/

:";/- , ";’.!' S50
/!,jii'fé'r\' Ac/\'\ddsl/\

Furopean Regional Finals

of the
1988-89 ACM Scholastic Programming Contest

Held at
Eindhoven University of Technology
The Netherlands

November 12, 1988

[7 problems A-G on 13 numbered pages]

Aem Pisk

Problem A: From Prefix to Postfix

1988-89 ACM Scholastic Programming Contest
European Regional Finals

November 12, 1988

Source File: PREPOST.PAS
= Input File: PREPOST.INP
Output File: PREPOST.OUT

WARNING The characters in this problem are purely ficti-
tional. Anv resemblance to real-life persons must be attributed
to your own imagination. Good luck!

The Contest Director

Three well-known notations for expressions are prefix, infix, and postfix. Parentheses are
needed in infix notation to eliminate ambiguities. For instance, the infix expression axboc
either means (a=b)oc or ax(boc). Often priority rules are introduced to save on parentheses
again. In prefix and postfix notation, however, there is no need for parentheses or priority”
rules. The above expressions in prefix notation are oxabc and *aobc, respectively. Here, each’
operator precedes its arguments, which themselves can be expressions. In postfix notation
the operators are placed after their arguments: ab*co and abe o, respectively.

The arity of an operator is the number of arguments it operates on. An operator with
arity zero can be regarded as a constant. Several operators with their arity are given in
Tzble 1 below. The arity of operator ? depends on the expression. Within an expression each

occurrence of 7 has the same arity, but for two different expressions the arity of ? may be
different.

Operators ATity

012345672839 0

- 8! 1

* 4+ 2

fgh 3

P Q 4

7 variable : B

Table 1: Operators and their arity

Not just any string of operators is a valid expression in prefix notation. For instance, the
four strings

7
++345
-?712345608
72734

are valid prefix expressions. (Notice that 345 is not a single number but three separate

constants. Also notice that the operator ? has arity 8 and 2 respectively in the last two
expressions.) But the four strings

771234
are not valid prefix expressions. In the last string, no proper arity for 7 can be found.

The input for your program is a textfile. Each line consists of at least 1 and at most 80
operators from Table 1. The input file ends with the standard end-of-file marker. Your
program determines for each input line whether it is a valid expression in prefix notation and
if so, it computes the postfix notation for this expression.

The output is also a textfile. Each line contains the answer for the corresponding input

line, that is, the expression in postfix notation if the input is a valid expression in prefix
notation and the message ‘Error’ otherwise.

An example input file and corresponding output file are:

[ExD OF PROBLEM A |

PREPOST.INP | | PREPOST.OUT
7 | {7

++345 34+5+

34 Error
-7123456089 123456037~
+34+56 Error

18 Error
771234 Error

72734 23477

Problem B: The Snake in the Grass

1988-89 ACM Scholastic Programming Contest
European Regional Finals

November 12, 1988

Source File: SNAKE.PAS
Input File: SNAKE.INP
Output File: SNAKE.QUT

Pieter’s Garden is a rectangular piece of ground with integer dimensions M x N square
units (M and N at least 2 and at most 30). Each square is identified by a coordinate pair
(z.y),0 <z < Mand 0 <y < N. His Garden is a big mess, it is infested with huge 1x1 holes
and rocks. The worst thing, however, is the presence of a monotonic snake, vukkee!. When
Yukkee slithers around she is always within the boundaries of a 2 X 3 (or 3 X 2) L-shaped area

of 4 square units. This is called her (momentary) configuration. There are eight configuration
classes, one of them is

The question is whether Yukkee can move from one corner of the Garden to the other. The
holes and rocks are inaccessible. Moving, in this case, means changing the coordinate pair
of one square of Yukkee’s configuration under invariance of the L-shape. You may choose
any initial configuration for Yukkee such that it covers square (0,0). Yukkee has reached the
other corner when one of her coordinate pairs is (M - 1, N —1).

