(2,2),(2,3),(4,1),(4,2), (4,3)}, see Figure.

4

3 * % *
2 (1"2) * *
1 * * *

A prefiz of a word is obtained by deleting zero or more letters at the end of the word.
For example, the set of all prefixes of the word 'BOGGLE’ equals { 'BOGGLE’, ’BOGGL’,
’BOGG’, ’BOG’, ’BO’, ’B’, ’’ }, where ’’ denotes the empty word.

R . 58, 5 & e

Given a board in a Boggle game and a word, w, your program should determine the length
~ of the longest prefix of w that can be embedded in the board.

Input: The input file (a textfile) contains zero or more problem descriptions. Each problem
description consists of:

e One line containing two integers, M and N, that represent the dimensions of the
board, 1 < M <10 and 1 £ N < 10; followed by

e M lines, each containing a string of length NV

e One line containing an integer K, that denotes the number of words that your pro-
gram has to process for this board, K > 1.

o NI lines, each containing a string of at least 1 and at most 200 letters

The end of the input marked by standard end-of-file marker.

Output: The output file of your program is a textfile containing the answers to the
problems of the input file. The format of input and output file is strict. Answers for
different problem descriptions are separated by an empty line. The answers to each problem
description should be in the following format:

e I\ lines (one line for every word that has to be embedded) containing one integer that
represents the length of the maximal prefix of the input word that can be embedded
in the board.

Example:

[BOGGLE. INP ' | BOGGLE.OUT |
4 4 6
ODET 4
XVRT
ZUES 2
WIPA
2 0
PIETER

DRUIF

23

ABC

DEF

3

AB

ABCDEFGHI JKLMNOPQRSTUVWXYZ
¥z

]

Hint: notice that in the second case of the second problem the input string is much longer

than the number of places on the board. If prefix ABCDEF is embedded all places are
covered, resulting in the answer 6.

Keep this in mind when writing your program.

End of problem B

e

/Femgozi

Problem C : Semi—Circles

1991 ACM Scholastic Programming Contest
sponsored by AT&T Computer Systems

European Regional Contest
November 3, 1990

Source File: CIRC .PAS
Input File: GIRC.INP
Output File: CIRC.OUT

Given a number of points on a circle with center (0,0), the question may arise whether or
not there exists a line through (0,0) such that all these points are on the same side of this
line (and not on this line). If so, these points are said to satisfy the ‘Gemi-Circle’ property-
I don’t know of any practical application of the Semi-Circle property, but your program
has to answer the burning question of whether or not points satisfy this property.

Input: The input of your program resides in a textfile. Each line of input contains an
even number of reals, with a maximum of 1000 per line, representing the coordinates of
points on a circle with center (0,0) and a positive radius. For example the inputline
‘9.5 1.0 1.0 -0.5 0.5 1.0’ denotes the points (0.',1),(1,—0.5), and (0.5,1) again, on
the circle with center (0,0) and radius V1.25 . At the end of an input line no trailing
spaces OCCur.

Output: The textfile must consist of one output line for each input line, every line con-
taining exactly one character, being a 'y' if the points on the corresponding input line
satisfy the Semi-Circle property and a "N’ otherwise.

Remark: Accuracy of qumerical computations s not the topic of this problem. Therefore
the input points are chosen such that the restricted accuracy of ordinary real arithmetic in
Turbo Pascal suffices to decide whether they satisfy the Semi-Circle property or not: for
example the line ‘0.5 1 0 1.0 -0.5 -0.5 ~1.0 will not occur in the input.

Example:

[CIRC.INP]

\0.5 1.0 1.0 -0.5 0.5 1.0
0.5 1.0 1.0 -0.5 -0.5 -1.0 =10 0.5

‘End of problem C

Acrgoti

Problem D : Counting with Dice

1991 ACM Scholastic Programming Contest
."sponsored by AT&T Computer Systems

European Regional Contest
November 3, 1990

Source File: DICE.PAS
Input File: DICE.INP
Output File: DICE.OUT

During a recent excavation, remainders have been found of an ancient civilization. Some
Eindhoven professor claims that 't was a civilization of dice-cutters and gamblers, from
cave paintings and other clues he even deduces that these people used to count with dice
on a wooden ‘dice tray’. Regretfully these trays have been lost over time. To illustrate
this counting system, we show you two schematic representations of our number 1024 with
five six-sided (ordinary) dice. -

0 6+ 10" 5102
0 9 3 3 0
o 4%10° 2x10 1+10 £%10° ¢ 101 44107

In general one K-sided die can be used to represent the number O or any number k * 10°
for integers k and i satisfying 1 < k< K andi>0. The number represented on a tray
with dice is the sum of the numbers {hat are represented by the individual dice.

