
ACM Scholastic Programming Contest, November 10, 1989

European Regional Finals

Problem A

 Multiplying by Rotation 

Warning: Not all numbers in this problem are decimal numbers! 

Multiplication of natural numbers in general is a cumbersome operation. In some cases however the
product can be obtained by moving the last digit to the front. 

Example: 179487 * 4 = 717948 

Of course this property depends on the numbersystem you use, in the above example we used the
decimal representation. In base 9 we have a shorter example: 

17 * 4 = 71 (base 9) 

as (9 + 7) * 4 = 7 * 9 +1 

Input
The input for your program is a textfile. Each line consists of three numbers separated by a space:
the base of the number system, the least significant digit of the first factor, and the second factor.
This second factor is one digit only hence less than the base. The input file ends with the standard
end-of-file marker. 

Output
Your program determines for each input line the number of digits of the smallest first factor with
the rotamultproperty. The output-file is also a textfile. Each line contains the answer for the
corresponding input line. 

Sample Input
10 7 4
9 7 4
17 14 12 

Sample Output
6
4
2 



ACM Scholastic Programming Contest, November 10, 1989

European Regional Finals

Problem B

 Nesting a Bunch of Brackets 

In this problem we consider expressions containing brackets that are properly nested. These
expressions are obtained by juxtaposition of properly netsted expressions in a pair of matching
brackets, the left one an opening and the right one a closing bracket. 

( a + $ ( b = ) ( a ) ) is properly nested 

( a + $ ) b = ) ( a ( ) is not. 

In this problem we have several pairs of brackets, so we have to impose a second condition on the
expression: the matching brackets should be of the same kind. Consequently (()) is OK, but ([))
is not. The pairs of brackets are: 

 (    )
 [    ]
 {    }
 <    >
 (*   *)

The two characters ’(*’ should be interpreted as one symbol, not as an opening bracket ’(’
followed immediately by an asterisk, and similarly for ’*)’. The combination ’(*)’ should be
interpreted as ’(*’ followed by ’)’. 

Write a program that checks wheter expressions are properly nested. If the expression is not
properly nested your program should determine the position of the offending bracket, that is the
length of the shortest prefix of the expression that can not be extended to a properly nested
expression. Don’t forget ’(*’ counts as one, as does ’*)’. The characters that are not brackets also
count as one. 

Input
The input is a text-file. Each line contains an expression to be checked followed by and end-of-line
marker. No line contains more than 3000 characters. The input ends with a standard end-of-file
marker. 

Output
The output is a textfile. Each line contains the result of the check of the corresponding inputline,
that is YES (in upper case), if the expression is OK, and (if it is not OK) NO followed by a space and
the position of the error. 



Sample Input
(*a++(*)
(*a{+}*)

Sample Output
NO 6
YES



ACM Scholastic Programming Contest, November 10, 1989

European Regional Finals

Problem C

 Filling the Gaps 

At the largest conference on coding and cryptography the following theorem needed a proof or a
counterexample: Suppose you are given a set of words of equal length; each word consisting of 0’s,
1’s and/or *’s. Furthermore suppose the pattern of *’s is different for all words in the set. By this
we mean: if you replace all 0’s and 1’s by say $ you obtain different words. 

The claim is: if you replace the *’s by 0’s and 1’s in all possible ways, then you obtain a set that is
at least as big as the set you started with. 

Example: 

{ 10*, *0*, *00 } produces { 100, 101, 000, 001 } 

{ 100, 101, 10* } produces { 100, 101 } 

Notice that the set in the latter example does not satisfy the condidtion mentioned above, so it does
not provide a counterexample. 

You program has to check for a number of cases: 

1. Whether the pattern of *’s is different for all words in the set and: 
2. Compute the number of words obtained by replacing the *’s by 0’s and 1’s. 

The words will not be longer than 15 symbols. 

Input
The input is a text-file that presents a sequence of sets. Each set is described as follows. The first
line gives two integers: the length of the words and the number of the words. Then follow the
words, each on a separate line. The end of the sequence of sets is indicated by a set with wordlength
0 and number of words equal to 0. 

Output
The output is a textfile that contains one line for each set. if the pattern of *’s is different for all the
words in this set this line should contain YES (in uppercase), followed by a space and the number of
obtained words, otherwise it should contain NO (uppercase) only. 

Sample Input



3 3
10*
*0*
*00
4 3
1100
1101
110*
0 0

Sample Output
YES 4
NO
YES 0



ACM Scholastic Programming Contest, November 10, 1989

European Regional Finals

Problem D

 Simply proportion 

Wou will probably have made a document on a word processor. When the job was done and you
wanted to print that document you sometimes have the option to print the document with
proportional spacing. This means that gaps between letters and words are filled with very small
spaces (as small as your printer can handle) in such a way that you do not see a ragged appearance
of a line but instead the line is left and right justified on your printout. This could also be done by
filling each line with normal spaces, but this usually produces big gaps between words. In the
following we call these small spaces dots. 

In the exercise you are asked to produce an algorithm that fills lines with dots in such a manner that
the line has a certain length (measured in dots). We will provide you with lines which contain
spaces and certain letters. Each character has a width that can be measured in dots. In order to keep
this exercise simple we will only use a subset of letters. These letters are the following: 

Character Width
A 18
B 17
I 10

M 20
S 16
Y 13

’space’ Variable
The minimum number of dots between letters in a word is 3. The number of dots that separates
letters in a word is given by the greatest possible number that is equal to or smaller than 1/3 of the
minimum number of dots that separate words (rounded down to the nearest integer). The minimum
number of dots for a single space is 10(there is no upper limit for the number of dots in a space).
Note: the begin and end of a line may not contain (empty) dots. 

It can (and according to Murphy’s law it will) happen that you are left with a number of dots that
can’t be equally divided in the gaps between letters or words. These leftovers must be equally
divided over the spaces between the words beginning from the end of the line. 

Input
The input for your program is a text-file. Each input consists of two lines. On the first line there is
an integer (say N) that tells you the desired length of the line (measured in dots) that will be your
output. This integer has a maximum value of 5000. The second line consists of the input that you



have to reformat to the desired length (each word is separated from the other by one space). Each
line has at least two words on it and the maximum number of characters on this line is 80. There are
no spaces after the last word. It is given that it is possible to fill the given line with dots so that the
resulting line has a length of N dots. The last two lines of the input are given by: 

0
SYMIBA

Your program must not perform any action on this last input, it is simply there to mark the end of
the input. 

Output
Your program must convert the given line to the desired length (N dots). The ouput is a text-file.
Each line corresponds to the second line of each input pair with the number of dots between the
letters and words. The spaces between letters and words are denoted in a special manner. If there
are 3 dots between the letters A and B this is denoted by A/(3)B in your output. Your output may
not contain any spaces, all these spaces must be converted to dots. 

Sample Input
250
AIM SSY ABABA
200
SSSS AAAA
130
AA B AA
0
SYMBIA

Sample Output
A/(4)I/(4)M/(18>S/(4)S/(4)Y/(19)A/(4)B/(4)A/(4)B/(4)A
S/(7)S/(7)S/(7)S/(22)A/(7)A/(7)A/(7)A
A/(5)A/(16)B/(16)A/(5)A


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