Oh, by the way, you know, of course, that the species of monotonic snakes has a lim-
ited ability to maneuver. Let £ be the minimum of the z-coordinates of the squares in the
current configuration, and similarly ¢ the minimum of the y-coordinates. (N.B. (Z.7) need
not be in the configuration.) The new coordinates z’ and y’ of the changed square (i.e. af-
ter the move) must still satisfy z/ > z and y’ > §. For instance, from the configuration
{(10,10),(10,11),(10,12),(11,10)} Yukkee can move to {(10,10),(10,11),(12,10),(11,10)},

but not to {(10,10),(10,11),(10,12),(9,12)} (even though the latter configuration is correctly
shaped).

Write a program to determine (the existence of) a path for Yukkee in 2 number of Gardens. =~

The input file is a textfile that presents a sequence of Gardens. Each Garden'is described as
follows. The first line gives Af and N. The next line gives &, the number of inaccessible squares

?This is not the name of the snake, but an expression of disgust. I just don’t like snakes. But, since you
insist, let’s call her Yukkee anyway.

g S\ve k

v T R Y i oL T L

in the Garden. The following k lines each contain the coordinate pair of one inaccessible
square. Gardens are not separated in the input file.

The output file is also a textfile. For each input Garden you put Yukkee in some initjal
configuration and move her to the other corner. If this cannot be done, then vour program
outputs a line with the message ‘NO'. Otherwise, it outputs a line with the message ‘YES'
followed by the description of a path. A path is specified by a sequence of coordinate pairs
(each pair on a line by itself, coordinates separated by at least one blank). The first four lines
must represent the initial configuration, each following line gives the new coordinates of the

square that changed. The last line should encode (M —1,N —1). Solutions are not separated
.In the output file.

Here follows an example of input with acceptable output.

. SNAKE.INP SNAKE.OUT
' 4 YES

W = O W b
= O N

W = N NN O = O
W W W N s O+

|ExD OF PROBLEM B|

A Plek

Problem C: The Jolly Jumper

1988-89 ACM Scholastic Programming Contest
European Regional Finals

November 12, 1988

Source File: JOLLY.PAS
Input File: JOLLY.INPP
Output File: JOLLY.OUT

A sequence of n, 7 > 0, Integers is called a jolly Jumper if and only if the absolute values
of the difference of successive elements take on all of the values 1 through n—1. For instance,
the sequence

1423

Is 2 jolly jumper, because the absolute differences are 3, 2, and 1, respectively. Notice that by
definition a sequence consisting of a single integer is a jolly jumper. Besides itself, the above
sequence contains 6 other contiguous subsequences that are also jolly jumpers.

For 2 number of non-empty sequences of non-negative integers, your program determines.
thelength of alongest jolly jumper in that sequence. “In” here means “occurring as contiguous-
subsequence in”.

The sequences are given in a file of integer, separated by -1 and terminated by -2,
The output of your program is also a file of integer, containing for each input sequence
the desired answer (in the same order as the input, of course).

You may assume that the integers are at most 3000. For example, the following input

JOLLY.INT
111-130142234 26 3 -2
o= SN ———

should produce as output

JOLLY.OUT
15

LEXD OF ProsLEM C|

Fem SPEK

Problem D: El Puzzlo

1988-89 ACM Scholastic Programming Contest
European Regional Finals

November 12, 1988

i
|

Source File: LPUZZLE.PAS
Input File: LPUZZLE.INP
— Output File: LPUZZLE.QUT

Given is a square board of n x n fields, of which one field has been marked. Fig. 1 shows
a 4 X 4 board where the fleld in the upper left-hand corner is marked. An L-piece has the
shape of the letter ‘L’ and covers three neighboring fields (see Fig. 1). The objective of the
L-puzzle is to cover the unmarked fields of the board with L-pieces, each field being covered
by exactly one L-piece. For your convenience, Fig. 1 also shows a solution.

_ Figure 1: A board, an L-piece, and a solution

Your program solves a sequence of L-puzzles, where 7 is restricted to powers of 2. (Prove
that in this case there is always a solution!) Furthermore. n is at most 32.