When discovering such a hitherto unknown system, the question arises how far one can
count with a given number of dice. Having written a program for this problem, we may as
well use it as a problem in this programming contest. For several cases of K and N, your

program should produce the least natural number M which cannot be represented with IV
K -sided dice.

Input: The input of your program resides in a textfile with strict format. Each line in
this file, except for the last, consists of a pair K and N (first K then a space, and then N)
such that 0 < K <10 and 0 < N < 100 . The last line consists of the number 0 only.

Output: The output file is a text file and has one line for each pair K and N in the input
file. This line gives the corresponding value of M, without leading spaces, without leading
zeros (in our own familiar decimal representation). The file has strict format.

Example:

DICE.INP DICE.OUT

6 2 17
32 7
0

"I End of problem D

fACmgeek

Problem E : Russian Shops

1991 ACM Scholastic Programming Contest
sponsored by AT&T Computer Systems

European Regional Contest
November 3, 1990

Source File: SHOP.PAS
Input File: ~ SHOP.INP
Output File: SHOP.OUT

At present, Russian shops are as good as empty, but the Russian people — disciplined as
they are — still keep lining up in front of the shops. The Russians are even so disciplined
that they arrive in the same order every day. As a consequence they always have to talk
with the same people in the waiting queue.

A smart cashier therefore decides to use the random number generator on her Western
pocket calculator — normally used to generate exchange rates for Western currencies —
and gives each customer upon arrival a random number between zero and the number of
customers that have arrived before him. This number tells the customer how many places
he may move towards the front of the queue. In this fashion, a customer can meet, in the
long run, any other customer in the queue.

Your program determines the final order in which the customers have to spend the rest
of the day. Each line of the input file contains a sequence of which the i-th number is
between 0 and ¢ (0 < 7). [To be more precise: if we denote the i-th number by a;, then
we have 0 < a; < 7 for 0 < i.] Consecutive numbers are separated by exactly one space,
and there are no trailing spaces. The output of your program has the same structure. The
i-th number on each output line is the number of the place in the queue where the 2-th
customer ends up when all customers have arrived (0 < 2).

Notes: There are at most 1000 customers. Customers and places in the queue are num-
bered from 0 onwards.

Example:

SHOP.INP SHOP.OUT

0 0

60121 04 213
0123 3210
0000 to123

End of problem E

/gc/vl(j cal

Problem F : Quad Monitor

1991 ACM Scholastic Programming Contest
sponsored by AT&T Computer Systems

European Regional Contest
November 3, 1990

Source File: QMON.PAS
Input File: QMON.INP
Output File: QMON.OUT

Your computing department has bought a new monochrome monitor with a square screen
of 1024x1024 pixels. On this monitor you wish to display a rectangle, but a quick glance
through the manual reveals that you can only display a certain set of squares.

To display the three black squares in the picture below, you send a sequence of signals
to the monitor (here represented as ASCII characters). First, you send a @ to clear the
screen. Then you select the first square you want to draw by sending a sequence of a's,
b’s, c’s, and d’s. Each letter sent selects a subsquare according to the scheme: a selects
the upper-left square, b the upper-tight, c selects the lower-right square, and the lower-left
subsquare is selected by d. To select, for instance, the upper black square in the following
example, you send acb. By the way, the input and output corresponding to this square is
the second line in the example listed at the end of the problem description.

et St !
E B H.B & !
2561—-—-'|f—‘f b
1 2 j
i d !.d'Cl i
510 bmmmm oS oo
I la 1
' f b
' (o] '
vood T
\ ''d Vv oc o
1024 bmmmmmmmm s m s :

Finally, you send a * to fill this square. In order to display more squares, the - signal
can be used to cancel the effect of the last letter sent. To put it in another way: ~ selects
the next supersquare. A complete sequence to display the squares in the above picture is
Qacb*~~~cad*"bx. The sequence 0* will blacken the entire screen.