’ The input for your program resides in a textfile. Each line specifies an instance of the
L-puzzle by giving integers n, r, and ¢ (in that order, separated by at least one space): the
board is n x n and the marked field is in row 7/column ¢, where rows are numbered from the
top, columns from the left, and numbering starts at 0. The case with n = 0 terminates the
input, and otherwise n > 0,0 < r < n. and 0 <c<n
The output of your program is a textfile. It contains the solutions separated (but not -

terminated) by a single blank line. Your solution of an n X n L-puzzle is encoded in 1 line
' of 2n characters followed by n lines of 2n + I characters. The characters that may occur are:
space (* °), underscore (‘_°), and vertical bar (‘1"). If we number the characters on a line
from 0 upwards, then ‘vertical’ information is encoded on the even positions and ‘horizontal’
information on the odd positions. Vertical information can be either a vertical bar or a space.

6

horizontal information can be either an underscore or a space. Rather than formally defining
the encoding scheme we give an example. The solution of Fig. 1 (which could have been
triggered by 4 0 Oin the input file) is encoded as follows:

Notice that the marked field is not encoded in 2 special way. The first line begins with 2
space, but ends with an underscore, and contains no vertical bars (that is why it very much
looks like an empty line). The last line ends with a vertical bar, of course.

For example, the following output file is acceptable for the given input file.

[LPUZZLE.INP | | LPUZZLE. DUT |

491
200 1T =i

!

pad- | |lshe 31
l l

l

[Exp OF PROBLEM D]

-~1

Awm fieh

Problem E: The Easy Part

1988-89 ACM Scholastic Programming Contest
European Regional Finals

November 12, 1988

Source File: MASTER.PAS
—~ Input File: MASTER.COD
Output File: MASTER.HIN

MasterMind is a game for two players. One of them, Designer, selects a secret code. The
other, Breake}, tries to break it. A code is no more than a row of colored dots. At the
beginning of a game. the plavers agree upon the length n that a code must have and upon
the colors that may occur in a code.

In order to break the code, Breaker makes a number of guesses, each guess itself being 2
code. After each guess Designer gives a hint, stating to what extent the guess matches his
secret code. The game is over when Breaker’s guess equals the secret code.

The topic of this programming problem is not to guess the secret code. We stick to the
easy part of the game: supplying the hints.

Given a secret code s1,...,8, and a guess gi,.
determined as follows.

A matchis a pair (i,7),1 <i<nand 1< j< n,such that s; = gj. Match (i.7) is called
strong when i = j, and it is called weak otherwise. Two matches (i,7) 2nd (p,q) are called
independent when (i = p) © (j = ¢). A set of matches is called independent when all its
members are pairwise independent.

Designer chooses an independent set M of matches for which the total number of matches
and the number of strong matches are both maximal. The hint then consists of the number of
strong followed by the number of weak matches in A{. Note that these numbers are uniquely

determined by the secret code and the guess. If the hint turns out to be (n,0), then the guess
is identical to the secret code, and the game is over.

.., gn the hint consists of a pair of numbers"

The input of your program is in a textfile. On this file a number of games are represented.

o Colors are represented as integers from 1 through k, where k is the size of the set of
colors that is agreed upon.

o A code is represented by the blank-separated list of the representations of the colors &
its successive dots.

e A game is represented on a number of consecutive lines. The first line contains the
two parameters n and & of the game, in this order, separated by blanks. The second

line contains the representation of the secret code. The remaining lines contain the
representations of the successive guesses, one per line.

o Two successive games are separated by a line with the character ‘Y’ in the first position.

The last game is followed by a line with some character different from ‘Y’ in the first
position. Z

You may assume that for each game 0 < n < 1000 and 0 < & < 10000.

The output of your program has to appear in a textfile. For each guess in the input file

the output file contains (in the same order) the pair of integers representing the hint. These
integers are preceded by blanks and/or end-of-line markers.

For example, we have the following input file with acceptable output file.

MASTER.COD MASTER.KHIN
4 6

1385

1123 1-1
4335 20

6 5§51 12
6135 12
13585 40

N

|EXD OF PROBLEM E|

/) Y C':’d)é//<

Problem F: Series Parallel Graphs

1988-89 ACM Scholastic Programming Contest
European Regional Finals

November 12, 1988

Source File: SP.PAS
Input File: SP.INP
Output File: SP.OUT

The class of series parallel (SP) graphs is defined recursively as follows.