The problem now is to produce a sequence of minimal length that displays a given rectan-

gle. A rectangle is given by the zy-coordinates of its upper left corner and its lower right
corner. :

10

Input: The input for your program resides in a textfile. Each line contains four integers
Zo, Yo, T1, and y1, say, satisfying 0 < zo < 71 < 1024 and 0 < yo < N1 £ 1024, that

represent a rectangle to be displayed. The input is terminated by the standard end-of-file
marker.

Output: The output of your program is also a textfile. Each line contains the minimal

length of a displaying sequence of the given rectangle. The format of the output should be
‘strict’.

Example:

[QMON . INP |
0 0 1024 1024
384 256 512 384
0 0 512 1024

384 384 896 640

Do N
N

Remark: You may check that these rectangles could have been displayed by sending the
following sequences to the monitor:
Qx*

Qacb*
Qax~dx*

Qafé*-“‘bdd*—C*AACd*“””dbb*“‘“caa*”b*“ba*

End of problem El

11

Aumyo fU

(@)

Problem G : Tom and Jerry

1991 ACM Scholastic Programming Contest
sponsored by AT&T Computer Systems

European Regional Contest
November 3, 1990

Source File: TOMJERRY.PAS
Input File: ~ TOMJERRY.INP
Output File: TOMJERRY.OUT

As you all should know, the cartoon heroes Tom and Jerry are not the best housemates
you can have. They are not very close friends; in fact, they are at a never ending war
with each other. Every time when Tom is chasing Jerry, Jerry is fooling Tom. But, times
are changing. Tom, though he is not the smartest one of the two, has bought a computer
and made a plan. When Jerry is sleeping somewhere in the room he wants to take him by
surprise. For doing this, he needs a fastest path to Jerry. A path is made up of straight
pieces parallel with one of the walls of the room. A fastest path is a path containing a
minimum number of bends. So, exploiting his computer, Tom desperately needs a computer
program that calculates a fastest path.

Your task is to write Tom’s program, given the following conditions:

o Tom and Jerry are both in the same room.

¢ Both our heroes are squares of size 1 X 1.

o The room is rectangular. The room is divided into squares of size 1 x 1 which may
be free or occupied by an obstacle, Tom, or Jerry (see Figures 1, 2). Coordinates are
given to the squares. Two walls are used as coordinate axes. The lower-left square
gets coordinates (0,0), the coordinates of the upper-right square are at most 75. The
only legal places inside the room are the squares it is divided in.

e The obstacles in the room (possibly none) are of a rectangular shape and may differ
in size. The obstacles are all fully inside the room and are placed parallel to the

boundaries of the room. The coordinates of the obstacles are integers. Obstacles do
not overlap.

e Jerry does not wake up .
e Tom and Jerry occupy different positions.
e Tom and Jerry are always outside the boundaries of the obstacles.

Input: The input for your program resides in a textfile in strict format. The file ends with
the standard end-of-file marker. The input file contains a number of cases. The end of a
case is given by a line consisting of a -1. The first line of a case gives the coordinates of

12

—~m

‘the upper-tight square of the room. The second line gives first the coordinates of Tom and

then those of Jerry. The next lines describe the obstacles. Each line gives the lower-left
coordinates followed by the upper-right ones of an obstacle. Note, a square obstacle with
size 1 x 1 has equal lower-left and upper-tight coordinates.

Output: The output is also 2 textfile in strict format. For each case in the input, your
program produces one output line with:

o if a fastest path exists, the number of bends in the path , or
e otherwise, the word impossible.

Example:

[TOMJERRY . INP | [TOMJERRY.OUT |
4 4 " impossible—\
1133 6
0242
-1
6 4
0160
1011
1313
3134
505 1
535 3
% B

Figure 1 gives a graphical representation of the first input case, Figure 2 of the second one.

o»—-ww.&-
o»—-‘wwux

g- 172 3 4 ¢ 1 9 =) A 9B
Figure 1.] Figure 2.

\—End of problem G

13

/ﬁ'C/\" 95 'E K

Problem H : Musical Repe(ti)on

1991 ACM Scholastic Programming Contest
sponsored by AT&T Computer Systems

European Regional Contest
November 3, 1990

Source File: REPE.PAS
Input File: REPE.INP
Output File: REPE.QUT

In order to reduce the length of the staffs, composers use a very simple way to denote
repetition. Your program has to perform a similar, but simplified, kind of data compression.

The problem is translated from staffs into ASCII text and vou have to consider the effect
of one repetition only.

First some definitions:

S is the set of finite-length strings (including the empty string) that contain characters of
1LY AL)

a'..'z’ and spaces only.
R is the set of finite-length strings that contain exactly one repetition, which is either
‘direct’ or ‘delayed’: where

- direct repetition occurs in a string v(w)y, for v, w, and y elements of S. This string
encodes the string vwwy of S.

o delaved repetition occurs in a string v(wlz)y, for v, w, z, and y elements of 5, which
encodes the string vwzwy of S.

Your program encodes strings of S into strings of R such that the encoding has a minimal

length (the length of a string is its number of characters including the characters "C, *)’,
and 'I").

14

—

Input: The input of your program resides in a textfile , one string of S per line. The
length of each string is at most 400.

Output: The output is a textfile. It should consist of one line per input line, each line
containing a string of R which is an encoding with minimal length of the corresponding
input string.

Remark: On your keyboard the character "I’ has a little gap in the middle, you will

probably find it on the same key as the backslash (’V). In Turbo Pascal it is also known
as Chr(124).

Example:

| REPE.INP] | REPE.QUT]

this is an example string th(is)an example string
it is cute is it not it(is |cute)it not

End of problem H

15

q 7 ¢ &

final—standings Sat Nov 3 18:21:2¢ 1990 1

1991 AcM Scholastic Programming Contest
Sponsored by ATeT Computer Systems

....European Regional Contest
Final Standings

Team Name A B C D E F G H Time Solved Rank
2 Amsterdam Free U 6 1% 2% g% 3% 1% 2% 4 1231 6 1
4 RU Groningen o« . 2% 3% 1% 3k 2% 1256 5 2
7 RU Ghent 4 3* 4% 3x 1% . 1% 3 1284 5 3
3 RU Leiden 2% 4% 1% 1 3% 2 6 .. 698 4 4
21 Manchester u 5 2 1x 1*x 2% " 634 3 5
12 Chemnitg TU 2 2 5 2% 2% . 1x 692 3 6
30 Sofia u g - 5 1* 1% 3 3% oo 726 3 7
13 U Twente : 2 1 1% 1 1% | & = S5 2 8
14 Ku Nijmegen - 1* 3 1 1x 1 s 437 2 9
1 Eindhoven uT 2 2 . 1 2% 2% 2 2 511 2 10
18 Eotvog Lorand u " 2% 1 . 1*x | 3 . 514 2 11
S5 RU Utrecht 2 4 3% , 3% 4 . — 550 2 12
27 Warsaw y - 5* 1 2 5% 34 - 595 2 13
28 U of Amsterdam 2 1 1% 2 3% . R R TEEETIIT -% 1) 2 14
29 U of Helsinkji - 4x 0 3% o 669 -0 2 13
26 Ecole Polytechnique 1 3 4 1* 2+« 4 - 713 2 16
20 Comenius yuy . 2 o 2 1* 2 1 3 73 1 17
—22 Masaryk U -3 3 1 1x . 2 - 106 1 18
33 U of Bucharest 1 . . . 1*x 2 3 112 1 19
10 Ecole des Mineg 4 2% . 1 178 1 20
25 U of Hull :) 1 4% . . 256 1 21
16 TU Eudapest 2 2 3 2% 3 2 265 1 22
19 U ef Oldenburg . 3 2 e 343 - 23
8 U Coll Swansea " 2 s . 3 .2
23 Jagiellonian y . . 1 1 2
32 Imperial College - . 1 1 1 . . .
17 catalonia PTU v 2 . . . « A& o e
24 U of York # e B @ s 2 e e e .
Total judged runs 25 48 54 24 53 22 36 27 total: 289
: 54

Total solutions . 1 7 7 623 4 5 3 total