2

(i) A directed graph consisting of two (hence, distinct) vertices a and b connected by 2

single arc is a SP graph:
. e

(1) If G is a SP graph, then so is the graph obtained from G by
(2) doubling an arc of G (creating arcs in parallel):
: A
qQ — "
is replaced by @b

(b) chopping an arc of G (creating arcs in series), thereby introducing 2 {resh vertex z:

B a———-b-b G-———’I————"b

is replaced by

ith multiple arcs between vertices. Further-

Thus, SP graphs are directed graphs, possibly w
alled the source, and a unique

more, SP graphs have a unique vertex without incoming arcs, ¢
vertex without outgoing arcs, called the sink.
An example of a SP graph is given in Fig. 1.

/3/\24
W, \5.
..

Figure 1: Example SP graph

Your program determines for a sequence of directed graphs whether they are SP or not.

For each SP graph, the program also determines the source and the sink.

10

The input file is a textfile and contains the description of a number of directed graphs.
The vertices of each graph are numbered from 1 upwards. A graph is represented by listing

for each vertex the numbers of its successors. More precisely, a graph with N vertices is
represented on V + 1 successive lines:

o line 0 contains .V,
« line i contains the successors of vertex i (1 <1 < N).

The representations of successive graphs are not separated. The input is terminated by the
ctandard end-of-file. You may assume that the number of vertices of each input graph is at
most 100.

The output file is also a textfile. For each graph the output file contains ‘YES' or ‘NO’ (on
a line by itself), indicating whether the corresponding input graph is SP or not. respectively.
If a graph is SP, then two more lines follow, containing the number of the source and sink,
respectively, in strict format.

Sample input with corresponding output:

SP.INP | | SP.OUT |

7 YES

) 1

363 5

4 4 NO

5

.

5

G i R

4 A1
\},})

43

[Exp or PROBLEM F| -

/d("% | — L;Jﬂ

11

Acerdfzlk

Problem G: Contest Aid

1988-89 ACM Scholastic Programming Contest
European Regional Finals

November 12, 1988

Source File: LCHECK.PAS
Input Files: LCHECK.INP, LCHECK.SOL
Output File: LCHECK.ODUT

Imagine you are organizing a programming contest, just like this one. where programs
are to be judged by checking their output for certain test runs. When the input uniquely
determines the cutput, the output can be checked by a simple comparison with the known
correct output. When you are less fortunate, you need the aid of a special program that
examines the output and checks whether it is correct for the given input (of course. vou
cannot rely on ‘visual’ inspection by a human using some text editor).

This problem requires vou to write a program that does the output checking for problem D
(El Puzzlo), so you’d better read that one too.

The input for your program resides in two textfiles. The format of LCEECK.INP is exactly,
the same as that of the input file of Problem D. The values of n zre at most ‘1_22\4, and not.
necessarily powers of 2.

In general, LCHECK.SOL could be just any horrible textfile of purported L-puzzle solutions.

. To simplify matters, you may assume, however, that it consists of the right number (as
determined by the other input file) of non-empty blocks of non-empty lines, where blocks are
separated (but not terminated) by a single empty line.

The output is a textfile. For each input case your program produces one output line
with the test result. This can be either of the following three messages: ‘Wrong Format'.
"Wrong Answer’, or ‘Ok’. ‘Wrong Format’ indicates that the format is wrong, i.e. one (or
more) of the following holds: wrong number of lines: wrong number of characters in some
line; some character is not a space, underscore, or vertical bar: an underscore occurs in a
vertical information position, or a vertical bar occurs in a horizontal information position.
‘Wrong Answer’ applies if the format is correct, but it does not encode the solution for the
desired L-puzzle. ‘Ok’ is what you are aiming for in problem D.

12

Example:

LCHECK.INP

LCHECK.SOL

LCHECK.OUT

421
200
504
1000 3 12
0o0¢OC

LEXD or PROBLEM G

I give up!

How about you, Sally?
May be this fools them:

Q&> 1<=7

|

Wrong Answer
Wrong Format
0k

Wrong Format

